1. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5(5):355-62; doi: 10.1038/nrmicro1635.
2. Sweet MJ, Bulling MT. On the Importance of the Microbiome and Pathobiome in Coral Health and Disease. Frontiers in Marine Science. 2017;4; doi: 10.3389/fmars.2017.00009.
3. Antwis RE, Griffiths SM, Harrison XA, Aranega-Bou P, Arce A, Bettridge AS, et al. Fifty important research questions in microbial ecology. FEMS Microbiol Ecol. 2017;93(5); doi: 10.1093/femsec/fix044.
4. Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio. 2016;7(2).
5. Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodiversity and Conservation. 2019;28(8):2405-29.
6. Malmuthuge N. Understanding host-microbial interactions in rumen: searching the best opportunity for microbiota manipulation. Journal of animal science and biotechnology. 2017;8(1):1-7.
7. Bongrand C, Koch EJ, Moriano-Gutierrez S, Cordero OX, McFall-Ngai M, Polz MF, et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. The ISME journal. 2016;10(12):2907-17.
8. Nyholm SV, McFall-Ngai M. The winnowing: establishing the squid–Vibrio symbiosis. Nature Reviews Microbiology. 2004;2(8):632-42.
9. Lee YM, Noh H-J, Lee D-H, Kim J-H, Jin YK, Paull C. Bacterial endosymbiont of Oligobrachia sp.(Frenulata) from an active mud volcano in the Canadian Beaufort Sea. Polar Biology. 2019;42(12):2305-12.
10. Rogers TJ, Leppanen C, Brown V, Fordyce JA, LeBude A, Ranney T, et al. Exploring variation in phyllosphere microbial communities across four hemlock species. Ecosphere. 2018;9(12):e02524.
11. Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. The ISME journal. 2020;14(8):1915-28.
12. Campbell AH, Marzinelli EM, Gelber J, Steinberg PD. Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Frontiers in microbiology. 2015;6:230.
13. Davis KM, Mazel F, Parfrey LW. The microbiota of intertidal macroalgae Fucus distichus is site‐specific and resistant to change following transplant. Environmental Microbiology. 2021.
14. Bjork J, O’Hara R, Ribes M, Coma R, Montoya J: The dynamic core microbiome: Structure, dynamics and stability. bioRxiv 137885. In.; 2018.
15. Risely A. Applying the core microbiome to understand host–microbe systems. Journal of Animal Ecology. 2020.
16. Wang J, Lang T, Shen J, Dai J, Tian L, Wang X. Core gut bacteria analysis of healthy mice. Frontiers in microbiology. 2019;10:887.
17. Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nature Plants. 2018;4(5):247-57.
18. Li K, Bihan M, Methé BA. Analyses of the stability and core taxonomic memberships of the human microbiome. PloS one. 2013;8(5):e63139.
19. Simonin M, Dasilva C, Terzi V, Ngonkeu EL, Diouf D, Kane A, et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils. FEMS microbiology ecology. 2020;96(6):fiaa067.
20. Trevizan Segovia B, Sanders‐Smith R, Adamczyk EM, Forbes C, Hessing‐Lewis M, O’Connor MI, et al. Microeukaryotic communities associated with the seagrass Zostera marina are spatially structured. Journal of Eukaryotic Microbiology. 2021;68(1):e12827.
21. Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. The ISME journal. 2015;9(10):2261-74.
22. Schmitt S, Hentschel U, Taylor MW. Deep sequencing reveals diversity and community structure of complex microbiota in five Mediterranean sponges. In: Ancient Animals, New Challenges. Springer; 2011. p. 341-51.
23. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. nature. 2009;457(7228):480-4.
24. Björk JR, O’Hara RB, Ribes M, Coma R, Montoya JM. The dynamic core microbiome: structure, stability and resistance. bioRxiv. 2017:137885.
25. Sanders-Smith R, Trevizan Segovia B, Forbes C, Hessing-Lewis M, Morien E, Lemay MA, et al. Host-specificity and core taxa of seagrass leaf microbiome identified across tissue age and geographical regions. Frontiers in Ecology and Evolution. 2020;8:459.
26. Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD. Rethinking the Coral Microbiome: Simplicity Exists within a Diverse Microbial Biosphere. MBio. 2018;9(5); doi: 10.1128/mBio.00812-18.
27. Loudon A, Kurtz A, Esposito E, Umile T, Minbiole K, Parfrey L, et al. Columbia spotted frogs (Rana luteiventris) have characteristic skin microbiota that may be shaped by cutaneous skin peptides and the environment. FEMS Microbiology Ecology. 2020;96(10):fiaa168.
28. Parrot D, Blümel M, Utermann C, Chianese G, Krause S, Kovalev A, et al. Mapping the surface microbiome and metabolome of brown seaweed Fucus vesiculosus by amplicon sequencing, integrated metabolomics and imaging techniques. Scientific reports. 2019;9(1):1-17.
29. Stopnisek N, Shade A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. The ISME Journal. 2021:1-15.
30. Ruuskanen MO, Sommeria‐Klein G, Havulinna AS, Niiranen TJ, Lahti L. Modeling spatial patterns in host‐associated microbial communities. Environmental Microbiology. 2021.
31. Saha M, Ferguson RM, Dove S, Künzel S, Meichssner R, Neulinger SC, et al. Salinity and time can alter epibacterial communities of an invasive seaweed. Frontiers in Microbiology. 2020;10:2870.
32. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Bacterial community assembly based on functional genes rather than species. Proceedings of the National Academy of Sciences. 2011;108(34):14288-93.
33. Lemay MA, Martone PT, Hind KR, Lindstrom SC, Wegener Parfrey L. Alternate life history phases of a common seaweed have distinct microbial surface communities. Molecular ecology. 2018;27(17):3555-68.
34. James AK, English CJ, Nidzieko NJ, Carlson CA, Wilbanks EG. Giant kelp microbiome altered in the presence of epiphytes. Limnology and Oceanography Letters. 2020;5(5):354-62.
35. Paix B, Othmani A, Debroas D, Culioli G, Briand JF. Temporal covariation of epibacterial community and surface metabolome in the Mediterranean seaweed holobiont Taonia atomaria. Environmental microbiology. 2019;21(9):3346-63.
36. Tujula NA, Crocetti GR, Burke C, Thomas T, Holmström C, Kjelleberg S. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME journal. 2010;4(2):301-11.
37. Martin M, Barbeyron T, Martin R, Portetelle D, Michel G, Vandenbol M. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Frontiers in microbiology. 2015;6:1487.
38. Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T. The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev. 2013;37(3):462-76; doi: 10.1111/1574-6976.12011.
39. Hollants J, Leliaert F, De Clerck O, Willems A. What we can learn from sushi: a review on seaweed–bacterial associations. FEMS microbiology ecology. 2013;83(1):1-16.
40. Singh RP, Reddy CR. Seaweed-microbial interactions: key functions of seaweed-associated bacteria. FEMS Microbiol Ecol. 2014;88(2):213-30; doi: 10.1111/1574-6941.12297.
41. Saha M, Weinberger F. Microbial “gardening” by a seaweed holobiont: surface metabolites attract protective and deter pathogenic epibacterial settlement. Journal of Ecology. 2019;107(5):2255-65.
42. Spoerner M, Wichard T, Bachhuber T, Stratmann J, Oertel W. Growth and thallus morphogenesis of Ulva mutabilis (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. Journal of phycology. 2012;48(6):1433-47.
43. Chisholm J, Dauga C, Ageron E, Grimont P, Jaubert J. Roots in Mixotrophic Algae (Vol 381, Pg 382, 1996). Nature. 1996;381(6583):565-.
44. Florez JZ, Camus C, Hengst MB, Buschmann AH. A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Frontiers in microbiology. 2017;8:2561.
45. Zeng Y. Phylogenetic diversity of dimethylsulfoniopropionatedependent demethylase gene dmdA in distantly related bacteria isolated from Arctic and Antarctic marine environments. Acta Oceanologica Sinica. 2019;38(8):64-71.
46. Tout J, Jeffries TC, Webster NS, Stocker R, Ralph PJ, Seymour JR. Variability in microbial community composition and function between different niches within a coral reef. Microbial ecology. 2014;67(3):540-52.
47. Gutiérrez‐Barranquero JA, Reen FJ, Parages ML, McCarthy R, Dobson AD, O'gara F. Disruption of N‐acyl‐homoserine lactone‐specific signalling and virulence in clinical pathogens by marine sponge bacteria. Microbial biotechnology. 2019;12(5):1049-63.
48. Keith SA, Kerswell AP, Connolly SR. Global diversity of marine macroalgae: environmental conditions explain less variation in the tropics. Global ecology and biogeography. 2014;23(5):517-29.
49. Lemay MA, Chen MY, Mazel F, Hind KR, Starko S, Keeling PJ, et al. Morphological complexity affects the diversity of marine microbiomes. The ISME Journal. 2020:1-15.
50. Hay ME, Fenical W. Marine plant-herbivore interactions: the ecology of chemical defense. Annual review of ecology and systematics. 1988;19(1):111-45.
51. Shanmughapriya S, Manilal A, Sujith S, Selvin J, Kiran GS, Natarajaseenivasan K. Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Annals of Microbiology. 2008;58(3):535-41.
52. Saha M, Rempt M, Grosser K, Pohnert G, Weinberger F. Surface-associated fucoxanthin mediates settlement of bacterial epiphytes on the rockweed Fucus vesiculosus. Biofouling. 2011;27(4):423-33.
53. Lachnit T, Wahl M, Harder T. Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga. Biofouling. 2009;26(3):247-55.
54. Saha M, Rempt M, Stratil SB, Wahl M, Pohnert G, Weinberger F. Defence chemistry modulation by light and temperature shifts and the resulting effects on associated epibacteria of Fucus vesiculosus. PloS one. 2014;9(10):e105333.
55. Bhadury P, Wright PC. Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta. 2004;219(4):561-78.
56. Imran M, Poduval PB, Ghadi SC. Bacterial degradation of algal polysaccharides in marine ecosystem. In: Marine pollution and microbial remediation. Springer; 2017. p. 189-203.
57. Vishwakarma J, VL S. Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Applied Microbiology and Biotechnology. 2020;104:6299-314.
58. Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environmental microbiology. 2013;15(2):334-46.
59. Weigel BL, Pfister CA. Successional dynamics and seascape-level patterns of microbial communities on the canopy-forming kelps Nereocystis luetkeana and Macrocystis pyrifera. Frontiers in microbiology. 2019;10:346.
60. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621-4; doi: 10.1038/ismej.2012.8.
61. Comeau AM, Douglas GM, Langille MG. Microbiome helper: a custom and streamlined workflow for microbiome research. MSystems. 2017;2(1):e00127-16.
62. Wu Y. Barcode demultiplex for Illumina I1. R1, R2 fastq gz files (https://github com/yhwu/idemp). 2014.
63. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic acids research. 2012;41(D1):D590-D6.
64. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic acids research. 2013;42(D1):D643-D8.
65. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nature methods. 2016;13(7):581.
66. Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecological monographs. 1957;27(4):325-49.
67. Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al.: vegan: Community Ecology Package. R package version 2.4–6. 2018. In.; 2019.
68. De Caceres M, Jansen F, De Caceres MM. Package ‘indicspecies’. indicators. 2016;8:1.
69. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, et al.: Community ecology package. R package version 2.0-2. In.; 2011.
70. Legendre P. Indicator species: computation. 2013.
71. Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90(12):3566-74.
72. Wickham H. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics. 2011;3(2):180-5.
73. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology. 2019;37(8):852-7.
74. Madden T. The BLAST sequence analysis tool. The NCBI handbook. 2003.
75. Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127-8.
76. Robin A, Chavel P, Chemodanov A, Israel A, Golberg A. Diversity of monosaccharides in marine macroalgae from the Eastern Mediterranean Sea. Algal research. 2017;28:118-27.
77. García-Vaquero M, Rajauria G, O'Doherty JV, Sweeney T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food research international. 2017;99:1011-20.
78. Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272-7.
79. Louca S, Polz MF, Mazel F, Albright MB, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nature ecology & evolution. 2018;2(6):936-43.
80. Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y. Let the core microbiota be functional. Trends in Plant Science. 2017;22(7):583-95.
81. Marshall K, Joint I, Callow ME, Callow JA. Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green alga Ulva linza. Microbial ecology. 2006;52(2):302-10.
82. Weiss A, Costa R, Wichard T. Morphogenesis of Ulva mutabilis (Chlorophyta) induced by Maribacter species (Bacteroidetes, Flavobacteriaceae). Botanica Marina. 2017;60(2):197-206.
83. Templeton AS, Staudigel H, Tebo BM. Diverse Mn (II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiology Journal. 2005;22(3-4):127-39.
84. Jiang X, Dang H, Jiao N. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments. PloS one. 2015;10(2):e0117473.
85. Larsen A, Tao Z, Bullard SA, Arias CR. Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS microbiology ecology. 2013;85(3):483-94.
86. Taylor MW, Schupp PJ, Dahllöf I, Kjelleberg S, Steinberg PD. Host specificity in marine sponge‐associated bacteria, and potential implications for marine microbial diversity. Environmental Microbiology. 2004;6(2):121-30.
87. Ambika Manirajan B, Ratering S, Rusch V, Schwiertz A, Geissler‐Plaum R, Cardinale M, et al. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species‐specificity. Environmental Microbiology. 2016;18(12):5161-74.
88. Vieira C, Engelen AH, Guentas L, Aires T, Houlbreque F, Gaubert J, et al. Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae) and their potential for induction of rapid coral bleaching in Acropora muricata. Frontiers in Microbiology. 2016;7:316.
89. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548(7665):43-51.
90. Quigley CT, Capistrant-Fossa KA, Morrison HG, Johnson LE, Morozov A, Hertzberg VS, et al. Bacterial Communities Show Algal Host (Fucus spp.)/Zone Differentiation Across the Stress Gradient of the Intertidal Zone. Frontiers in microbiology. 2020;11:563118-.
91. Dogs M, Wemheuer B, Wolter L, Bergen N, Daniel R, Simon M, et al. Rhodobacteraceae on the marine brown alga Fucus spiralis are abundant and show physiological adaptation to an epiphytic lifestyle. Systematic and applied microbiology. 2017;40(6):370-82.
92. Weigel BL, Pfister CA. Oxygen metabolism shapes microbial settlement on photosynthetic kelp blades compared to artificial kelp substrates. Environmental Microbiology Reports. 2021;13(2):176-84.
93. Lemay MA, Davis KM, Martone PT, Parfrey LW. Kelp‐associated Microbiota are Structured by Host Anatomy. Journal of Phycology. 2021.
94. Jo Y, Oh YS, Woo S, Park CH, Yum S. Metagenomic analysis of bacterial communities associated with four Ecklonia cava populations, including Dokdo Island population. Toxicology and Environmental Health Sciences. 2019;11(1):11-8.
95. Rizzo L, Fraschetti S, Alifano P, Pizzolante G, Stabili L. The alien species Caulerpa cylindracea and its associated bacteria in the Mediterranean Sea. Marine biology. 2016;163(1):4.
96. Califano G, Kwantes M, Abreu MH, Costa R, Wichard T. Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta). Frontiers in Marine Science. 2020;7:52.
97. Miranda LN, Hutchison K, Grossman AR, Brawley SH. Diversity and abundance of the bacterial community of the red macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae? PLoS One. 2013;8(3):e58269.
98. Dobretsov S, Véliz K, Romero MS, Tala F, Thiel M. Impact of UV radiation on the red seaweed Gelidium lingulatum and its associated bacteria. European Journal of Phycology. 2021;56(2):129-41.
99. Ficko-Blean E, Hervé C, Michel G. Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspectives in Phycology. 2015;2(1):51-64.
100. Synytsya A, Čopíková J, Kim WJ, Park YI. Cell wall polysaccharides of marine algae. In: Springer handbook of marine biotechnology. Springer; 2015. p. 543-90.
101. Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Applied microbiology and biotechnology. 2006;71(1):23-33.
102. Sun C, Fu G-y, Zhang C-y, Hu J, Xu L, Wang R-j, et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Applied and environmental microbiology. 2016;82(10):2975-87.
103. Van Alstyne KL, Koellermeier L, Nelson TA. Spatial variation in dimethylsulfoniopropionate (DMSP) production in Ulva lactuca (Chlorophyta) from the Northeast Pacific. Marine biology. 2007;150(6):1127-35.
104. Saha M, Rempt M, Gebser B, Grueneberg J, Pohnert G, Weinberger F. Dimethylsulphopropionate (DMSP) and proline from the surface of the brown alga Fucus vesiculosus inhibit bacterial attachment. Biofouling. 2012;28(6):593-604.
105. Garcia‐Jimenez P, Brito‐Romano O, Robaina RR. Production of volatiles by the red seaweed Gelidium arbuscula (Rhodophyta): emission of ethylene and dimethyl sulfide. Journal of Phycology. 2013;49(4):661-9.
106. Kessler RW, Weiss A, Kuegler S, Hermes C, Wichard T. Macroalgal–bacterial interactions: role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Molecular Ecology. 2018;27(8):1808-19.
107. Kang I, Lim Y, Cho JC. Complete genome sequence of Granulosicoccus antarcticus type strain IMCC3135(T), a marine gammaproteobacterium with a putative dimethylsulfoniopropionate demethylase gene. Mar Genomics. 2018;37:176-81; doi: 10.1016/j.margen.2017.11.005.
108. Zeng YX, Qiao ZY. Diversity of Dimethylsulfoniopropionate Degradation Genes Reveals the Significance of Marine Roseobacter Clade in Sulfur Metabolism in Coastal Areas of Antarctic Maxwell Bay. Curr Microbiol. 2019;76(9):967-74; doi: 10.1007/s00284-019-01709-5.
109. Godinho O, Botelho R, Albuquerque L, Wiegand S, Kallscheuer N, da Costa MS, et al. Bremerella alba sp. nov., a novel planctomycete isolated from the surface of the macroalga Fucus spiralis. Systematic and Applied Microbiology. 2021;44(3):126189.
110. Bondoso J, Godoy-Vitorino F, Balague V, Gasol JM, Harder J, Lage OM. Epiphytic Planctomycetes communities associated with three main groups of macroalgae. FEMS microbiology ecology. 2017;93(3):fiw255.