Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., Liu, W., Yang, J. Y., Yoshihara, K., Li, J., et al. (2014). A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun 5, 3887.
Allred, D. C., Mohsin, S. K., and Fuqua, S. A. (2001). Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8, 47-61.
Bartlett, J. M., Bloom, K. J., Piper, T., Lawton, T. J., van de Velde, C. J., Ross, D. T., Ring, B. Z., Seitz, R. S., Beck, R. A., Hasenburg, A., et al. (2012). Mammostrat as an immunohistochemical multigene assay for prediction of early relapse risk in the tamoxifen versus exemestane adjuvant multicenter trial pathology study. J Clin Oncol 30, 4477-4484.
Boehm, J. S., Zhao, J. J., Yao, J., Kim, S. Y., Firestein, R., Dunn, I. F., Sjostrom, S. K., Garraway, L. A., Weremowicz, S., Richardson, A. L., et al. (2007). Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065-1079.
Camacho-Leal, P., and Stanners, C. P. (2008). The human carcinoembryonic antigen (CEA) GPI anchor mediates anoikis inhibition by inactivation of the intrinsic death pathway. Oncogene 27, 1545-1553.
Chan, C. H., Camacho-Leal, P., and Stanners, C. P. (2007). Colorectal hyperplasia and dysplasia due to human carcinoembryonic antigen (CEA) family member expression in transgenic mice. PLoS One 2, e1353.
Chang, R., Song, L., Xu, Y., Wu, Y., Dai, C., Wang, X., Sun, X., Hou, Y., Li, W., Zhan, X., and Zhan, L. (2018). Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis. Nat Commun 9, 3486.
Cordenonsi, M., Zanconato, F., Azzolin, L., Forcato, M., Rosato, A., Frasson, C., Inui, M., Montagner, M., Parenti, A. R., Poletti, A., et al. (2011). The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147, 759-772.
Croessmann, S., Wong, H. Y., Zabransky, D. J., Chu, D., Rosen, D. M., Cidado, J., Cochran, R. L., Dalton, W. B., Erlanger, B., Cravero, K., et al. (2017). PIK3CA mutations and TP53 alterations cooperate to increase cancerous phenotypes and tumor heterogeneity. Breast Cancer Res Treat 162, 451-464.
Debnath, J., Muthuswamy, S. K., and Brugge, J. S. (2003a). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256-268.
Debnath, J., Muthuswamy, S. K., and Brugge, J. S. (2003b). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256-268.
Dondi, E., Pattyn, E., Lutfalla, G., Van Ostade, X., Uze, G., Pellegrini, S., and Tavernier, J. (2001). Down-modulation of type 1 interferon responses by receptor cross-competition for a shared Jak kinase. J Biol Chem 276, 47004-47012.
Goyama, S., Schibler, J., Cunningham, L., Zhang, Y., Rao, Y., Nishimoto, N., Nakagawa, M., Olsson, A., Wunderlich, M., Link, K. A., et al. (2013). Transcription factor RUNX1 promotes survival of acute myeloid leukemia cells. J Clin Invest 123, 3876-3888.
Grzeskowiak, C. L., Kundu, S. T., Mo, X., Ivanov, A. A., Zagorodna, O., Lu, H., Chapple, R. H., Tsang, Y. H., Moreno, D., Mosqueda, M., et al. (2018). In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nat Commun 9, 2732.
Hahn, W. C., Bader, J. S., Braun, T. P., Califano, A., Clemons, P. A., Druker, B. J., Ewald, A. J., Fu, H., Jagu, S., Kemp, C. J., et al. (2021). An expanded universe of cancer targets. Cell 184, 1142-1155.
Hartman, Z. C., Poage, G. M., den Hollander, P., Tsimelzon, A., Hill, J., Panupinthu, N., Zhang, Y., Mazumdar, A., Hilsenbeck, S. G., Mills, G. B., and Brown, P. H. (2013). Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res 73, 3470-3480.
Hibi, K., Liu, Q., Beaudry, G. A., Madden, S. L., Westra, W. H., Wehage, S. L., Yang, S. C., Heitmiller, R. F., Bertelsen, A. H., Sidransky, D., and Jen, J. (1998). Serial analysis of gene expression in non-small cell lung cancer. Cancer Res 58, 5690-5694.
Homminga, I., Pieters, R., Langerak, A. W., de Rooi, J. J., Stubbs, A., Verstegen, M., Vuerhard, M., Buijs-Gladdines, J., Kooi, C., Klous, P., et al. (2011). Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19, 484-497.
Hu, P. S., Xia, Q. S., Wu, F., Li, D. K., Qi, Y. J., Hu, Y., Wei, Z. Z., Li, S. S., Tian, N. Y., Wei, Q. F., et al. (2017). NSPc1 promotes cancer stem cell self-renewal by repressing the synthesis of all-trans retinoic acid via targeting RDH16 in malignant glioma. Oncogene 36, 4706-4718.
Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., et al. (2010). COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972.
Kadota, M., Yang, H. H., Gomez, B., Sato, M., Clifford, R. J., Meerzaman, D., Dunn, B. K., Wakefield, L. M., and Lee, M. P. (2010). Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLoS One 5, e9201.
Kitamura, T., Takagi, S., Naganuma, T., and Kihara, A. (2015). Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification. Biochem J 465, 79-87.
Klinakis, A., Lobry, C., Abdel-Wahab, O., Oh, P., Haeno, H., Buonamici, S., van De Walle, I., Cathelin, S., Trimarchi, T., Araldi, E., et al. (2011). A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230-233.
Li, J., Sordella, R., and Powers, S. (2016). Effectors and potential targets selectively upregulated in human KRAS-mutant lung adenocarcinomas. Scientific Reports 6.
Liau, S. S., Jazag, A., and Whang, E. E. (2006). HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res 66, 11613-11622.
Liu, Y., Sun, J., and Zhao, M. (2017). ONGene: A literature-based database for human oncogenes. J Genet Genomics 44, 119-121.
Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408.
Logsdon, C. D., Simeone, D. M., Binkley, C., Arumugam, T., Greenson, J. K., Giordano, T. J., Misek, D. E., Kuick, R., and Hanash, S. (2003). Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63, 2649-2657.
Lu, X., Pan, X., Wu, C. J., Zhao, D., Feng, S., Zang, Y., Lee, R., Khadka, S., Amin, S. B., Jin, E. J., et al. (2018). An In Vivo Screen Identifies PYGO2 as a Driver for Metastatic Prostate Cancer. Cancer Res 78, 3823-3833.
Marchitti, S. A., Brocker, C., Orlicky, D. J., and Vasiliou, V. (2010). Molecular characterization, expression analysis, and role of ALDH3B1 in the cellular protection against oxidative stress. Free Radic Biol Med 49, 1432-1443.
Meacham, C. E., Lawton, L. N., Soto-Feliciano, Y. M., Pritchard, J. R., Joughin, B. A., Ehrenberger, T., Fenouille, N., Zuber, J., Williams, R. T., Young, R. A., and Hemann, M. T. (2015). A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth. Genes Dev 29, 483-488.
Nagel, S., Kaufmann, M., Drexler, H. G., and MacLeod, R. A. (2003). The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 63, 5329-5334.
Pavlova, N. N., Pallasch, C., Elia, A. E., Braun, C. J., Westbrook, T. F., Hemann, M., and Elledge, S. J. (2013). A role for PVRL4-driven cell-cell interactions in tumorigenesis. Elife 2, e00358.
Pires, M. M., Hopkins, B. D., Saal, L. H., and Parsons, R. E. (2013). Alterations of EGFR, p53 and PTEN that mimic changes found in basal-like breast cancer promote transformation of human mammary epithelial cells. Cancer Biol Ther 14, 246-253.
Powell, E., Shao, J., Picon, H. M., Bristow, C., Ge, Z., Peoples, M., Robinson, F., Jeter-Jones, S. L., Schlosberg, C., Grzeskowiak, C. L., et al. (2018). A functional genomic screen in vivo identifies CEACAM5 as a clinically relevant driver of breast cancer metastasis. NPJ Breast Cancer 4, 9.
Pratilas, C. A., Taylor, B. S., Ye, Q., Viale, A., Sander, C., Solit, D. B., and Rosen, N. (2009). V600EBRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway. Proceedings of the National Academy of Sciences 106, 4519-4524.
Qu, Y., Han, B., Yu, Y., Yao, W., Bose, S., Karlan, B. Y., Giuliano, A. E., and Cui, X. (2015). Evaluation of MCF10A as a Reliable Model for Normal Human Mammary Epithelial Cells. PLoS One 10, e0131285.
Romagosa, C., Simonetti, S., Lopez-Vicente, L., Mazo, A., Lleonart, M., Castellvi, J., and y Cajal, S. R. (2011). p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30, 2087-2097.
Rotem, A., Janzer, A., Izar, B., Ji, Z., Doench, J. G., Garraway, L. A., and Struhl, K. (2015). Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation. Proc Natl Acad Sci U S A 112, 5708-5713.
Salomon, D. S., Perroteau, I., Kidwell, W. R., Tam, J., and Derynck, R. (1987). Loss of growth responsiveness to epidermal growth factor and enhanced production of alpha-transforming growth factors in ras-transformed mouse mammary epithelial cells. J Cell Physiol 130, 397-409.
Sawey, E. T., Chanrion, M., Cai, C., Wu, G., Zhang, J., Zender, L., Zhao, A., Busuttil, R. W., Yee, H., and Stein, L. (2011). Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer cell 19, 347-358.
Scott, K. L., Nogueira, C., Heffernan, T. P., van Doorn, R., Dhakal, S., Hanna, J. A., Min, C., Jaskelioff, M., Xiao, Y., Wu, C. J., et al. (2011). Proinvasion metastasis drivers in early-stage melanoma are oncogenes. Cancer Cell 20, 92-103.
Shrestha, Y., Schafer, E. J., Boehm, J. S., Thomas, S. R., He, F., Du, J., Wang, S., Barretina, J., Weir, B. A., Zhao, J. J., et al. (2012). PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene 31, 3397-3408.
Soule, H. D., Maloney, T. M., Wolman, S. R., Peterson, W. D., Jr., Brenz, R., McGrath, C. M., Russo, J., Pauley, R. J., Jones, R. F., and Brooks, S. C. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50, 6075-6086.
Termen, S., Tan, E. J., Heldin, C. H., and Moustakas, A. (2013). p53 regulates epithelial-mesenchymal transition induced by transforming growth factor beta. J Cell Physiol 228, 801-813.
Tsang, Y. H., Dogruluk, T., Tedeschi, P. M., Wardwell-Ozgo, J., Lu, H., Espitia, M., Nair, N., Minelli, R., Chong, Z., and Chen, F. (2016). Functional annotation of rare gene aberration drivers of pancreatic cancer. Nature communications 7.
Wehde, B. L., Radler, P. D., Shrestha, H., Johnson, S. J., Triplett, A. A., and Wagner, K. U. (2018). Janus Kinase 1 Plays a Critical Role in Mammary Cancer Progression. Cell Rep 25, 2192-2207 e2195.
Welsh, J. B., Sapinoso, L. M., Su, A. I., Kern, S. G., Wang-Rodriguez, J., Moskaluk, C. A., Frierson, H. F., Jr., and Hampton, G. M. (2001). Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 61, 5974-5978.
Xu, L., Cochran, D. M., Tong, R. T., Winkler, F., Kashiwagi, S., Jain, R. K., and Fukumura, D. (2006). Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Res 66, 3971-3977.
Zhao, X., Li, J., Liu, Z., and Powers, S. (2021). Combinatorial CRISPR/Cas9 Screening Reveals Epistatic Networks of Interacting Tumor Suppressor Genes and Therapeutic Targets in Human Breast Cancer. Cancer Res 81, 6090-6105.
Zoppoli, G., Regairaz, M., Leo, E., Reinhold, W. C., Varma, S., Ballestrero, A., Doroshow, J. H., and Pommier, Y. (2012). Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci U S A 109, 15030-15035.