1. Alley, R. B. et al. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology 25, 483–486 (1997).
2. Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P. & Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 30, 3109–3123 (2011).
3. Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).
4. Dixit, Y., Hodell, D. A. & Petrie, C. A. Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago. Geology 42, 339–342 (2014).
5. Dixit, Y. et al. Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Sci. Rep. 8, (2018).
6. Petrie, C. A. et al. Adaptation to Variable Environments, Resilience to Climate Change: Investigating Land, Water and Settlement in Indus Northwest India. Curr. Anthropol. 58, 0 (2017).
7. Roffet-Salque, M. et al. Evidence for the impact of the 8.2-kyBP climate event on Near Eastern early farmers. Proc. Natl. Acad. Sci. 115, 8705 LP – 8709 (2018).
8. Staubwasser, M. & Weiss, H. Holocene Climate and Cultural Evolution in Late Prehistoric–Early Historic West Asia. Quat. Res. 66, 372–387 (2006).
9. Curry, R., Dickson, B. & Yashayaev, I. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426, 826–829 (2003).
10. Thomas, E. R. et al. The 8.2 ka event from Greenland ice cores. Quat. Sci. Rev. 26, 70–81 (2007).
11. Alley, R. B. & Ágústsdóttir, A. M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat. Sci. Rev. 24, 1123–1149 (2005).
12. Kobashi, T., Severinghaus, J. P., Brook, E. J., Barnola, J.-M. & Grachev, A. M. Precise timing and characterization of abrupt climate change 8200 years ago from air trapped in polar ice. Quat. Sci. Rev. 26, 1212–1222 (2007).
13. Barber, D. C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).
14. Wagner, A. J., Morrill, C., Otto-Bliesner, B. L., Rosenbloom, N. & Watkins, K. R. Model support for forcing of the 8.2 ka event by meltwater from the Hudson Bay ice dome. Clim. Dyn. 41, 2855–2873 (2013).
15. Kleiven, H. K. F. et al. Reduced North Atlantic deep water coeval with the glacial Lake Agassiz freshwater outburst. Science (80-. ). 319, 60–64 (2008).
16. LeGrande, A. N. et al. Consistent simulations of multiple proxy responses to an abrupt climate change event. Proc. Natl. Acad. Sci. 103, 837–842 (2006).
17. Wiersma, A. P. & Renssen, H. Model–data comparison for the 8.2 ka BP event: confirmation of a forcing mechanism by catastrophic drainage of Laurentide Lakes. Quat. Sci. Rev. 25, 63–88 (2006).
18. Matero, I. S. O., Gregoire, L. J., Ivanovic, R. F., Tindall, J. C. & Haywood, A. M. The 8.2 ka cooling event caused by Laurentide ice saddle collapse. Earth Planet. Sci. Lett. 473, 205–214 (2017).
19. Fleitmann, D. et al. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Southern Oman. Science (80-. ). 300, 1737 (2003).
20. Cheng, H. et al. Timing and structure of the 8.2 kyr BP event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37, 1007–1010 (2009).
21. Gupta, A. K., Anderson, D. M. & Overpeck, J. T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354–357 (2003).
22. Dixit, Y. Regional character of the “global monsoon”:Paleoclimate insights from Northwest Indian lacustrine sediments. Oceanography 33, (2020).
23. Dixit, Y., Hodell, D. A., Sinha, R. & Petrie, C. A. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B.P. Earth Planet. Sci. Lett. 391, 16–23 (2014).
24. Mischke, S. & Zhang, C. Holocene cold events on the Tibetan Plateau. Glob. Planet. Change 72, 155–163 (2010).
25. Peyron, O. et al. Precipitation changes in the Mediterranean basin during the Holocene from terrestrial and marine pollen records: a model–data comparison. Clim. Past 13, 249–265 (2017).
26. Park, J. et al. The 8.2 ka cooling event in coastal East Asia: High-resolution pollen evidence from southwestern Korea. Sci. Rep. 8, 12423 (2018).
27. Thompson, L. G. et al. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science (80-. ). 298, 589–593 (2002).
28. Morrill, C. & Jacobsen, R. How widespread were climate anomalies 8200 years ago? Geophys. Res. Lett. 32, (2005).
29. Morrill, C. et al. Proxy benchmarks for intercomparison of 8.2 ka simulations. Clim. Past 9, (2013).
30. Walker, M. et al. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. J. Quat. Sci. 34, 173–186 (2019).
31. Alley, R. B. et al. Proxy benchmarks for intercomparison of 8.2 ka simulations. Nature 9, 205–214 (2013).
32. Voarintsoa, N. R. G. et al. Investigating the 8.2 ka event in northwestern Madagascar: Insight from data–model comparisons. Quat. Sci. Rev. 204, 172–186 (2019).
33. Wurtzel, J. B. et al. Tropical Indo-Pacific hydroclimate response to North Atlantic forcing during the last deglaciation as recorded by a speleothem from Sumatra, Indonesia. Earth Planet. Sci. Lett. 492, 264–278 (2018).
34. De Deckker, P. The Indo-Pacific Warm Pool: critical to world oceanography and world climate. Geosci. Lett. 3, 20 (2016).
35. Aldrian, E. & Dwi Susanto, R. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. A J. R. Meteorol. Soc. 23, 1435–1452 (2003).
36. Chua, S. et al. A new Quaternary Stratigraphy of the Kallang River Basin, Singapore: Implications for Urban Development and Geotechnical Engineering in Singapore. J. Asian Earth Sci. 104430 (2020).
37. Chua, S. Quaternary palaeoenvironments of the Kallang River Basin, Singapore. (Nanyang Technological University, 2019). doi:https://doi.org/10.32657%2F10220%2F48572.
38. Rao, P. S., Ramaswamy, V. & Thwin, S. Sediment texture, distribution and transport on the Ayeyarwady continental shelf, Andaman Sea. Mar. Geol. 216, 239–247 (2005).
39. Panchang, R. & Nigam, R. High resolution climatic records of the past~ 489 years from Central Asia as derived from benthic foraminiferal species, Asterorotalia trispinosa. Mar. Geol. 307, 88–104 (2012).
40. Shackleton, N. J. Oxygen isotopes, ice volume and sea level. Quat. Sci. Rev. 6, 183–190 (1987).
41. Diz, P. et al. Interpretation of benthic foraminiferal stable isotopes in subtidal estuarine environments. Biogeosciences 6, 2549–2560 (2009).
42. Zhao, J., Broms, B. B., Zhou, Y. & Choa, V. A study of the weathering of the Bukit Timah granite Part B: field and laboratory investigations. Bull. Int. Assoc. Eng. Geol. l’Association Int. Géologie l’Ingénieur 50, 105–111 (1994).
43. Rahardjo, H., Aung, K. K., Leong, E. C. & Rezaur, R. B. Characteristics of residual soils in Singapore as formed by weathering. Eng. Geol. 73, 157–169 (2004).
44. Rothwell, R. G. Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us? in Micro-XRF Studies of Sediment Cores 25–102 (Springer, 2015).
45. Tian, J., Xie, X., Ma, W., Jin, H. & Wang, P. X‐ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea. Paleoceanography 26, (2011).
46. Boyle, E. A. Chemical accumulation variations under the Peru Current during the past 130,000 years. J. Geophys. Res. Ocean. 88, 7667–7680 (1983).
47. Yarincik, K. M., Murray, R. W. & Peterson, L. C. Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al. Paleoceanography 15, 210–228 (2000).
48. Berger, A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. J. Atmos. Sci. 35, 2362–2367 (1978).
49. Stott, L. et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56–59 (2004).
50. Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Röhl, U. Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science (80-. ). 293, 1304 LP – 1308 (2001).
51. Hanebuth, T., Stattegger, K. & Grootes, P. M. Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science (80-. ). 288, 1033–1035 (2000).
52. Smith, D. E., Harrison, S., Firth, C. R. & Jordan, J. T. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).
53. Bird, M. I., Pang, W. C. & Lambeck, K. The age and origin of the Straits of Singapore. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 531–538 (2006).
54. Cook, C. G. & Jones, R. T. Palaeoclimate dynamics in continental Southeast Asia over the last ~30,000Calyrs BP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 339–341, 1–11 (2012).
55. Liew, P.-M., Huang, S.-Y. & Kuo, C.-M. Pollen stratigraphy, vegetation and environment of the last glacial and Holocene—A record from Toushe Basin, central Taiwan. Quat. Int. 147, 16–33 (2006).
56. Zong, Y. et al. The role of sea-level rise, monsoonal discharge and the palaeo-landscape in the early Holocene evolution of the Pearl River delta, southern China. Quat. Sci. Rev. 54, 77–88 (2012).
57. Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B. & Fernandez, D. P. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, 452–455 (2007).
58. Griffiths, M. L. et al. Increasing Australian–Indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat. Geosci. 2, 636–639 (2009).
59. Fudge, T. J. et al. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440 (2013).
60. Markle, B. R. et al. Global atmospheric teleconnections during Dansgaard–Oeschger events. Nat. Geosci. 10, 36–40 (2017).
61. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).
62. Svensson, A. et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).
63. Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, (2006).
64. Frierson, D. M. W. et al. Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat. Geosci. 6, 940–944 (2013).
65. Bischoff, T. & Schneider, T. The equatorial energy balance, ITCZ position, and double-ITCZ bifurcations. J. Clim. 29, 2997–3013 (2016).
66. Kang, S. M., Frierson, D. M. W. & Held, I. M. The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci. 66, 2812–2827 (2009).
67. Donohoe, A., Marshall, J., Ferreira, D., Armour, K. & McGee, D. The interannual variability of tropical precipitation and interhemispheric energy transport. J. Clim. 27, 3377–3392 (2014).
68. Liu, Y.-H. et al. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event. Nat. Geosci. 6, 117–120 (2013).
69. Cheng, H. et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. 117, 23408 LP – 23417 (2020).
70. Wang, Y. et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science (80-. ). 308, 854–857 (2005).
71. Mohtadi, M. et al. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 76–80 (2014).
72. Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar seesaw? Paleoceanography 13, 119–121 (1998).
73. Shakun, J. D. & Carlson, A. E. A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev. 29, 1801–1816 (2010).
74. Bauer, E., Ganopolski, A. & Montoya, M. Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz. Paleoceanography 19, (2004).
75. Rohling, E. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Quat. Sci. Rev. 26, 172–186 (2005).
76. Ramlan, O. & Noraswana, N. F. Distribution of benthic Foraminifera in Pahang River estuary, Malaysia. Malaysian Appl. Biol. 44, 1–5 (2015).
77. Saidova, K. M. Benthic foraminifera communities of the Andaman Sea (Indian Ocean). Oceanology 48, 517–523 (2008).
78. Anbuselvan, N. Benthic foraminiferal distribution and biofacies in the shelf part of Bay of Bengal, east coast of India. Mar. Biodivers. 49, 691–706 (2019).
79. Szarek, R., Kuhnt, W., Kawamura, H. & Kitazato, H. Distribution of recent benthic foraminifera on the Sunda Shelf (South China Sea). Mar. Micropaleontol. 61, 171–195 (2006).
80. Solai, A., Gandhi, M. S. & Rao, N. R. Recent benthic foraminifera and their distribution between Tuticorin and Tiruchendur, Gulf of Mannar, south-east coast of India. Arab. J. Geosci. 6, 2409–2417 (2013).
81. Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
82. Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).
83. Reimer, R. W. & Reimer, P. J. An online application for [...] R calculation. Radiocarbon 59, 1623 (2017).