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Abstract
Quinolone and sulfonamide are two classes of antibacterial agents that have an opulent history of medicinal
chemistry features responsible for their improving bacterial spectrum, e�cacy, pharmacokinetics, and
adverse side effect pro�les. The urgent need of their use and escalating rate of their resistance provokes the
necessity for developing suitable analytical methods that speed up and facilitate their analysis. In this study,
advanced �re�y algorithm (FFA) coupled with support vector machine (SVM) were used to select the most
signi�cant descriptors and to construct two separate quantitative structure–retention relationship (QSRR)
models using a series of 11 selected quinolones and 13 sulfonamide drugs, separately, in order to predict
their retention factors in HPLC. Precisely, the effect of different pH range values and acetonitrile composition
in the mobile phase on the retention behavior of quinolones and sulfonamides were studied, respectively.
The obtained QSRR models showed high performance in both internal and external validation indicating their
robustness and predictive ability. Y-randomization validation displayed that the obtained models are not
obtained by chance. Besides, the obtained results shed the light on the molecular features that in�uence the
retention behavior of these two classes under the current chromatographic conditions.

1. Introduction
Resistance to antibacterial agents is a major public health threat affecting humans worldwide mainly due to
the uncontrolled use of such bioactive compounds, particularly in countries without standard treatment
guidelines. Among those antibacterial agents, �uoroquinolones, a �uoro substituent series derived from
nalidixic acid, showed escalating rate of resistance after domination over the therapeutic practice for a time
particularly against gram-negative pathogens [1–3]. Such class of active compounds needs to be monitored
carefully regarding their use and their abundance in the environment. Hence, from the analytical view, the
urgent detection and analysis of these drugs become essential considering �nding fast, simple, economical
and accurate methods for their analysis.

The literature survey revealed that quinolones could be determined thoroughly via high performance liquid
chromatography in different matrices viz., biological �uids and tissues [4–10], milk and food of animal origin
[11–16], marine products [17], honey [18], waste water [19–21] and in many pharmaceutical formulations
[22–27]. Moreover, the relationship between the retention factors and lipophilicity of quinolones using RP-
TLC has been assessed [28]. In addition, Wu et al [29] investigated the retention factors-activity relationship
of some quinolones using micellar chromatography.

On the other hand, sulfonamides are other synthetic antimicrobial agents, unfortunately with widespread
resistance which made them infrequently utilized for medical interventions. However, the application of
sulfonamides has been extended from their old capabilities as antimicrobial agents to another medical roles
viz., anticancer, antiglaucoma, cyclooxygenase-2 and lipoxygenase inhibitors, anticonvulsant and
hypoglycemic activities [30]. Regarding the analytical tools used in their detection, literature survey revealed
that the determination of this class was also dominated by reversed phase liquid chromatography [31–34].
In context of their retention mechanisms, Cazenave-Gassiot et al discussed the correlation between
sulfonamides retention factors and the proportion of modi�er in the mobile phase using supercritical �uid
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chromatography [35]. However, like quinolones, the separation behavior of this class on reversed phase liquid
chromatography needs to be scrutinized.

Among different models and theories applied to draw an image about the retention manners in reversed
phase liquid chromatography, quantitative structure–retention relationship (QSRR) offers some useful
insights not only to elucidate how different chemical drugs perform their retention upon analysis, but also to
expect their retention chromatographic systems relatively well [36]. Such relationship provides a powerful
alternative to the conventional trial-and-error approach with marked improvement in time and cost of
experiments.

In these mathematical models, a link between compounds’ chemical structures represented by their
descriptors and the retention data in different chromatographic systems is built. The number of molecular
descriptors that could be obtained for one analyte is enormous where some software could calculate up to
5000 descriptors per analyte [37]. Such massive increase in the dimensionality of the descriptors along with
the possible incorporation of some nonempirical features could affect the performance of various QSRR
models. Therefore, methods for feature selection are necessary to untangle this problem and decide which
descriptors are important regarding the retention of compounds of interest. These methods ranged from
classical type as forward and backward elimination to advanced nature inspired ones for example particle
swarm optimization (PSO), genetic algorithm (GA) and its descendants (�re�y, �ower pollination and ant
colony algorithms) [38–43].

Furthermore, different chemometric and arti�cial intelligence methods viz., partial least square (PLS),
multiple linear regression (MLR), arti�cial neural networks (ANN) and support vector regression (SVR) proved
to be effective in building reliable QSRR models owing to their ability in extracting maximal chemical
information in addition to enhancing the speed and quality of analysis[44]. The application of QSRR models
have been reported to different chemical families on reversed-phase liquid chromatography such as non-
steroidal anti-in�ammatory drugs [45], azole antifungal agents [46] and some pain killers drugs [47].
Support vector machine (SVM), a machine learning algorithm, was �rstly published by Vapnik, Chervonenkis
and co-workers [48]. The algorithm is based on �nding a linear function that explains most of the variation of
the response and at the same time links the nonlinear relationship between input and the target data [49].
Compared to conventional regression and neural network methods, SVM displays some advantages,
including good generalization ability, global optimization and dimensional independence [50]. Thanks to its
capability to model possible nonlinear relations between molecular descriptors and retention time, it has
been incorporated in building powerful QSRR models [51, 52].

Previously our group developed two QSRR models aimed to provide some essence of the retention behavior
for some β-lactams using multiple linear regression models combined with forward or �re�y variable
selection algorithms [44]. Our scope in this report is to continue our work regarding QSRR modeling of other
antibacterial agents (quinolones and sulfonamides), hopefully to highlight their reversed phase
chromatographic retention mechanisms with respect to different ionization states and various percentage of
organic modi�ers for quinolones and sulfonamides, respectively. Owing to the complexity of the generated
data, the use of advanced variable selection technique coupled to a machine learning approach seems
imperative. Hence, �re�y algorithm coupled to SVR has been employed to develop the QSRR models.
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Moreover, the obtained models have been assessed regarding their predictive ability with strict validation
criteria, thus could be further employed to predict retention of potential degradation products and even
metabolites of these compounds.

2. Experimental

2.1. Solvents, chemicals, sample preparation and
instrumentation.
The quinolones (Fig. S1) and sulfonamides (Fig. S2) under investigation were supplied by different
pharmaceutical companies. Pure HPLC-grade acetonitrile, methanol and dimethylsulfoxide were supplied by
Scarlau (Barcelona, Spain). Other chemicals used in this work including ortho-phosphoric acid, tri�uoroacetic
acid, sodium dihydrogen orthophosphate and sodium hydroxide were supplied by Honeywell Riedel-de Haën
(Seelze, Germany).

The instruments used in this study include Jenway 3510, Essex-UK, England pH meter equipped with a glass
electrode and Agilent 1260 HPLC-UV series.

Stock solutions (2 mg mL-1) of each drug were prepared using a suitable solvent either (methanol,
dimethylsulfoxide, water, or acetonitrile). These solutions were stored at 4°C then diluted with the mobile
phase to achieve sample concentrations ranging from (0.05–1 mg mL-1) before analysis.

2.2. Chromatographic conditions
The chromatographic elution of the quinolones was achieved using Inertsil® C18 column (250 mm x 4.6 mm,
5 µm) and detection was carried out at 275 nm. In a gradient mode, 5 mobile phases were prepared
according to the plan of experiment and chromatographic system applied as programmed in Table 1, using
acetonitrile and 28 mM sodium dihydrogen orthophosphate buffer prepared at different pHs 2.2, 3.5, 5.2, 6.5
and 8.2 using ortho-phosphoric acid or sodium hydroxide. However, the pH was measured again after mixing
the buffer with acetonitrile and was found to be 3.2, 4.4, 5.9, 7.32 and 8.9, respectively. The system �ow rate
was adjusted at 1 ml min- 1. After each injection, the system was reconditioned by going back to the initial
ratio and kept constant for 3 min. Data acquisition was performed on Agilent LC Chemstation software. The
retention factors of eluted quinolones are listed in Table 2.
Table (1) Gradient elution system used in quinolones’ separation

Time (min) Acetonitrile % Buffer %

0 20 80

3 20 80

5 60 40

Table (2) List of quinolones chromatographic retention factors (k)
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Compound name pH 2.2 pH 3.5 pH 5.2 pH 6.5 pH 8.2

Gati�oxacin 1.580 1.603 1.576 1.566 1.635

Lome�oxacin 1.405 1.560 1.501 0.920 1.035

Moxi�oxacin 1.558 1.606 1.592 1.749 1.840

Nadi�oxacin 2.121 2.148 2.114 2.036 1.685

Nor�oxacin 1.191 1.162 1.192 1.158 0.384

O�oxacin 1.032 1.176 1.559 1.836 1.885

Cipro�oxacin 1.142 1.363 1.294 1.153 0.646

Gemi�oxacin 1.557 1.576 1.578 1.584 1.633

Enro�oxacin 1.622 1.567 1.591 2.468 1.973

Dano�oxacin 1.370 1.551 1.572 1.822 1.668

Spar�oxacin 1.560 1.576 1.567 2.486 1.987

Chromatographic separation of sulfonamides was achieved on a hypersil C18 column (150 mm x 4.6 mm, 5
µm) by applying isocratic elution based on a mobile phase consisting of acetonitrile and water acidi�ed with
tri�uoroacetic acid (1 mL. L-1) in different ratios of 50:50, 45:55 or 30:70, v/v and at a �ow rate of 0.8 ml
min− 1. Ratio of 15:85, v/v was initially included but not considered for further assessment as many
compounds were strongly retained onto the column. Analyses were operated at ambient temperature and
detection was carried out at 270 nm. Data acquisition was performed on Agilent LC Chemstation software. A
list of retention factors of eluted sulfonamides is shown in Table 3.
Table (3) List of sulfonamides chromatographic retention factors (k)



Page 6/26

Compound name Acetonitrile%

50 45 30

Sulfacetamide Na 0.154 0.203 0.393

Sulfaguanidine 0.170 0.188 0.256

Sulfadiazine 0.174 0.228 0.443

Sulfaclozine 0.549 0.752 2.196

Sulfadimethoxine 0.419 0.567 1.433

Sulfadimidine 0.311 0.389 0.730

Sulfadoxine 0.395 0.524 1.276

Sulfathiazole 0.166 0.221 0.426

Sulfachloropyrazine Na 0.546 0.754 2.177

Sulfanilamide 0.154 0.194 0.295

Sulfamethoxazole 0.421 0.568 1.548

Sulfapyridine 0.306 0.359 0.597

Sulfaquinoxaline 0.519 0.716 2.221

2.3. QSRR modeling

2.3.1 Drawing Structures and molecular descriptors
calculation
The major microspecies of the studied quinolones at the pH of interest were estimated using MarvinSketch
(6.0.3) [53] which resulted in 21 ions. The canonical smiles of these ions were imported into the Molecular
Operating Environment (MOE, 2020.0901) software where they were converted into 3D structures and energy
minimized using RMSD gradient of 0.05 kcal.mol− 1Å−1 with MMFF94x force�eld. The partial charges were
automatically calculated. Finally, MOE molecular mechanical descriptors were computed for all the
compounds resulting in a descriptor fund of 313 descriptors. The initial descriptor fund was reduced by
removing zero values and constant descriptors. This ended to a descriptor fund of 293 descriptors.

As for sulfonamides, PubChem database [54, 55] was used to introduce sulfonamides canonical SMILES
into the MOE where they were converted to 3D structures and energy minimized using the same parameters
previously mentioned for quinolones. Afterwards, MOE molecular mechanical descriptors were computed for
all the compounds and a descriptor fund of 313 descriptors was obtained. The initial descriptor fund was
reduced by removing zero values and constant descriptors, resulting in a fund of 112 descriptors in addition
to acetonitrile % incorporated as a descriptor.
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2.3.2 Training set and test set generation
The 21 quinolones major microspecies were divided into a calibration (training) set of 16 molecules and a
test set of 5 molecules. Regarding sulfonamides, a total of 39 experimental retention factors resulted from
three different ratios of mobile phase for the 13 compounds were used in building the QSRR model. The total
experiments were split into a training set of 30 observations and an external validation test set of 9
observations. The selection of the calibration and the validation samples of quinolones and sulfonamides
was based on keeping the distribution value for the retention factor maintained in both sets.

2.3.3 Descriptors selection and modeling
Based on Durbin-Watson (DW) test, linearity of the datasets was tested via augmented partial residual plots
(APARP) [56–58]. The test was performed using a custom script written in MATLAB (R2016 a)[59, 60]. The
descriptors that continue to exist after the initial �ltration were then used to build QSRR models. Fire�y
algorithm was implemented in MATLAB and applied for descriptor selection as an advanced nature-
stimulated algorithm where the RMSECV of the SVR model was considered as a �tness function inside the
algorithm for both datasets. The selected descriptors were �nally incorporated in SVR �nal model building.
Parameters of the algorithm was combinatorically optimized. These parameters were varied in intervals of
speci�c increments, keeping in mind that in all optimization iterations, one parameter was always varied,
while the others were saved constant.

2.3.4 Model validation
It was requisite to evaluate the applicability of the generated models based on model validation. In the
present study, models were validated both internally as well as externally and any chance correlation was
tested by the use of a y-scrambling technique: a method frequently used for this purpose.

Internal validation was performed by using leave-one-out cross-validation (CVLOO) in quinolones model while
by using leave-10%-out (CVL10%O) in sulfonamides.

External validation was conducted by applying the model on external validation set of 5 microspecies of
quinolones and 9 molecules of sulfonamides. The statistical quality of the models was judged by
considering the root mean square errors (RMSE) of prediction and the validation correlation coe�cients.

For Y-randomization, the output retention factors of the compounds were shu�ed randomly, and the
resulting dataset was examined by the FFA-SVM model using real (unscrambled) input descriptors to
determine the correlation and predictive ability of the resulting models. The whole procedure was repeated
100 times for both datasets.

Hotelling's T2 and William’s plot methods were used to determine the developed models applicability
domains (AD) as previously described in our previous work [44].

3. Results And Discussion
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3.1 Optimization of the FFA and SVR parameters for the
developed QSRR model of quinolones
Fire�y algorithm was used as a feature selection method to �nd the relevant descriptors in order to build
reliable QSRR models. However, some parameters were needed to be optimized for proper descriptors’
selection. Initially, the selection of the �tness function used to evaluate the performance of the models was a
critical step, thus, based on a previous study [44], the RMSECV was utilized as a �tness function computed by
SVR model. Another critical parameter in the FFA is the absorption coe�cient parameter “γ” which regulates
the light intensity and thus controls the �re�ies’ attractiveness, thus, this parameter has a powerful impact on
the speed of the convergence and the behavior of the whole algorithm. Another valuable parameter is the “α”
parameter that prevents sticking to the local optima through providing some sorts of random movements.
Finally, the exploration phase of the FFA was controlled via the number of the �re�ies used while the
exploitation phase was controlled by the number of generations. The adjusted FFA parameters through
combinatorial optimization are shown in Table 4.
Table (4) Parameters of the �re�y algorithm used for variable selection in QSRR modeling

Parameter Quinolones Sulfonamides

Number of �re�ies 10 20

Generations 100 100

α 0.1 0.15

βο 1 1

γ 0.01 0.01

Concerning SVR, two parameters determine the quality of the model: Penalty error (C), a parameter that
controls the trade-off between complexity of decision rule and frequency of error, and insensitive loss
function (�) which is a precision factor expressing the radius of the tube placed around the regression
function f(x). Moreover, different types of kernels as basis function expansions were also assessed viz.,
polynomial, radial basis function (RBF) and sigmoid. Initially, the kernel function was examined through
evaluating the performance of developed FFA-SVM models, the RBF was selected as best kernel function to
model the nonlinearity of the generated data. The RBF kernel parameter regulates the amplitude of the
Gaussian function and in�uence the generalization ability of SVM. Then, the parameters of C & � were
optimized. To optimize these parameters, their values was systematically varied in the training step through
(CVLOO) and (CVL10%O) for quinolones and sulfonamides, respectively, with monitoring the RMSEcv of models.
To obtain the optimal �, the SVM with different � values were trained, during this, we kept value of C as 1
initially, but after �nding the optimal value of �, the C value is further optimized. It was found that the best
models were obtained using kernel type of (RBF), C = 1 and � =0.01 for both datasets. The �nal developed
FFA-SVM models were used to predict the retention factors of molecules in test set for quinolones and
sulfonamides, respectively.
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3.2 QSRR modelling of quinolones in different ionization
states
For elucidating the chromatographic behavior of the studied quinolones, it is important to understand the
relationship between the pH of the mobile phase and the ionization states of each compound, (Fig. S3).
Some compounds behave ideally with respect to their ionization state i.e. moxi�oxacin exists as a cation
(polar) at acidic pHs (2.2 and 3.5) while exists as a neutral compound (hydrophobic) at pH (6.5 and 8.2), so
this can rationalize the longer the retention factor of this compound in basic pH rather than the acidic one.
Cipro�oxacin, lome�oxacin and nor�oxacin exist in different dissociation forms in pHs (5.2 and 8.2) and this
describes the �uctuation in their retention factors over these pHs. Nadi�oxacin exists as a neutral compound
at acidic pHs (2.2, 3.5 and 5.2) what describes the longer the retention factor at these lower pH values while
its rapid elution and lower retention factor at basic pH 8.2 as it exists in anionic form. In contrast, o�oxacin
and dano�oxacin show different behavior, the cationic form of these analytes which appeared at acidic pHs
(2.2 and 3.5) show lower retention factors while its anionic forms which are present at basic pHs (6.5 and
8.2) show higher retention factors and so the longer the time it is retained on the column. Additionally,
gati�oxacin and gemi�oxacin show stability in their retention factors although they can exist in different
ionization state along the pH range (2.2–8.2).

From these previous observations, the behavior of quinolone compounds cannot be predicted solely based
on their ionization state and a more in-depth analysis is required that can predict their behavior successfully.
It is noteworthy to mention that the microspecies of each compound could also be present in various ionic
forms and in diverse percentages, thus it will be tricky to predict the retention behavior based on a single
microspecies. To tackle this problem, we tried to choose the major microspecies as a representative for each
molecule in the given pH taking into consideration not to choose the same microspecies at different pHs or
different retention factors for the same ionization state. Considering this approach, we were able to derive a
simple, interpretable QSRR model that can predict the retention factors of quinolones in their different ionic
forms.

The �rst step in QSRR model implemented for quinolones is to check the linearity of the data, augmented
partial residual plots (APARP) along with Durbin-Watson (DW) test were used to check the residuals
correlation [56–58]. The associated probability was found to be 0.045 (> 0.05) revealing the signi�cance of
the test and the nonlinearity of the data, therefore, nonlinear models as arti�cial neural network (ANN) and
support vector regression (SVR) were tried for data modeling and the best results were obtained during using
SVR.

Five descriptors were chosen by the FFA and combined in building the SVM model. SMR is a 2D descriptor
linked to molecular refractivity including implicit hydrogens [61]. This property is an atomic contribution
model that assumes the correct protonation state. GCUT_SLOGP_1 is a 2D descriptor that uses atomic
contribution to logP in place of partial charge. VSA is a 3D descriptor that is related to surface area, volume
and shape of molecules, it represents van der Waals surface area [62]. Vsurf_EWmin 2 is a 3D descriptor and
represents the 2nd lowest hydrophilic energy. Vsurf_IW6 is a 3D descriptor that represents the hydrophilic
integy moment at (-4.0). Considering the selected descriptors, the model displays that quinolones retention is
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based on their size and hydrophobic/hydrophilic nature which are the main elements that in�uence the
retention in reversed phase liquid chromatography.

Regarding the performance of the developed QSRR model, the agreement of the experimental and predicted
retention factors shows the good predictive capability of the model as shown in Table 5. The nearness
between the training set prediction and the cross-validation results point to the robustness of the resulted
model and lack of any over�tting. As shown in Table 6, the results display the good prediction capability of
the obtained model. The correlation between the experimental and predicted retention times for the training
set, test set and CVLOO results are presented in (Fig. S4&S5). Spearman ranking correlation coe�cient (ρ)
was also calculated and found to be 0.976, 0.982, and 0.900 for the training set prediction (ρcal), CV LOO

(ρLOO) and the external test set (ρpred), respectively, Table 6. The closeness of ρ to “1” indicates a reasonable
accuracy and excellent capability of the generated model to reproduce the experimental retention factor
ranking (Fig. 1).
Table (5): Experimental and predicted retention factors (k) of quinolones compounds in training set, cross-
validation and test set
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Compound
name

Buffer

pH

Experimental
k

Training set
prediction

 

Residuals

Cross-
Validation

CVLOO

 

Residuals

Lome�oxacin 6.5 0.920 1.175 0.255 1.247 0.327

Cipro�oxacin 6.5 1.153 1.164 0.011 1.262 0.109

Nor�oxacin 3.5 1.162 1.255 0.093 1.342 0.18

O�oxacin 3.5 1.176 1.261 0.085 1.385 0.209

Cipro�oxacin 3.5 1.363 1.330 -0.033 1.293 -0.07

Lome�oxacin 3.5 1.560 1.550 -0.01 1.401 -0.159

Gati�oxacin 6.5 1.566 1.555 -0.011 1.493 -0.073

Gemi�oxacin 3.5 1.576 1.586 0.01 1.593 0.017

Gemi�oxacin 6.5 1.584 1.575 -0.009 1.558 -0.026

Gati�oxacin 3.5 1.603 1.613 0.01 1.621 0.018

Moxi�oxacin 3.5 1.606 1.616 0.01 1.638 0.032

Dano�oxacin 8.2 1.668 1.659 -0.009 1.662 -0.006

Nadi�oxacin 8.2 1.685 1.694 0.009 1.763 0.078

Moxi�oxacin 6.5 1.749 1.739 -0.01 1.700 -0.049

Enro�oxacin 8.2 1.973 1.819 -0.154 1.773 -0.2

Nadi�oxacin 3.5 2.148 1.828 -0.32 1.769 -0.379

Nor�oxacin* 6.5 1.158 1.149 -0.009  

Dano�oxacin* 3.5 1.551 1.433 -0.118  

Spar�oxacin* 3.5 1.576 1.563 -0.013  

Enro�oxacin* 2.2 1.622 1.493 -0.129  

O�oxacin* 8.2 1.885 1.603 -0.282  

(*) Test set compound.

Table (6): Quinolones and sulfonamides FFA-SVM model performance evaluation parameters
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Parameter Quinolones FFA-SVM  

Sulfonamides FFA-SVM

R2 
cal

0.931 0.900

R2 cal-adj
0.926 0.896

q2 LOO / q2
L10%O

0.808 0.812

R2 
pred

0.879 0.820

RMSE cal 0.114 0.240

RMSECVLOO 0.163 0.328

RMSEpred 0.148 0.450

ρcal 0.976 0.988

ρLoo / ρL10%O 0.982 0.941

ρpred 0.900 0.883

3.3 QSRR modelling of sulfonamides using different organic
modi�ers
QSRR modeling of sulfonamides was implemented with the aim of studying the associations between the
retention factors of the examined compounds eluted upon using different percentages of acetonitrile in the
mobile phase composition (Fig. S6): 50%, 45% and 30%, and their calculated constitutional, geometrical,
physicochemical and electronical descriptors (independent variables),. Linearity of the data were also
considered with the same procedures reported in quinolones with associated probability of 3.2− 17 (> 0.05)
indicating the nonlinearity of the generated data. The FFA-SVR model was also utilized in this case resulting
in two descriptors plus acetonitrile % in building the QSRR model. The selected features, Vsurf-D2 and vsurf-
w2, are 3D descriptors that are related to the molecular hydrophobic and hydrophilic volume, respectively.
Moreover, the in�uence of the third descriptor (acetonitrile % in the mobile phase) indicates that, in the
resulted model, the analyte retention is based on its hydrophobic/hydrophilic nature which is a usual element
that plays an important role in differential elution of analytes in reversed phase liquid chromatography.

The results also display the good prediction capability of the obtained model as shown in Tables 6&7. The
model training set, and test set correlation of the experimental and predicted retentions are presented in (Fig.
S7), whereas the compounds’ experimental and predicted retentions in the CVLOO is presented in (Fig. S8)
indicating the good correlation and the generalized ability of the developed QSRR sulfonamides model.
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Spearman ranking correlation coe�cient (ρ) was also calculated for the training set prediction (ρcal), CV

L10%O (ρL10%O) and the external test set (ρpred) and was found to be 0.988, 0.941 and 0.883, respectively, (Fig.
2). The closeness of ρ to “1” indicates the capability of the generated model to reproduce the experimental
retention factor ranking of the compounds under investigation in a reasonable accuracy.
Table (7): Experimental and predicted retention factors (k) of sulfonamides compounds in training set, cross-
validation and test set
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Compound name  

Acetonitrile
%

Experimental
k

Training
set
prediction

Residuals
of

Training
set

Cross-
Validation

CVL10%O

Residuals
of

Cross-
Validation

Sulfacetamide Na 50% 0.154 0.153 -0.001 0.151 -0.002

Sulfacetamide Na 45% 0.203 0.194 -0.009 0.171 -0.032

Sulfacetamide Na 30% 0.393 0.385 -0.008 0.336 -0.057

Sulfaguanidine 50% 0.170 0.178 0.009 0.212 0.042

Sulfaguanidine 45% 0.188 0.181 -0.006 0.182 -0.006

Sulfaguanidine 30% 0.256 0.267 0.011 0.458 0.202

Sulfadiazine 50% 0.174 0.185 0.011 0.193 0.019

Sulfadiazine 45% 0.228 0.237 0.010 0.236 0.008

Sulfadiazine 30% 0.443 0.454 0.011 0.520 0.078

Sulfaclozine 50% 0.549 0.528 -0.021 0.460 -0.088

Sulfaclozine 45% 0.752 0.701 -0.051 0.657 -0.095

Sulfaclozine 30% 2.196 1.310 -0.886 1.082 -1.114

Sulfadimethoxine 50% 0.419 0.429 0.010 0.427 0.008

Sulfadimethoxine 45% 0.567 0.576 0.009 0.602 0.035

Sulfadimethoxine 30% 1.433 1.278 -0.155 1.006 -0.427

Sulfadimidine 50% 0.311 0.299 -0.012 0.289 -0.022

Sulfadimidine 45% 0.389 0.378 -0.010 0.352 -0.037

Compound name  

Acetonitrile
%

Experimental
k

Training
set
prediction

Residuals
of
Training
set

Cross-
Validation

CVL10%O

Residuals
of

Cross-
Validation

Sulfadimidine 30% 0.730 0.643 -0.087 0.555 -0.175

Sulfadoxine 50% 0.395 0.405 0.010 0.419 0.024

Sulfadoxine 45% 0.524 0.540 0.017 0.569 0.046

Sulfadoxine 30% 1.276 1.211 -0.065 0.962 -0.314

Sulfathiazole 50% 0.166 0.224 0.058 0.242 0.076

Sulfathiazole 45% 0.221 0.285 0.064 0.289 0.068

Sulfathiazole 30% 0.426 0.521 0.095 0.574 0.148
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Sulfachloropyrazine
Na

50% 0.546 0.568 0.022 0.623 0.078

Sulfachloropyrazine
Na

45% 0.754 0.742 -0.012 0.698 -0.056

Sulfachloropyrazine
Na

30% 2.177 1.233 -0.944 0.937 -1.240

Sulfanilamide 50% 0.154 0.165 0.011 0.231 0.078

Sulfanilamide 45% 0.194 0.183 -0.010 0.167 -0.026

Sulfanilamide 30% 0.295 0.307 0.012 0.409 0.114

Sulfacetamide Na 50% 0.154 0.153 -0.001 0.151 -0.002

Sulfacetamide Na 45% 0.203 0.194 -0.009 0.171 -0.032

Sulfacetamide Na 30% 0.393 0.385 -0.008 0.336 -0.057

Sulfaguanidine 50% 0.170 0.178 0.009 0.212 0.042

Sulfaguanidine 45% 0.188 0.181 -0.006 0.182 -0.006

Sulfaguanidine 30% 0.256 0.267 0.011 0.458 0.202

Compound name  

Acetonitrile
%

Experimental
k

Training
set
prediction

Residuals
of
Training
set

Cross-
Validation

CVL10%O

Residuals
of Cross-
Validation

Sulfadiazine 50% 0.174 0.185 0.011 0.193 0.019

Sulfadiazine 45% 0.228 0.237 0.010 0.236 0.008

Sulfadiazine 30% 0.443 0.454 0.011 0.520 0.078

Sulfaclozine 50% 0.549 0.528 -0.021 0.460 -0.088

Sulfaclozine 45% 0.752 0.701 -0.051 0.657 -0.095

Sulfaclozine 30% 2.196 1.310 -0.886 1.082 -1.114

Sulfadimethoxine 50% 0.419 0.429 0.010 0.427 0.008

Sulfadimethoxine 45% 0.567 0.576 0.009 0.602 0.035

Sulfadimethoxine 30% 1.433 1.278 -0.155 1.006 -0.427

Sulfamethoxazole* 50% 0.421 0.248

Sulfamethoxazole* 45% 0.568 0.322

Sulfamethoxazole* 30% 1.548 0.644

Sulfapyridine* 50% 0.306 0.283

Sulfapyridine* 45% 0.359 0.306
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Sulfapyridine* 30% 0.597 0.443

Sulfaquinoxaline* 50% 0.519 0.530

Sulfaquinoxaline* 45% 0.716 0.719

Sulfaquinoxaline* 30% 2.221 1.279

-Test set compound (*)

3.4 Y scrambling and applicability domain of both models
Y-randomization or permutation test is another criterion used to validate our �ndings in this study especially
with this low number of observations. In this test, it is suspected that the original QSRR model is signi�cant if
there is a solid link between the selected descriptors and the original response variables. Y- randomization
was repeated for 100 times. If the statistical attributes of these randomized models are much lower than the
original one, it can be decided that the model is sensible and had not been obtained by luck. The below
equation was used to evaluate the quality of the obtained models from the 100 randomized matrices and to
weigh against the original model quality. cRp

2 should be above 0.5 to ensure that the original model is not
obtained by chance [63].

cR
2
p

= R* R2 − R2
y

Where (cRp
2) is the degree of variation in the values of the squared correlation coe�cient average of the

randomized models Ry
2 and the squared correlation coe�cient of the original model R2.

Statistical parameters of the scrambled models gathered around zero in a symmetrical way for both
datasets (Fig. 3), representing that the scrambled models are of very low quality. cRp2 values calculated for
cross validation was also found to be 0.687and 0.791 (more than 0.5) for quinolones and sulfonamides
QSRR models, respectively what denies that the obtained model is the result of a chance correlation.

The applicability domain of a QSPR is the structural, biological space or physicochemical knowledge or
information on which the training set of the model has been developed, and for which it is applicable to
make predictions for new compounds. In the William’s plot for the FFA-SVM models, the applicability domain
is inside a squared area within ± 3 standard deviations and a leverage threshold h* of 1.125 and 0.4 for
quinolones and sulfonamides, respectively. Prediction is considered reliable only for those compounds that
fall within this AD. Also, it can be seen that all compounds (training and test sets) are inside this area without
any outlier (Fig. 4). Moreover, the residual plots for both classes show the differences between the predicted
and the experimental retention factor (residuals) for the different compounds. The random dispersion of the
residuals around the horizontal axis con�rmed the predictability of the model, (Fig. S9&S10).

4. Conclusion
Two QSRR models were built for prediction of the retention factors of quinolones and sulfonamides in HPLC
system. The in�uence of the pH of the mobile phase on the retention factors and the ionization state of each

√
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quinolone and the effect of acetonitrile composition in the mobile phase on the retention factors of
sulfonamides were studied resulting in selection of 21 major microspecies of quinolones and 39
sulfonamides compounds. In both classes, signi�cant descriptors that are related to the retention behavior in
the chromatographic system were selected using the advanced FFA and then incorporated in building the
QSRR models using SVM algorithm. In both, FFA-SVM models displayed that the analyte retention is
dependent on its hydrophobic/hydrophilic nature and/or its size. The two models showed high performance
on both the training level and the validation level. In quinolones, the regression coe�cients of the training set
prediction (R2

cal), CV LOO (q2
LOO) and the external test set (R2

pred) were 0.931 (R2
adjusted = 0.926), 0.808 and

0.879, respectively, and with root mean square errors (RMSE) of 0.114, 0.163 and 0.148, respectively. In
sulfonamides, the regression coe�cients of the training set prediction (R2

cal), CV L10%O (q2
L10%O) and the

external test set (R2
pred) were 0.900 (R2

adjusted = 0.896), 0.812 and 0.820, respectively, and with root mean
square errors (RMSE) of 0.240, 0.450 and 0.328, respectively. In the Y-randomization validation test, the two
models showed cRp

2 values of 0.687 and 0.791 for quinolones and sulfonamides, respectively indicating
that both models are signi�cant and not obtained by chance.
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Figures

Figure 1

FFA-SVM model experimental k ranking vs predicted k ranking in Quinolones training set prediction.
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Figure 2

FFA-SVM model experimental k ranking vs predicted k ranking in Sulfonamides training set prediction
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Figure 3

Y-randomization validation results for the FFA-SVM for (A) quinolones (B) sulfonamides modeling.
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Figure 4

Williams plot for FFA-SVM models of (A) quinolones with ±3 standard deviations, and a leverage threshold
h* of 1.125 as warning limits and (B) sulfonamides with ±3 standard deviations, and a leverage threshold h*
of 0.4 as warning limits. Circles represent training set cross-validation prediction and diamonds represent
test set prediction.
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