Arnáiz, E., Almkvist, O., Ivnik, R. J., Tangalos, E. G., Wahlund, L. O., Winblad, B., & Petersen, R. C. (2004). Mild cognitive impairment: a cross-national comparison. J Neurol Neurosurg Psychiatry, 75(9), 1275-1280. doi:10.1136/jnnp.2003.015032
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95-113. doi:10.1016/j.neuroimage.2007.07.007
Breukelaar IA, A. C., Grieve SM, Foster SL, Gomes L, Williams LM, Korgaonkar MS. (2017). Cognitive control network anatomy correlates with neurocognitive behavior: A longitudinal study. Hum Brain Mapp. doi:10.1002/hbm.23401
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10(3), 186-198. doi:10.1038/nrn2575
Cheung, R. W., Cheung, M. C., & Chan, A. S. (2004). Confrontation naming in Chinese patients with left, right or bilateral brain damage. J Int Neuropsychol Soc, 10(1), 46-53. doi:10.1017/s1355617704101069
Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci, 17(11), 718-731. doi:10.1038/nrn.2016.113
Cohen, J. R., & D'Esposito, M. (2016). The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. J Neurosci, 36(48), 12083-12094. doi:10.1523/jneurosci.2965-15.2016
Cordes, D., Zhuang, X., Kaleem, M., Sreenivasan, K., Yang, Z., Mishra, V., . . . Cummings, J. L. (2018). Advances in functional magnetic resonance imaging data analysis methods using Empirical Mode Decomposition to investigate temporal changes in early Parkinson's disease. Alzheimers Dement (N Y), 4, 372-386. doi:10.1016/j.trci.2018.04.009
Dey, A. K., Stamenova, V., Turner, G., Black, S. E., & Levine, B. (2016). Pathoconnectomics of cognitive impairment in small vessel disease: A systematic review. Alzheimers Dement, 12(7), 831-845. doi:10.1016/j.jalz.2016.01.007
Dwyer, D. B., Harrison, B. J., Yücel, M., Whittle, S., Zalesky, A., Pantelis, C., . . . Fornito, A. (2014). Large-scale brain network dynamics supporting adolescent cognitive control. J Neurosci, 34(42), 14096-14107. doi:10.1523/jneurosci.1634-14.2014
Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A. (1987). MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol, 149(2), 351-356. doi:10.2214/ajr.149.2.351
Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. J Neurophysiol, 101(6), 3270-3283. doi:10.1152/jn.90777.2008
Jiang, J., Liu, T., Zhu, W., Koncz, R., Liu, H., Lee, T., . . . Wen, W. (2018). UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities. Neuroimage, 174, 539-549. doi:10.1016/j.neuroimage.2018.03.050
Jie, B., Liu, M., & Shen, D. (2018). Integration of temporal and spatial properties of dynamic connectivity networks for automatic diagnosis of brain disease. Med Image Anal, 47, 81-94. doi:10.1016/j.media.2018.03.013
Kim, J., Criaud, M., Cho, S. S., Díez-Cirarda, M., Mihaescu, A., Coakeley, S., . . . Strafella, A. P. (2017). Abnormal intrinsic brain functional network dynamics in Parkinson's disease. Brain, 140(11), 2955-2967. doi:10.1093/brain/awx233
Knyazev, G. G., Slobodskoi-Plyusnin, Y. Y., Savost'yanov, A. N., Levin, E. A., & Bocharov, A. V. (2010). Reciprocal relationships between the oscillatory systems of the brain. Neurosci Behav Physiol, 40(1), 29-35. doi:10.1007/s11055-009-9227-2
Kucyi, A., Hove, M. J., Esterman, M., Hutchison, R. M., & Valera, E. M. (2017). Dynamic Brain Network Correlates of Spontaneous Fluctuations in Attention. Cereb Cortex, 27(3), 1831-1840. doi:10.1093/cercor/bhw029
Lawrence, A. J., Chung, A. W., Morris, R. G., Markus, H. S., & Barrick, T. R. (2014). Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology, 83(4), 304-311. doi:10.1212/wnl.0000000000000612
Li, C., Li, Y., Zheng, L., Zhu, X., Shao, B., Fan, G., . . . Wang, J. (2019). Abnormal Brain Network Connectivity in a Triple-Network Model of Alzheimer's Disease. J Alzheimers Dis, 69(1), 237-252. doi:10.3233/jad-181097
Liao, W., Wu, G. R., Xu, Q., Ji, G. J., Zhang, Z., Zang, Y. F., & Lu, G. (2014). DynamicBC: a MATLAB toolbox for dynamic brain connectome analysis. Brain Connect, 4(10), 780-790. doi:10.1089/brain.2014.0253
Liégeois, R., Ziegler, E., Phillips, C., Geurts, P., Gómez, F., Bahri, M. A., . . . Sepulchre, R. (2016). Cerebral functional connectivity periodically (de)synchronizes with anatomical constraints. Brain Struct Funct, 221(6), 2985-2997. doi:10.1007/s00429-015-1083-y
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., . . . Jiang, T. (2008). Disrupted small-world networks in schizophrenia. Brain, 131(Pt 4), 945-961. doi:10.1093/brain/awn018
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., . . . Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 53(4), 695-699. doi:10.1111/j.1532-5415.2005.53221.x
Rensma, S. P., van Sloten, T. T., Launer, L. J., & Stehouwer, C. D. A. (2018). Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: A systematic review and meta-analysis. Neurosci Biobehav Rev, 90, 164-173. doi:10.1016/j.neubiorev.2018.04.003
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069. doi:10.1016/j.neuroimage.2009.10.003
Rubinstein, D. Y., Camarillo-Rodriguez, L., Serruya, M. D., Herweg, N. A., Waldman, Z. J., Wanda, P. A., . . . Sperling, M. R. (2021). Contribution of left supramarginal and angular gyri to episodic memory encoding: An intracranial EEG study. Neuroimage, 225, 117514. doi:10.1016/j.neuroimage.2020.117514
Sacco, G., Ben-Sadoun, G., Bourgeois, J., Fabre, R., Manera, V., & Robert, P. (2019). Comparison between a Paper-Pencil Version and Computerized Version for the Realization of a Neuropsychological Test: The Example of the Trail Making Test. J Alzheimers Dis, 68(4), 1657-1666. doi:10.3233/jad-180396
Schaefer, A., Quinque, E. M., Kipping, J. A., Arélin, K., Roggenhofer, E., Frisch, S., . . . Schroeter, M. L. (2014). Early small vessel disease affects frontoparietal and cerebellar hubs in close correlation with clinical symptoms--a resting-state fMRI study. J Cereb Blood Flow Metab, 34(7), 1091-1095. doi:10.1038/jcbfm.2014.70
Shakil, S., Lee, C. H., & Keilholz, S. D. (2016). Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage, 133, 111-128. doi:10.1016/j.neuroimage.2016.02.074
Sibille, E., Morris, H. M., Kota, R. S., & Lewis, D. A. (2011). GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol, 14(6), 721-734. doi:10.1017/s1461145710001616
Smith, E. E., Salat, D. H., Jeng, J., McCreary, C. R., Fischl, B., Schmahmann, J. D., . . . Greenberg, S. M. (2011). Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology, 76(17), 1492-1499. doi:10.1212/WNL.0b013e318217e7c8
Sridharan D, L. D., Menon V. ( 2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. doi:10.1073/pnas.0800005105
Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A, 105(34), 12569-12574. doi:10.1073/pnas.0800005105
Torrens-Burton, A., Basoudan, N., Bayer, A. J., & Tales, A. (2017). Perception and Reality of Cognitive Function: Information Processing Speed, Perceived Memory Function, and Perceived Task Difficulty in Older Adults. J Alzheimers Dis, 60(4), 1601-1609. doi:10.3233/jad-170599
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., . . . Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11771995. doi:10.1006/nimg.2001.0978
van Leijsen, E. M. C., van Uden, I. W. M., Bergkamp, M. I., van der Holst, H. M., Norris, D. G., Claassen, J., . . . Tuladhar, A. M. (2019). Longitudinal changes in rich club organization and cognition in cerebral small vessel disease. Neuroimage Clin, 24, 102048. doi:10.1016/j.nicl.2019.102048
Wang, J., Wang, X., Xia, M., Liao, X., Evans, A., & He, Y. (2015). GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci, 9, 386. doi:10.3389/fnhum.2015.00386
Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., . . . Dichgans, M. (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol, 12(8), 822-838. doi:10.1016/s1474-4422(13)70124-8
Wee, C. Y., Yang, S., Yap, P. T., & Shen, D. (2016). Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging Behav, 10(2), 342-356. doi:10.1007/s11682-015-9408-2
Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol, 8, 49-76. doi:10.1146/annurev-clinpsy-032511-143049
Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., . . . Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183-201. doi:10.1016/j.neuroimage.2013.03.004
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics, 14(3), 339-351. doi:10.1007/s12021-016-9299-4