Reproductive hormones play an important regulatory role in follicular development. The FSH and LH promoted follicular maturation and ovulation thus inhibited the apoptosis of granulosa cells in human [13]. Ilha et al. suggested that the activation of LIF-STAT3 in follicular granulosa cells resulted in the decreased level of FSH and caused follicle atresia in cattle [14]. The FSH and LH are glycoproteins that are secreted by the pituitary gland and need to be transported through the blood to the target site to be effective. A study by Feranil et al. demonstrated that the distribution of peripheral vasculature in atretic follicles was lesser than that of normal follicles in swamp buffalo [15], which possibly leads to lower levels of FSH and LH. The in vitro inhibition of angiogenesis could directly induce the apoptosis of granulosa cells and thus cause follicular atresia in rats [16]. A lower levels of FSH and LH were also detected in AF of Yangzhou geese in this study, which demonstrated that steroid hormones regulate follicle atresia. The PDGFA, which regulates cell growth and angiogenesis by binding to its receptor, could increase follicle size and enhance the transition from primordial to primary follicles in the in vitro culture of sheep follicles [17], was downregulated in AF in this study suggested that decreased angiogenesis is positively associated with follicle atresia.
Granulosa cells represent the first site of the initiation of apoptosis in rat atretic follicles [9], and follicular growth or atresia were regulated by the survival or death of granulosa cells in mammalian ovaries [12]. All sodium ion transmembrane transport-related genes were downregulated in the atretic follicles, especially in the plasma membrane, which caused the efflux of sodium ions and thus initiated the activation and shrinkage of apoptotic cells [18, 19], which explained the obvious collapse in the atretic follicles of Yangzhou geese in this study. The caspase recruitment domain (CARD) 9 and 11 showed a significant increase in atretic follicles at the transcriptional level [20], while the mitochondrial proteins SmaC and HtrA2, which promoted cytochrome C-dependent caspase activation by the inhibition of IAP, were upregulated in atretic follicles [21]. These studies demonstrated that apoptotic related genes were highly expressed to initiate the apoptosis of atretic follicles, which also need transcriptome and proteome levels changes to complete granulose cell apoptosis and follicle atresia.
Huet et al. believed that changes in ECM components could affect the apoptosis of follicular cells in sheep [22]. Matrix metalloproteinase (MMP) participates in the disassembly of the extracellular matrix, and the upregulated proteins MMP3 and MMP9 could be involved in the collapse of the granulosa cell layer. As a secretion protein, MMP acts on growth factors and growth factor-binding proteins to affect various cellular functions, including cell invasion, cell migration, apoptosis, and angiogenesis [23]. In the follicles of humans and rats, MMP promotes ovulation by destroying the follicle wall and the surrounding matrix through the stimulation of LH and HCG [24]. After ovulation, the ovaries of poultry leave postovulatory follicles, which gradually degenerate and disappeared. Hrabia et al. reported that the increased activity of MMP2 and MMP9 promoted follicle regression in chicken postovulatory follicles [25]. Zhu et al. also reported that the protein expression of MMP9 increased with the degree of regression of postovulatory follicles [26]. The upregulation of MMP3 and MMP9 in the atretic follicles of Yangzhou geese also suggested that these two genes were involved in the apoptosis of granulosa cells in AF, and might also promote the degeneration and disappearance of atretic follicles.
A complex composed of CDK and cyclin synergistically promoted the cell cycle, while the downregulation of CDK (CDK1 and CDK2) and cyclin (CyCD and CyCA) caused a decrease in the cell division activity in atretic follicles. The downregulation of Smad 2–3 and Smad 4 resulted in the interruption of cell growth or transformation. Tomic et al. demonstrated that the decreased expression of Smad3 resulted in the downregulation of CyCD2 and increased follicular atresia in mice [27]. On the other hand, the increased expression of p300 and Ink4b caused a high level of acetylation of p53 and resulted in the increased expression of p21, which then bound to CDK and CyC to interrupt the cell cycle process. Regan et al. demonstrated that high LSHR was associated with a higher number of follicles, reduced apoptosis, and a higher ovulation rate in merino sheep [28]. A study reported the reduction of ANDR in atretic porcine follicles [29], while another reported that the mRNA of ANDR could be regulated by FSH [30]. FGF12, a growth factor, could promote the migration of endothelial cells, proliferation of smooth muscle cells, formation of new blood vessels, and the repair of damaged endothelial cells, which could act intracellularly to inhibit apoptosis [31, 32]. The downregulation of FGF12 could also be involved in the apoptosis of atretic follicles. The bFGF, FGF10, and FGF18 have been reported to be closely associated with follicular development and atresia [4–6]. In this experiment, the PPI of DEPs suggested that the downregulated genes LSHR, DHB1, CP19A, ANDR, and FGF12, which participated in the cell cycle pathway, could be the key factors regulating follicular atresia in Yangzhou geese.
The DEG∩Ps mainly enriched in binding and extracellular region signal pathways. ANXA1 is a calcium-dependent phospholipid-binding protein that is expressed in almost all organs [33]. It participates in membrane transport, exocytosis, the fusion of some membranes, signal transduction, cell proliferation, apoptosis, and ion channel formation [34]. Zhu et al. reported that ANXA2 was involved in the angiogenesis of chicken ovarian follicles [35]. The downregulation of VTN, an extracellular matrix protein, is the intermediate cause of decreased adhesion between granulosa cell layers. VTN could be degraded by MMPs [36], and its content was positively correlated with the follicular size in bovine [37]. The decreased expression of VTN further suggested that it might be degraded in atretic follicle and caused the collapse of cell layer.