1 Pfrieger, F. W. Neurodegenerative Diseases and Cholesterol: Seeing the Field Through the Players. Front Aging Neurosci 13, 766587, doi:10.3389/fnagi.2021.766587 (2021).
2 Izadi, M. et al. Changes in Th17 cells frequency and function after ozone therapy used to treat multiple sclerosis patients. Mult Scler Relat Disord 46, 102466, doi:10.1016/j.msard.2020.102466 (2020).
3 Scassellati, C., Galoforo, A. C., Bonvicini, C., Esposito, C. & Ricevuti, G. Ozone: a natural bioactive molecule with antioxidant property as potential new strategy in aging and in neurodegenerative disorders. Ageing Res Rev 63, 101138, doi:10.1016/j.arr.2020.101138 (2020).
4 Mašán, J., Sramka, M. & Rabarova, D. The possibilities of using the effects of ozone therapy in neurology. Neuro endocrinology letters 42, 13-21 (2021).
5 Delgado-Roche, L. et al. Medical ozone promotes Nrf2 phosphorylation reducing oxidative stress and pro-inflammatory cytokines in multiple sclerosis patients. Eur J Pharmacol 811, 148-154, doi:10.1016/j.ejphar.2017.06.017 (2017).
6 Braidy, N. et al. Therapeutic relevance of ozone therapy in degenerative diseases: Focus on diabetes and spinal pain. J Cell Physiol 233, 2705-2714, doi:10.1002/jcp.26044 (2018).
7 Gupte, A. A., Lyon, C. J. & Hsueh, W. A. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis. Curr Diab Rep 13, 362-371, doi:10.1007/s11892-013-0372-1 (2013).
8 Diaz-Luis, J., Menéndez-Cepero, S. & Macias-Abrahan, C. Ozone therapy immunomodulatory effect in the selective immunoglobulin A deficiency. Journal of Ozone Therapy 1, doi:10.7203/jo3t.1.1.2015.12161 (2015).
9 Tashiro, H. & Shore, S. A. The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol 64, 283-291, doi:10.1165/rcmb.2020-0288TR (2021).
10 T, A. et al. Exposure to Ambient Air Pollutants is Associated with the Composition of the Gut Microbiome in Adolescents from Southern California. Environmental Epidemiology 3, 6-7, doi:10.1097/01.EE9.0000605664.50459.e7 (2019).
11 Rodriguez, A. et al. Repeated Exposure to Ozone Produces Changes in Metabolic Disturbances Present in the TDP-43A315T Transgenic Model of Amyotrophic Lateral Sclerosis. Diagn Pathol Open 2021 6:S8, doi:10.1101/2021.02.12.430915 (2021).
12 Wegorzewska, I., Bell, S., Cairns, N. J., Miller, T. M. & Baloh, R. H. TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106, 18809-18814, doi:10.1073/pnas.0908767106 (2009).
13 D'Amico, E. et al. Metabolic Abnormalities, Dietary Risk Factors and Nutritional Management in Amyotrophic Lateral Sclerosis. Nutrients 13, doi:10.3390/nu13072273 (2021).
14 Lim, M. A. et al. Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 23, 4995-5008, doi:10.1093/hmg/ddu214 (2014).
15 Shan, X., Chiang, P. M., Price, D. L. & Wong, P. C. Altered distributions of Gemini of coiled bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A 107, 16325-16330, doi:10.1073/pnas.1003459107 (2010).
16 Wang, W. et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet 22, 4706-4719, doi:10.1093/hmg/ddt319 (2013).
17 Ferrer-Donato, A., Contreras, A., Frago, L. M., Chowen, J. A. & Fernandez-Martos, C. M. Alterations in Leptin Signaling in Amyotrophic Lateral Sclerosis (ALS). Int J Mol Sci 22, doi:10.3390/ijms221910305 (2021).
18 Varela, L. & Horvath, T. L. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13, 1079-1086, doi:10.1038/embor.2012.174 (2012).
19 Scotney, H. et al. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. Metabolism 70, 125-132, doi:10.1016/j.metabol.2017.01.024 (2017).
20 Nappi, F. et al. Endocrine Aspects of Environmental "Obesogen" Pollutants. Int J Environ Res Public Health 13, doi:10.3390/ijerph13080765 (2016).
21 Shimizu, Y. et al. Increased expression of glucose transporter GLUT-4 in brown adipose tissue of fasted rats after cold exposure. Am J Physiol 264, E890-895, doi:10.1152/ajpendo.1993.264.6.E890 (1993).
22 Pan, W. W. & Myers, M. G., Jr. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 19, 95-105, doi:10.1038/nrn.2017.168 (2018).
23 Pandit, R., Beerens, S. & Adan, R. A. H. Role of leptin in energy expenditure: the hypothalamic perspective. Am J Physiol Regul Integr Comp Physiol 312, R938-R947, doi:10.1152/ajpregu.00045.2016 (2017).
24 Barrios, V. et al. Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis. Int J Mol Sci 22, doi:10.3390/ijms22062827 (2021).
25 Fischer, A. W. et al. Leptin Raises Defended Body Temperature without Activating Thermogenesis. Cell Rep 14, 1621-1631, doi:10.1016/j.celrep.2016.01.041 (2016).
26 Mejia Maza, A. et al. NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease. Sci Rep 11, 12251, doi:10.1038/s41598-021-91094-6 (2021).
27 Dupuis, L., Pradat, P. F., Ludolph, A. C. & Loeffler, J. P. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10, 75-82, doi:10.1016/S1474-4422(10)70224-6 (2011).
28 Vercruysse, P., Vieau, D., Blum, D., Petersen, A. & Dupuis, L. Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Front Mol Neurosci 11, 2, doi:10.3389/fnmol.2018.00002 (2018).
29 Esmaeili, M. A., Panahi, M., Yadav, S., Hennings, L. & Kiaei, M. Premature death of TDP-43 (A315T) transgenic mice due to gastrointestinal complications prior to development of full neurological symptoms of amyotrophic lateral sclerosis. Int J Exp Pathol 94, 56-64, doi:10.1111/iep.12006 (2013).
30 Guo, Y. et al. HO-1 induction in motor cortex and intestinal dysfunction in TDP-43 A315T transgenic mice. Brain Res 1460, 88-95, doi:10.1016/j.brainres.2012.04.003 (2012).
31 Hatzipetros, T. et al. C57BL/6J congenic Prp-TDP43A315T mice develop progressive neurodegeneration in the myenteric plexus of the colon without exhibiting key features of ALS. Brain Res 1584, 59-72, doi:10.1016/j.brainres.2013.10.013 (2014).
32 Medina, D. X., Orr, M. E. & Oddo, S. Accumulation of C-terminal fragments of transactive response DNA-binding protein 43 leads to synaptic loss and cognitive deficits in human TDP-43 transgenic mice. Neurobiol Aging 35, 79-87, doi:10.1016/j.neurobiolaging.2013.07.006 (2014).
33 Caron, A. et al. POMC neurons expressing leptin receptors coordinate metabolic responses to fasting via suppression of leptin levels. Elife 7, doi:10.7554/eLife.33710 (2018).
34 Pedroso, J. A. et al. Changes in Leptin Signaling by SOCS3 Modulate Fasting-Induced Hyperphagia and Weight Regain in Mice. Endocrinology 157, 3901-3914, doi:10.1210/en.2016-1038 (2016).
35 Munzberg, H., Singh, P., Heymsfield, S. B., Yu, S. & Morrison, C. D. Recent advances in understanding the role of leptin in energy homeostasis. F1000Res 9, doi:10.12688/f1000research.24260.1 (2020).
36 Svensson, P. A. et al. Gene expression in human brown adipose tissue. Int J Mol Med 27, 227-232, doi:10.3892/ijmm.2010.566 (2011).
37 Tremblay, A., Royer, M. M., Chaput, J. P. & Doucet, E. Adaptive thermogenesis can make a difference in the ability of obese individuals to lose body weight. Int J Obes (Lond) 37, 759-764, doi:10.1038/ijo.2012.124 (2013).
38 Trayhurn, P., Thurlby, P. L. & James, W. P. A defective response to cold in the obese (obob) mouse and the obese Zucker (fafa) rat [proceedings]. Proc Nutr Soc 35, 133A (1976).
39 Boddy, S. L. et al. The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med 19, 13, doi:10.1186/s12916-020-01885-3 (2021).
40 Rowin, J., Xia, Y., Jung, B. & Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep 5, doi:10.14814/phy2.13443 (2017).
41 Wu, M.-R., Chou, T.-S., Huang, C.-Y. & Hsiao, J.-K. A potential probiotic- Lachnospiraceae NK4A136 group: Evidence from the restoration of the dietary pattern from a high-fat diet. (2020).
42 Ma, L. et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes 12, 1-19, doi:10.1080/19490976.2020.1832857 (2020).
43 Dupuis, L. & Loeffler, J. P. Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Curr Opin Pharmacol 9, 341-346, doi:10.1016/j.coph.2009.03.007 (2009).
44 Dadon-Nachum, M., Melamed, E. & Offen, D. The "dying-back" phenomenon of motor neurons in ALS. J Mol Neurosci 43, 470-477, doi:10.1007/s12031-010-9467-1 (2011).
45 Walker, A. K. et al. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta Neuropathol 130, 643-660, doi:10.1007/s00401-015-1460-x (2015).
46 Bello-Medina, P. C., Prado-Alcala, R. A. & Rivas-Arancibia, S. Effect of Ozone Exposure on Dendritic Spines of CA1 Pyramidal Neurons of the Dorsal Hippocampus and on Object-place Recognition Memory in Rats. Neuroscience 402, 1-10, doi:10.1016/j.neuroscience.2019.01.018 (2019).
47 Fernandez, C. M. et al. The expression of rat resistin isoforms is differentially regulated in visceral adipose tissues: effects of aging and food restriction. Metabolism 58, 204-211 (2009).
48 Fernandez-Martos, C. M. et al. Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS One 6, e27000, doi:10.1371/journal.pone.0027000
PONE-D-11-06684 [pii] (2011).
49 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408 (2001).
50 White, M. A. et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD. Nat Neurosci 21, 552-563, doi:10.1038/s41593-018-0113-5 (2018).
51 Blizzard, C. A. et al. Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis - vulnerability of lower motor neurons to proximal excitotoxicity. Dis Model Mech 8, 215-224, doi:10.1242/dmm.018606 (2015).
52 Cappello, V. et al. Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS. Mol Cell Neurosci 51, 12-21, doi:10.1016/j.mcn.2012.07.003 (2012).
53 Clark, J. A., Southam, K. A., Blizzard, C. A., King, A. E. & Dickson, T. C. Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Chem Neuroanat 76, 35-47, doi:10.1016/j.jchemneu.2016.03.003 (2016).
54 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011 17, 3, doi:10.14806/ej.17.1.200 (2011).
55 Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581-583, doi:10.1038/nmeth.3869 (2016).
56 Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590-596, doi:10.1093/nar/gks1219 (2013).
57 Team, R. C. R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. (2013).
58 Oksanen, J. et al. Vegan: community ecology package [online]. R Package version 2.0-5. (2011).
59 McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217, doi:10.1371/journal.pone.0061217 (2013).
60 Lahti L, S. S., et al. Tools for microbiome analysis in R. Microbiome package version 1.15.1. . Bioconductor, 2017; http://microbiome.github.com/microbiome/. (2017).
61 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
62 Ripley, B. e. a. Package “mass”. Cran r 538, 113-120. (2013).
63 Wickham, H. ggplot2. WIREs Computational Statistics 3, 180-185, doi:https://doi.org/10.1002/wics.147 (2011).
64 Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv, 299537, doi:10.1101/299537 (2018).
65 Dusa, A. CRAN—Package VennDiagram. https://cran.r-project.org/web/packages/VennDiagram/. (2021).