Patient characteristics
Table 1 shows the demographic characteristics of all participants. Females (54.7%) and males (45.3%), a total of 3,908 children, were included in the study. The mean age of all participants was 12.10±4.60. The median of TC, TG, HDL-C, and LDL-C measured by direct method levels were 153 mg/dL, 99 mg/dL, 44.3 mg/dL, and 92 mg/dL, respectively. The median TG/TC ratio and nonHDL-C level were calculated as 0.66 and 107 mg/dL, respectively. Lipid profiles of 2356 children (60.3%) were measured with Roche, 893 children (22.9%) with Beckman, and 659 children (16.9%) with Siemens direct assays. All demographic characteristics of the individuals were given separately for these assays as well.
Table 1: Study population characteristics
Characteristic
|
Overall
(N = 3,908)
|
Roche (N = 2,356)
|
Beckman (N = 893)
|
Siemens (N = 659)
|
Age (years)
|
13(9-16)
|
13(9-16)
|
14(9-16)
|
15(9-16)
|
Gender
|
|
|
|
|
Female
|
2138 (54.7)
|
1363 (57.9)
|
451 (50.5)
|
324 (49.2)
|
Male
|
1770 (45.3)
|
993 (42.1)
|
442 (49.5)
|
335 (50.8)
|
Lipid values
|
|
|
|
|
TC (mg/dL)
|
153(131-176)
|
150(129-171.8)
|
164(141-187.5)
|
149(127-174)
|
TG (mg/dL)
|
99(72-140)
|
103(74-143)
|
93(68-129)
|
99(70-145)
|
HDL-C (mg/dL)
|
44.3(37.5-52)
|
45(38-52)
|
46(39-53)
|
42.1(35.3-50.0)
|
Non-HDL-C (mg/dL)
|
107(87-129)
|
103(85-126)
|
117(98-139)
|
106(86-128.7)
|
TG - TC ratio
|
.66(.48-.90)
|
.69(.51-.95)
|
.57(.43-.78)
|
.67(.49-.94)
|
LDL-CD (mg/dL)
|
92(74-113)
|
91(73-112)
|
104(86-121)
|
81(64-101)
|
LDL-CF (mg/dL)
|
84.4(66.4-104.8)
|
80.0(63.4-100.0)
|
96.4(77.8-116.5)
|
84.2(64.1-103.1)
|
LDL-CS (mg/dL)
|
86.4(67.8-107.0)
|
82.1(65.1-102.5)
|
97.5(79.7-118.2)
|
86.0(66.1-106.3)
|
LDL-CM (mg/dL)
|
86.4(68.9-106.6)
|
82.6(65.9-102.7)
|
96.9(79.7-116.7)
|
85.7(67.9-106.2)
|
LDL-CE (mg/dL)
|
93.3(76.9-114.1)
|
91.7(75.1-112.4)
|
104.6(89.1-121.0)
|
83.2(67.2-101.2)
|
Values are expressed as N(%), mean±SD or median(1st – 3rd quartiles). TC: total cholesterol; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; non-HDL-C: non-high-density lipoprotein cholesterol; LDL-CD: LDL-C measured by direct assay; LDL-CF: LDL-C calculated by Friedewald formula; LDL-CS: LDL-C calculated by Sampson formula; LDL-CM: LDL-C calculated by Martin-Hopkins formula; LDL-CE: LDL-C calculated by the extended Martin-Hopkins formula
Comparison of LDL-C concentrations calculated by various formulas versus direct assays
Overall concordances of the different equations for LDL-C prediction
Strata-specific median ratios of TG/VLDL-C were used to predict LDL-C levels. These predictions were made using the extended Martin-Hopkins’ formula. In order to see how the predicted change at different non-HDL-C and TG levels, the results of the calculations made according to the cut-off values determined for these variables are shown in Supplementary Table 1. This two-dimensional cross-table contained the median ratio of TG/VLDL-C with 180 cells were generated, with TG sublevels in the rows and non-HDL-C sublevels in the columns. In this 180-cell table, the cells display the median statistics for TG/VLDL-C ratio.
In Fig. 1, overall concordances of LDL-C predicted for each assay are given. It can be seen that the extended Martin-Hopkins formula produced the highest, and the Friedewald formula produced the lowest concordances within each direct assay. In Siemens direct assay, the concordance of Martin-Hopkins’ formula was higher than Sampson’s formula. In Beckman and Roche direct assays, the performances of these two formulas were found to be very similar.
The distribution density of LDL-C according to the results measured and estimated by different equations
In Fig. 2, the density plots show the distributions of the LDL-C levels measured by direct assays and predicted by the Friedewald, Sampson, Martin-Hopkins, and extended Martin-Hopkins equations. The difference between the median of predicted LDL-C levels by each equation and the median of LDL-C levels measured by direct methods were displayed with the red line in this figure. When Siemens direct assay was evaluated by the Friedewald and Sampson equations in Beckman and Roche direct assays, LDL-C levels were underestimated, whereas they were overestimated. When the distributions of the Martin-Hopkins and extended Martin-Hopkins were examined in Siemens direct assay, it was seen that the shape of Martin-Hopkins’ distributions was close to the measured LDL-C.
Concordances between the direct measured and predicted LDL-C by LDL-C strata
In Fig. 3, the concordances of the different equations for LDL-C prediction by different LDL-C sublevels are given for each assay. In all cases, the extended Martin-Hopkins equation gave the most concordant results. In the first category of LDL-C levels (<110 mg/dL), the Friedewald equation gave the least concordant results for each assay. The Sampson formula performed slightly better than the Martin-Hopkins equation for the Roche direct assay, but slightly worse than the Martin-Hopkins equation for the Siemens direct assay. Very similar results were observed for these two equations for the Beckman assay. In the second category of LDL-C levels (110 to 129 mg/dL), again, the lowest concordances were obtained with the Friedewald formula. The poor performance in the Friedewald formula for the Roche assay was striking. The performance of the Martin-Hopkins equation was higher than the Sampson equation for Beckman and Roche direct assays. These two approaches have approximately equal performance for Siemens direct assay. In the last category of LDL-C levels (>=130 mg/dL), the performance of the Sampson formula was relatively higher than the Martin-Hopkins equation for all direct assays. The performance of the Friedewald equation was higher than the Sampson and the Martin-Hopkins equation for Siemens direct assay.
Concordances between the direct measured and predicted LDL-C by LDL-C strata by triglycerides levels
In Fig. 4, overall concordances for LDL-C predicts by TG sublevels (< 75 mg/dL, 75 to 129 mg/dL and ≥ 130 mg/dL) were given for each assay. The highest calculated concordance values were seen in the extended Martin-Hopkins when the TG sublevel was analyzed for each assay. Nevertheless, the concordances of the equations against increased TG levels decreased with any direct assay. The calculated concordance of the equations given by TG sublevels for LDL-C sublevels is shown in three figures (Supplementary Fig. 1-Fig. 3).
In patients with LDL-C < 110 mg/dL, the extended Martin-Hopkins equation gave the highest performance by comparison with other equations, i.e., the Friedewald, Sampson, and Martin-Hopkins for all TG levels. Remarkably, the extended Martin-Hopkins equation decreased slightly for Beckman and Roche direct assays, whereas this formula had an almost equal performance for Siemens direct assay as the TG level increased from < 75 mg/dL to ≥ 130 mg/dL. When the TG was < 75 or between 75 mg/dL and 129 mg/dL, the Friedewald and Sampson equations had similar performance for each assay. However, the performance of the Friedewald method was lower than the Sampson method when TG level was ≥ 130 mg/dL for each assay. Even though the performance of the Martin-Hopkins equation decreased as the TG level increased for Beckman and Roche direct assays, this formula had an almost equal performance for Siemens direct assay. The performance of the Friedewald formula significantly reduced as the TG level increased for Beckman and Roche direct assay. For LDL-C between 110 to 129 mg/dL, the performance of the extended Martin-Hopkins equation was again the highest for each assay when TG level was < 75 mg/dL. The concordance of the extended Martin-Hopkins approach decreased as TG level increased for Roche direct assay, whereas firstly, it decreased then, it increased for Beckman and Siemens direct assays. In TG < 75 mg/dL, as the Friedewald and Sampson had similar performance for each assay, the distinction between these equations increased while the TG level increased for each assay. Even though the performance of the Friedewald, Sampson, and Martin-Hopkins equations generally decreased while the TG level increased for Beckman and Roche direct assays, these performances first decreased and then increased for Siemens direct assay. In patients with LDL-C ≥ 130 mg/dL, the performance of the Martin-Hopkins and the extended Martin-Hopkins equations constantly decreased while the TG levels were increasing for Roche direct assay; however, it first increased and then decreased for Siemens and Beckman direct assay. The Friedewald and Sampson formulas showed the same performance in the TG level < 75 mg/dL for each assay. However, while this situation changed in the TG levels between 75 and 129 mg/dL for Siemens and Roche direct assays, it remained the same for Beckman direct assay. While the performance of the Friedewald equation was lower than the Sampson equation in the TG levels between 75 and 129 mg/dL for Roche direct assay, it had a reverse situation for Siemens direct assay.
While the performance of the Friedewald equation was lower than Sampson equation for Beckman and Roche direct assays, these performances were the same for Siemens direct assay at the TG level ≥ 130 mg/dL.
Concordances between the direct measured and predicted LDL-C by LDL-C strata by non-HDL-C levels
In Fig. 5, the concordances of LDL-C calculated according to the three sublevels (<120 mg/dL, 120 to 144 mg/dL, and ≥145 mg/dL) created for non-HDL-C are given for all assays. The results indicated that the highest concordance values belonged to the extended Martin-Hopkins for all non-HDL sublevels and each assay. Furthermore, for Siemens and Roche direct assays, as the non-HDL-C level changed from <120 mg/dL to ≥145 mg/dL, there was a decrease in the concordance values calculated using the Friedewald equation. The calculated concordance of the equations given by non-HDL-C sublevels for LDL-C strata is shown in three figures (Supplementary Fig. 4-Fig. 6).
For the patients in the first category of LDL-C (<110 mg/dL) in all assays, the concordance calculated by the extended Martin-Hopkins equation as the non-HDL-C level changed from <120 mg/dL to >=145 mg/dL, values decreased. The performance of the Friedewald, Sampson, and the Martin-Hopkins equations were almost similar in the non-HDL sublevel <144 mg/Dl; however, this situation changed when non-HDL-C exceeded 144 mg/dL. The patients in the second category of LDL-C (between 110 to 129 mg/dL), as the non-HDL-C levels changed from <120 mg/dL to ≥145 mg/dL, the concordance of the Martin-Hopkins increased, but the concordance of extended Martin-Hopkins decreased for Roche direct assay. The patients in the third category of LDL-C (≥130 mg/dL), extended Martin-Hopkins gave the highest concordance for each assay, and all sublevels of the non-HDL-C except non-HDL-C was between 120 to 144 mg/dL for Siemens direct assay.
Regression analysis for differences between the direct and calculated LDL-C with different assay methods
In Fig. 6, the linear regression analyses were performed to examine the correlation between the LDL-C levels predicted by formulas and measured by direct assays. It has been seen that the LDL-C values estimated by the extended Martin-Hopkins equation form a better regression model. The R square value calculated with extended Martin-Hopkins equation was found to be higher than those calculated with the other equations, 0.95 for Roche direct measurement method, 0.90 for Beckman direct measurement method, and 0.92 for Siemens direct measurement method. As a result, the extended Martin-Hopkins equation is highly associated with the LDL-C measured by direct assay equation.
Residual error plots for differences between the direct and calculated LDL-C with different assay methods
Fig. 7 shows the variation of the difference between direct LDL-C measurement and calculated LDL-C over the change in TG level. It is clear that in the case of increased TG levels, the LDL-C levels were underestimated with the Friedewald and Sampson formula. There was also some underestimated condition in the Martin-Hopkins equation, although not as large as in the Friedewald and Sampson for Beckman and Roche direct assays. It was observed that compared with the other assays Siemens direct assay in terms of TG levels was less for the Martin-Hopkins formula. The differentiation of TG levels did not affect the extended Martin-Hopkins formula in each assay and remained close to zero at all TG levels. The extended Martin-Hopkins formula was calculated lowest mean absolute deviation statistics for each assay.
The proportion of misclassified samples per direction by predicted low-density lipoprotein cholesterol category
In Fig. 8, diverging bar charts show the total percentage of underclassified and overclassified samples within each LDL-C category. In each bar, how well different equations concordant the LDL-C categories or how many categories they predict up/down are expressed in different colors. The concordance of the extended Martin-Hopkins equations was the highest according to other equations in all sublevels of the LDL-C levels and each assay. In LDL-C levels between 110 to 129 mg/dL, the underestimation of LDL-C occurred in 0.7% with the extended Martin-Hopkins equation compared with 34.1% with the Friedewald equation, 24.1% with the Sampson equation, and 20.0% with the Martin-Hopkins equation for Roche direct assay.
In LDL-C < 110 mg/dL, the degree of underestimation was least pronounced with the extended Martin-Hopkins equation, with only 7.6% of patients underclassified for Roche assay and with only 9.0% of patients underclassified for Beckman assay. In Beckman and Roche direct assays, this statistic was 29.3% and 31.6% for the Friedewald equation, 29.3% and 27.3% for the Sampson equation, 27.4% and 27.7% for the Martin-Hopkins equation, respectively. In general, the concordant prediction of LDL-C for the Friedewald equation was the lowest according to other equations in all sublevels of the LDL-C levels and each assay. In most cases, LDL-C levels were overestimated in the Sampson and the Martin-Hopkins equations. For instance, in LDL-C levels between 110 and 129 mg/dL, the degree of overestimation with the Sampson and the Martin-Hopkins formulas was 20.9%, while this degree was 19.4% for the Friedewald and 10.5% for the extended Martin-Hopkins in Siemens direct assay. The highest degree of underestimation was observed in the Friedewald equation for all subclasses of LDL-C levels and all types of assays.