Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: Extent, structure and sources of variation. J Ecol 98:604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
Andivia E, Zuccarini P, Grau B, de Herralde F, Villar-Salvador P, Savé R (2019) Rooting big and deep rapidly: the ecological roots of pine species distribution in southern Europe. Trees - Struct Funct 33:293–303. https://doi.org/10.1007/s00468-018-1777-x
Barton CVM, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:1323–1331. https://doi.org/10.1093/treephys/24.12.1323
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:1–16. https://doi.org/10.3389/fpls.2015.00547
Butnor JR, Doolittle JA, Kress L, Cohen S, Johnsen KH (2001) Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol 21:1269–1278. https://doi.org/10.1093/treephys/21.17.1269
Butnor JR, Doolittle JA, Johnsen KH, Samuelson L, Stokes T, Kress L (2003) Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci Soc Am J 67:1607–1615. https://doi.org/10.2136/sssaj2003.1607
Butnor JR, Samuelson LJ, Stokes TA, Johnsen KH, Anderson PH, González-Benecke CA (2016) Surface-based GPR underestimates below-stump root biomass. Plant Soil 402:47–62. https://doi.org/10.1007/s11104-015-2768-y
Chambel MR, Climent J, Alía R (2007) Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann For Sci 64:87–97. https://doi.org/10.1051/forest:2006092
Climent J, Prada MA, Calama R, Chambel MR, De Ron DS, Alía R (2008) To grow or to seed: Ecotypic variation in reproductive allocation and cone production by young female Aleppo pine (Pinus halepensis, Pinaceae). Am J Bot 95:833–842. https://doi.org/10.3732/ajb.2007354
Dawson TE, Hahm WJ, Crutchfield-Peters K (2020) Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytol 226:666–671. https://doi.org/10.1111/nph.16410
Esteban LG, Martín JA, de Palacios P, Fernández FG, López R (2010) Adaptive anatomy of Pinus halepensis trees from different mediterranean environments in Spain. Trees - Struct Funct 24:19–30. https://doi.org/10.1007/s00468-009-0375-3
Ferrio JP, Voltas J (2005) Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B Chem Phys Meteorol 57:164–173. https://doi.org/10.1111/j.1600-0889.2005.00137.x
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302-4315. https://doi.org/10.1002/joc.5086
Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31. https://doi.org/10.1046/j.1469-8137.2000.00681.x
Grivet D, Climent J, Zabal-Aguirre M, Neale DB, Vendramin GG, González-Martínez SC (2013) Adaptive evolution of Mediterranean pines. Mol Phylogenet Evol 68:555–566. https://doi.org/10.1016/j.ympev.2013.03.032
Grivet D, Sebastiani F, González-Martínez SC, & Vendramin GG (2009) Patterns of polymorphism resulting from long-range colonization in the Mediterranean conifer Aleppo pine. New Phytol 184:1016–1028. https://doi.org/10.1111/j.1469-8137.2009.03015.x
Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New For 30:273–294. https://doi.org/10.1007/s11056-004-8303-2
Guo L, Lin H, Fan B, Cui X, Chen J (2013) Impact of root water content on root biomass estimation using ground penetrating radar: Evidence from forward simulations and field controlled experiments. Plant Soil 371:503–520. https://doi.org/10.1007/s11104-013-1710-4
Hernández EI, Vilagrosa A, Pausas JG, Bellot J (2010) Morphological traits and water use strategies in seedlings of Mediterranean coexisting species. Plant Ecol 207:233–244. https://doi.org/10.1007/s11258-009-9668-2
Hirano Y, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2009) Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil 319:15–24. https://doi.org/10.1007/s11104-008-9845-4
Hirano Y, Yamamoto R, Dannoura M, Aono K, Igarashi T, Ishii M, Yamase K, Makita N, Kanazawa Y (2012) Detection frequency of Pinus thunbergii roots by ground-penetrating radar is related to root biomass. Plant Soil 360:363–373. https://doi.org/10.1007/s11104-012-1252-1
Hruska J, Cermák J, Sustek S (1999) Mapping tree root systems with ground-penetrating radar. Tree Physiol 19:125–130. https://doi.org/10.1093/treephys/19.2.125
John J, Williams E (1998) t‐Latinized Designs. Statist NZJ 40:111-118. https://doi.org/10.1111/1467-842X.00012
Jones HG, Corlett JE (1992) Current topics in drought physiology. J Agric Sci 119:291–296. https://doi.org/10.1017/S0021859600012144
Kirfel K, Leuschner C, Hertel D, Schuldt B (2017) Influence of root diameter and soil depth on the xylem anatomy of fine-to medium-sized roots of mature beech trees in the top- and subsoil. Front Plant Sci 8:1–13. https://doi.org/10.3389/fpls.2017.01194
Kitajima K, Anderson KE, Allen MF (2010) Effect of soil temperature and soil water content on fine root turnover rate in a California mixed conifer ecosystem. J Geophys Res Biogeosciences 115:1–12. https://doi.org/10.1029/2009JG001210
Klotzsche A, Jonard F, Looms MC, van der Kruk J, Huisman JA (2018) Measuring Soil Water Content with Ground Penetrating Radar: A Decade of Progress. Vadose Zo J 17:180052. https://doi.org/10.2136/vzj2018.03.0052
Li W, Cui X, Guo L, Chen J, Chen X, Cao X (2016) Tree root automatic recognition in Ground penetrating radar profiles based on randomized Hough transform. Remote Sens 8. https://doi.org/10.3390/rs8050430
Lorenzo H, Pérez-Gracia V, Novo A, Armesto J (2010) Forestry applications of ground-penetrating radar. For Syst 19:5. https://doi.org/10.5424/fs/2010191-01163
Luodes H, Sutinen H (2011) Evaluation and modelling of natural stone rock quality using ground penetrating radar (GPR). Spec Pap Geol Surv Finl 2011:83–90.
Matías L, González-Díaz P, Jump AS (2014) Larger investment in roots in southern range-edge populations of Scots pine is associated with increased growth and seedling resistance to extreme drought in response to simulated climate change. Environ Exp Bot 105:32–38. https://doi.org/10.1016/j.envexpbot.2014.04.003
Montagnoli A, Dumroese RK, Terzaghi M, Onelli E, Scippa GS, Chiatante D (2019) Seasonality of fine root dynamics and activity of root and shoot vascular cambium in a Quercus ilex L. forest (Italy). For Ecol Manage 431:26–34. https://doi.org/10.1016/j.foreco.2018.06.044
Padilla FM, Pugnaire FI (2007) Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Funct Ecol 21:489–495. https://doi.org/10.1111/j.1365-2435.2007.01267.x
Patsiou TS, Shestakova TA, Klein T, di Matteo G, Sbay H, Chambel MR, Zas R, Voltas J (2020) Intraspecific responses to climate reveal nonintuitive warming impacts on a widespread thermophilic conifer. New Phytol 228: 525-540 https://doi.org/10.1111/nph.16656
Plowright A (2018) ForestTools: analyzing remotely sensed forest data. Version 0.2.0. Available via https://CRAN.R-project.org/package=ForestTools
Resco De Dios V, Fischer C, Colinas C (2007) Climate change effects on mediterranean forests and preventive measures. New For 33:29–40. https://doi.org/10.1007/s11056-006-9011-x
Ripullone F, Camarero JJ, Colangelo M, Voltas J (2020) Variation in the access to deep soil water pools explains tree-to-tree differences in drought-triggered dieback of Mediterranean oaks. Tree Physiol 40:591–604. https://doi.org/10.1093/treephys/tpaa026
Rodríguez-Robles U, Arredondo T, Huber-Sannwald E, Ramos-Leal JA, Yépez EA (2017) Technical note: Application of geophysical tools for tree root studies in forest ecosystems in complex soils. Biogeosciences 14:5343–5357. https://doi.org/10.5194/bg-14-5343-2017
Rossatto DR, de Carvalho Ramos Silva L, Villalobos-Vega R, Sternberg L da SL, Franco AC, (2012) Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ Exp Bot 77:259–266. https://doi.org/10.1016/j.envexpbot.2011.11.025
Rutter MT, Fenster CB (2007) Testing for adaptation to climate in Arabidopsis thaliana: A calibrated common garden approach. Ann Bot 99:529–536. https://doi.org/10.1093/aob/mcl282
Santini F, Climent JM, Voltas J (2019a) Phenotypic integration and life history strategies among populations of Pinus halepensis: an insight through structural equation modelling. Ann Bot 124:1161–1171. https://doi.org/10.1093/aob/mcz088
Santini F, Kefauver SC, Resco de Dios V, Araus JL, Voltas J (2019b) Using unmanned aerial vehicle-based multispectral, RGB and thermal imagery for phenotyping of forest genetic trials: A case study in Pinus halepensis. Ann Appl Biol 174:262–276. https://doi.org/10.1111/aab.12484
Santini F, Kefauver SC, Araus JL, Resco de Dios V, Martín García S, Grivet D, Voltas J (2020) Bridging the genotype–phenotype gap for a Mediterranean pine by semi-automatic crown identification and multispectral imagery. New Phytol 229:245-258 https://doi.org/10.1111/nph.16862
Santos-del-Blanco L, Bonser SP, Valladares F, Chambel MR, Climent J (2013) Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: Adaptive responses to environmental stress. J Evol Biol 26:1912–1924. https://doi.org/10.1111/jeb.12187
Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: Impacts of climatic change. Plant Soil 365:1–33. https://doi.org/10.1007/s11104-013-1591-6
Sbay H, Zas R (2018) Geographic variation in growth, survival, and susceptibility to the processionary moth (Thaumetopoea pityocampa Dennis & Schiff.) of Pinus halepensis Mill. and P. brutia Ten.: results from common gardens in Morocco. Ann For Sci 75. https://doi.org/10.1007/s13595-018-0746-2
Schenk HJ (2008a) The Shallowest Possible Water Extraction Profile: A Null Model for Global Root Distributions. Vadose Zo J 7:1119–1124. https://doi.org/10.2136/vzj2007.0119
Schenk HJ (2008b) Soil depth, plant rooting strategies and species’ niches. New Phytol 178:223-225. https://doi.org/10.1111/j.1469-8137.2008.02427.x
Tapias R, Climent J, Pardos JA, Gil L (2004) Life histories of Mediterranean pines. Plant Ecol 171:53–68. https://doi.org/10.1023/B:VEGE.0000029383.72609.f0
Valerio G, Galli A, Barone PM, Lauro SE, Mattei E, Pettinelli E (2012) GPR detectability of rocks in a Martian-like shallow subsoil: A numerical approach. Planet Space Sci 62:31–40. https://doi.org/https://doi.org/10.1016/j.pss.2011.12.003
Vennetier M, Ripert C, Rathgeber C (2018) Autecology and growth of Aleppo pine (Pinus halepensis Mill.): A comprehensive study in France. For Ecol Manage 413:32–47. https://doi.org/10.1016/j.foreco.2018.01.028
Voltas J, Chambel MR, Prada MA, Ferrio JP (2008) Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees - Struct Funct 22:759–769. https://doi.org/10.1007/s00468-008-0236-5
Voltas J, Lucabaugh, D, Chambel MR, Ferrio JP (2015) Intraspecific variation in the use of water sources by the circum-Mediterranean conifer Pinus halepensis. New Phytol 208:1031–1041. https://doi.org/10.1111/nph.13569
Voltas J, Shestakova TA, Patsiou T, di Matteo G, Klein T (2018) Ecotypic variation and stability in growth performance of the thermophilic conifer Pinus halepensis across the Mediterranean basin. For Ecol Manage 424:205–215. https://doi.org/10.1016/j.foreco.2018.04.058
Wang Y, Dong X, Wang H, Wang Z, Gu J (2015) Root tip morphology, anatomy, chemistry and potential hydraulic conductivity vary with soil depth in three temperate hardwood species. Tree Physiol 36:99–108. https://doi.org/10.1093/treephys/tpv094
West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667. https://doi.org/10.1038/23251
Wu Y, Guo L, Cui X, Chen J, Cao X, Lin H (2014) Ground-penetrating radar-based automatic reconstruction of three-dimensional coarse root system architecture. Plant Soil 383:155–172. https://doi.org/10.1007/s11104-014-2139-0