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Abstract 7 

Relative soil moisture is of great significance to the growth and yield of sugarcane. 8 

In this study, we use the relative soil moisture from the China Meteorological 9 

Administration Land Data Assimilation System (CLDAS) to dynamically evaluate the 10 

water requirement of sugarcane and its growth adaptability at different growth stages. 11 

Based on the data of relative soil moisture, air temperature, precipitation and soil 12 

temperature, a sugarcane yield model is established to analyze the projected change 13 

trends of sugarcane yield in China from 2020 to 2100 under three future scenarios. 14 

Analysis results show that sugarcane requires more water during the elongation stage 15 

but less water at the ripening stage. The relative soil moisture from the CLDAS can be 16 

used to calculate the proportion of the daily suitable area to the total planting area. The 17 

combining of relative soil moisture data and water requirement indicators can better 18 

characterize the water requirement during sugarcane growth. Suitable relative soil 19 

moisture during the tillering and elongation stages is the most critical factor that directly 20 

affects the sugarcane yield. From 2020 to 2100, sugarcane yield will increase first and 21 

then decrease sharply. The increase in emissions can lead to an apparent downward 22 

trend in sugarcane yield. Based on the CLDAS data and water requirement indicators, 23 

a new method for monitoring the sugarcane growth throughout the growth period is 24 

proposed in this study. In the SSP370 and SSP460 scenarios, the sugarcane yield 25 

showed a downward trend, and there were mutations in 2064 and 2052, respectively. 26 

After the mutation, the yield decline trend was more obvious. Under the SSP585 27 

scenario model, the sugarcane production showed an upward trend from 2022 to 2033, 28 

and a downward trend after 2033, and a mutation occurred in 2051. After the mutation, 29 



the downward trend of sugarcane production was more obvious. 30 

Key words: water requirement of sugarcane, CLDAS, random forest, sugarcane yield, 31 

climate scenarios 32 

  33 

1. Introduction 34 

Sugarcane is an important raw material for sugar production, and the bagasse can 35 

also be used to produce energy such as alcohol (Christofoletti et al. 2013; Jaiswal et al. 36 

2017). China is the third-largest sugar-producing country after Brazil and India, where 37 

the sugar production reached 2.2319 million tons in 2019, which acts as an essential 38 

part of the agricultural trade (Zu et al. 2018). In China, sugarcane is mainly cultivated 39 

in Guangxi Zhuang Autonomous Region, Guangdong Province, Yunnan Province and 40 

Hainan Province. The gross product of the sugarcane sugar industry is 6.86 billion 41 

dollar, with the farmer income being 5.08 billion dollar, which is an essential source of 42 

income for farmers (Li and Yang 2015). Therefore, the forecasting of sugarcane yield 43 

and its change trend plays a vital role in the formulation of policies by relevant 44 

departments (Verma et al. 2021; Wang et al. 2017). 45 

The China Meteorological Administration (CMA) Land Data Assimilation System 46 

(CLDAS) can provide a land surface dataset (available online at 47 
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http://data.cma.cn/search/uSearch.html?keywords=CLDAS) with high spatio-temporal 48 

resolutions (Xie et al. 2017). Another datasets of the same type are the Global Land 49 

Data Assimilation System (GLDAS) dataset and North American Land Data 50 

Assimilation project (NLDAS), which are also widely used in agricultural land drought 51 

studies and crop yield studies: Fang(2021) studied the Soil Water Deficit Index (SWDI) 52 

and Soil Moisture Deficit Index (SMDI) in spring and summer out of Australia using 53 

Soil Moisture Active Passive (SMAP) soil moisture (SM), GLDAS long-term SM and 54 

soil attribute products; Mokhtari (2018) input GLDAS data set and leaf area index data 55 

as driving factors into the Soil Water Atmosphere Plant (SWAP) model to predict wheat 56 

yield, the experimental results show that the accuracy of SWAP model is improved after 57 

combining GLDAS dataset. Xia (2014) used the NLDAS dataset to calculate drought 58 

indices for each region of the U.S. and to reconstruct typical drought events in U.S. 59 

history. CLDAS, NLDAS and GLDAS are all data sets generated by terrestrial 60 

assimilation systems. The CLDAS dataset, NLDAS dataset, and GLDAS dataset cover 61 

China, North America, and the world, respectively. For the study of the Chinese region, 62 

the CLDAS dataset has higher accuracy than the GLDAS dataset (Han et al. 2020; Sun 63 

et al. 2020), and this paper will be based on the CLDAS data. 64 

Sugarcane-related researches mainly focus on remote sensing-based planting area 65 

extraction and growth monitoring and yield prediction, among which the research on 66 

sugarcane planting area extraction is relatively mature at present (Aguiar et al. 2011; 67 

Wang et al. 2019). There are also related studies on sugarcane yield prediction, but most 68 

of these studies are based on satellite remote sensing supplemented by crop models to 69 

experiment with sugarcane yield prediction. Rampazo and Núria (2021) combined the 70 

Moderate-Resolution Imaging Spectroradiometer (MODIS) images and the Simple 71 

Algorithm for Retrieving Evapotranspiration model to analyze sugarcane growth 72 

situation in southern Brazil. However, timely monitoring of soil water deficits cannot 73 

be realized by MODIS because of its long production cycle (8 or 16 days). Based on 74 

Landsat images, Almeida (2006) studied the spectral characteristics of sugarcane at 75 

different growth stages to estimate sugarcane yield. However, satellites like Landsat are 76 

susceptible to cloud cover (Dong and Menzel 2016; Foga et al. 2017). With the rapid 77 

http://data.cma.cn/search/uSearch.html?keywords=CLDAS


development of artificial intelligence technology in recent years, some scientists have 78 

successively introduced machine learning technology to sugarcane yield forecasting. 79 

(Fernandes et al. 2017) obtained the NDVI index through the MODIS sensor, and used 80 

the NDVI index combined with the ANN neural network to evaluate the sugarcane yield 81 

status. (Xu et al. 2020) used UAV-LIDAR data to simulate sugarcane yield in Chongzuo 82 

City, Guangxi Province based on the random forest algorithm. The results show that the 83 

random forest algorithm is more effective than the traditional linear regression, and the 84 

fitting accuracy is higher. Neither the analysis on sugarcane yield at LIDAR or stations 85 

nor the research on different growth stages of sugarcane by satellite remote sensing can 86 

meet the requirements of large scale, high spatio-temporal resolutions and strong 87 

interference resistance. 88 

The CLDAS can overcome the influence of cloud cover on the monitoring of 89 

surface meteorological elements (Chen and Yuan 2020), which has good adaptability 90 

to soil moisture monitoring (Long et al. 2019). The dataset has the advantage of short 91 

update period and high accuracy for short-term weather condition monitoring, and has 92 

achieved well research results in soil moisture monitoring (Suon et al. 2019; Wang and 93 

Yu 2021; Yu et al. 2019) and regionalization of crop growth adaptability (Rongsheng 94 

et al. 2020; Rongsheng et al. 2021).  95 

The purpose of this study is to set the adaptable indicators for soil water 96 

requirement at different sugarcane growth stages according to the relative soil moisture, 97 

realize daily growth dynamic monitoring based on high-resolution data from CLDAS, 98 

and use CMIP6-related data combined with random forest algorithm to determine 99 

sugarcane yield under different scenarios and analyze the trend of the future sugarcane 100 

yield.  101 

2. Data and methods 102 

2.1  Study area and data description 103 

2.1.1 Data description 104 

The data used in this study include the basic geographic information data, CLDAS 105 



version 2.0 data, information from statistical yearbooks and outputs of the Coupled 106 

Model Intercomparison Project Phase 6 (CMIP6) models under future scenarios. 107 

Specifically, the basic geographic information data include three administrative 108 

boundaries at provincial, municipal and county levels and 1-km digital elevation model 109 

data. 110 

CLDASV2.0 data coverage is 0-65°N, 60-160°E, with extremely high spatial and 111 

temporal resolution (spatial resolution 0.0625°, time resolution 1 hour, start in 2017). 112 

The product includes atmospheric driving field products (2m air temperature, 2m 113 

specific humidity, 10m wind speed, surface pressure, precipitation, shortwave 114 

radiation), surface temperature analysis products, soil moisture products (vertically 115 

divided into 5 layers: 0-5, 0 -10, 10-40, 40-100, 100-200cm), soil temperature analysis 116 

products (vertically divided into 5 layers: 5, 10, 40, 100, 200cm) and soil relative 117 

humidity analysis products (vertically divided into 3 layers: 0-10cm, 0-20cm, 0-50cm). 118 

The dataset is developed by combining satellite observation data and soil observation 119 

data, and is developed using techniques such as multi-grid variational assimilation, 120 

optimal interpolation, probability density function matching, physical inversion, and 121 

terrain correction. It has extremely high accuracy in China. Based on the integration of 122 

multiple land surface models, the CLDAS version 2.0 dataset used in this study include 123 

relative soil moisture, maximum temperature, average temperature, average wind speed, 124 

soil temperature and precipitation.  125 

Through provincial and municipal statistical yearbooks, the sugarcane yields in 126 

main producing regions of China from 2017 to 2019 are obtained at provincial, mu-127 

nicipal and county levels. Considering the regional applicability of the model (Zhu et 128 

al. 2020), the data selected for yield model construction and prediction include the soil 129 

moisture and maximum field capacity from the Canadian Earth System Model version 130 

5 (CanESM5) (Sospedra-Alfonso et al. 2021) of CMIP6 during 2020–2100, the soil 131 

temperature and air temperature from the low resolution of climate model 6A of 132 

Institut Pierre-Simon Laplace (IPSL-CM6A-LR) model (Boucher et al. 2020), and the 133 

precipitation flux and 10-m wind speed from the version 2.1 of Goddard Institute for 134 

Space Studies (GISS-E2.1-G) model (Kelley et al. 2020; Nazarenko et al. 2022).  135 



Each model contains multiple shared socio-economic pathways (SSPs) (Popp et 136 

al. 2017), from which we select three scenario models: SSP370, SSP460, and SSP585. 137 

The SSP370 scenario represents the medium to high end of the range of future forcing 138 

pathways, the radiative forcing is 7.0 W/m2 and the temperature increase is about 139 

2.8°C by 2100 (Zhao et al. 2020). The SSP460 scenario represents the medium range 140 

of future forcing pathways, the radiative forcing is 6.0 W/m2 and the temperature 141 

increase is about 1.8°C by 2100 (Pu et al. 2020). The SSP585 scenario represents the 142 

high range of future forcing pathways, the radiative forcing is 8.5 W/m2 and the 143 

temperature increase is about 3.2°C by 2100 (O Neill et al. 2017; O'Neill et al. 2016). 144 

All data are interpolated to 0.0625°, and data available online at: 145 

https://esgfnode.llnl.gov/projects/cmip6/. 146 

2.1.2 Study area 147 

The study area covers four provinces, namely Guangxi Zhuang Autonomous 148 

Region, Guangdong Province, Yunnan Province and Hainan Province, where the annual 149 

yield of sugarcane accounts for more than 90% of the total sugarcane yield in China. 150 

The elevation distribution map (Fig. 1) shows that the western part of the study area is 151 

relatively high, and the terrain gradually tends to flatten out from the west to the east. 152 

The western part is Yunnan Province, located to the southeast of the Hengduan 153 

Mountains, which is an essential part of the Yunnan-Guizhou Plateau. The central part 154 

is Guangxi Zhuang Autonomous Region, which is mostly hilly. The eastern part is 155 

Guangdong Province, located in the Pearl River Delta region, with numerous alluvial 156 

plains. While the southern part is Hainan Province, whose terrain is low around and 157 

high in the middle. It can be seen that the major sugarcane producing areas in China 158 

belong to the subtropical monsoon climate zone, where the rainy and high-temperature 159 

seasons coincide, with the annual sunshine hours being 1000–3000 hours and the annual 160 

precipitation being 900–2600 mm (Guga et al. 2021). 161 

https://esgfnode.llnl.gov/projects/cmip6/


 162 

FIG. 1. The elevation distribution of major sugarcane producing regions in China. 163 

2.2  Methods 164 

2.2.1 Sugarcane water requirement 165 

Water requirement during the crop growth period is one of the critical factors that 166 

determine the crop yield, and thus a reasonable evaluation of the soil moisture content 167 

throughout the growth period plays a vital role in estimating sugarcane yield. Based on 168 

previous studies on sugarcane water requirements (Guozhang 1993; Zhaomin 2019), 169 

this study summarizes the previous studies on water requirements of sugarcane to 170 

classify the sugarcane growth adaptability. The values of relative soil moisture 171 

corresponding to different sugarcane growth stages are shown in Table 1, which can be 172 

divided into three grades of most adaptable, adaptableand unadaptable. The sugarcane 173 

growth period is divided into four stages, namely germination-seedling, tillering, 174 



elongation and ripening stages. The soil depth suitable for sugarcane growth varies at 175 

different growth stages, which is relatively shallow in the germination-seedling stage 176 

and relatively deep in the middle and late stages due to the more extended root system. 177 

TABLE 1. Adaptable indicators for soil water requirement at different sugarcane 178 

growth stages. 179 

Indicators 

Relative soil moisture (%) 
Germination-
seedling stage 

(20-cm soil layer) 

Tillering stage 
(50-cm soil layer) 

Elongation stage 
(50-cm soil layer) 

Ripening stage 
(50-cm soil 

layer) 
Most 

adaptable 
65≤𝑅𝑆𝑀<75 70≤𝑅𝑆𝑀<80 75≤𝑅𝑆𝑀≤90 50≤𝑅𝑆𝑀≤60 

Adaptable 
75 ≤ 𝑅𝑆𝑀 < 85 

55≤𝑅𝑆𝑀<65 

80 ≤ 𝑅𝑆𝑀 < 90 

60≤𝑅𝑆𝑀<70  

90 ≤ 𝑅𝑆𝑀 < 95 

65≤𝑅𝑆𝑀<75 

60 ≤ 𝑅𝑆𝑀 < 70 

40≤𝑅𝑆𝑀<50 

Unadaptabl
e 

𝑅𝑆𝑀 ≥ 85 𝑅𝑆𝑀<55 

𝑅𝑆𝑀 ≥ 90 𝑅𝑆𝑀<60 

𝑅𝑆𝑀 ≥ 95 𝑅𝑆𝑀< 65 

𝑅𝑆𝑀 ≥ 70 𝑅𝑆𝑀<40 

The periods and days corresponding to different growth stages are shown in Table 180 

2. The entire growth period of sugarcane lasts 313 days, with 79 days for the 181 

germination-seedling stage, 21 days for the tillering stage, 182 days for the elongation 182 

stage (the longest) and 31 days for the ripening stage (Zhaomin 2019). Note that the 183 

growth periods and days are obtained based on the regional average, while the actural 184 

growth periods and days vary due to different producing regions, years and sugarcane 185 

varieties. 186 

 187 

TABLE 2. Growth periods and days of sugarcane at different growth stages. 188 

Growth stages Periods 
Days 
(d) 

Germination-seedling 
stage 

02.21-05.10 79 

Tillering stage 05.11-05.31 21 

 Elongation stage 06.01-11.30 182 

Ripening stage 12.01-12.31 31 

Entire growth period 02.21-12.31 313 

 189 

2.2.2 Sugarcane yield model construction 190 



In addition to relative soil moisture, the growth of sugarcane is also closely related 191 

to meteorological conditions. Air temperature and relative soil moisture are important 192 

factors affecting the growth and development of sugarcane, and relative soil moisture 193 

is also affected by wind speed, soil temperature and precipitation (Saeed et al. 2022). 194 

Random forest algorithm (Breiman 2001) is a popular machine learning algorithm that 195 

can be used to solve classification problems and regression problems. Compared with 196 

other machine learning methods, it does not need to consider parameter covariance, 197 

does not need to do variable selection, has a high tolerance in outliers and noise, and is 198 

not prone to overfitting, has the advantages of good stability and high prediction 199 

accuracy (Yuan and Hu 2021). Its main idea is to draw n samples from the original 200 

training set with release, and the sample size of each sample is the same as the size of 201 

the original training set; then each sample is modeled as a decision tree separately, and 202 

n modeling results are obtained, and finally the average of each decision tree prediction 203 

result is used as the final prediction result (Rajković et al. 2022).  204 

Based on the random forest algorithm, the relative soil moisture data, air 205 

temperature data, soil temperature data, precipitation data, and wind speed data in the 206 

CLDAS dataset were used to train the random forest model by using the sugarcane yield 207 

in each region from 2017 to 2019. The relative soil moisture data, air temperature data, 208 

soil temperature data, precipitation data, and wind speed data from CMIP6 were then 209 

input into the random forest model to forecast sugarcane yields for 2020-2100 under 210 

different scenarios. A total of 277 areas with sugarcane yields have been collected in 211 

this study, of which 10% of the yield data are used for verification, while the rest are 212 

adopted as training samples. The constructed sugarcane yield model is as follows (Eq. 213 

1). 214 

 ( ), , , , , , , Yield GST ,PRE ,RSM ,TMP ,TMP MAX , WIN ,
i j i j i j i j i j i j i j

f a−=  (1) 215 

where Yield𝑖,𝑗  represents the sugarcane yield on the grid ( 𝑖, 𝑗 ), GST𝑖,𝑗  the soil 216 

temperature, PRE𝑖,𝑗  the precipitation, RSM𝑖,𝑗   the relative soil moisture, TMP𝑖,𝑗  the 217 

daily average temperature, TMP_MAX𝑖,𝑗   the maximum daily average temperature, 218 WIN𝑖,𝑗 the 10-m wind speed, and 𝑎 the empirical coefficient. i and j refer to the row 219 



and column numbers of raster data, respectively. 220 

According to the above random forest model construction process, Fig 2 shows 221 

the flow chart of random forest model construction, code available online at: 222 

https://github.com/FunnyBiscuit613/random-forest.git. 223 

 224 

FIG. 2. Flow chart of sugarcane yield prediction based on random forest 225 

algorithm.  226 

2.2.3 Data quality verification 227 

In this study, three indicators of absolute error (Gao 2021), relative error 228 

(Mohammadi et al. 2015) and root-mean-square error (Wessel et al. 2018) are adopted 229 

to perform quality verification analysis. The absolute error measures the difference 230 

between the fitted and actual values, whose expression is given below (Eq. 2). 231 

 
( )

, 2

, ,
1, 1MAE

m n

i j i j
i j

x y

m n

= =
 −

=


 (2) 232 

where MAE indicates the absolute error; 𝑥𝑖,𝑗 the fitted sugarcane yield from pixel to 233 

pixel under different scenarios; 𝑦𝑖,𝑗 the pixel-by-pixel value of the actual yield data; i 234 

and j the row and column of the current pixel; m and n denote the maximum numbers 235 

of rows and columns.  236 

The mean relative errors (MRE) measures the confidence level of the fitted value, 237 

which can be expressed as follows (Eq. 3). 238 

 

,
, ,

1, 1 ,MRE 100%

m n
i j i j

i j i j

x y

y

m n
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−

= 



 (3) 239 

The root-mean-square error (RMSE) is adopted to measure the deviation between 240 

fitted value and actual value, and it can be expressed as follows (Eq. 4). 241 

https://github.com/FunnyBiscuit613/random-forest.git
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 (4) 242 

2.2.4 Mann-Kendall test 243 

The Mann-Kendall test has been widely applied in the analysis of abrupt climate 244 

changes in fields including meteorology, climatology, hydrology (Gocic and Trajkovic 245 

2013; Wang 2020). In this study, the Mann-Kendall test is applied to analyze the abrupt 246 

changes in the long-term time series of sugarcane yield based on the simulations from 247 

2020 to 2100. The most distinguishing feature of this method during a non-parametric 248 

test is that the test samples do not have to follow a specific distribution, and this method 249 

is independent of a few outliers. The UFK curve greater than 0 indicates an upward 250 

trend for the time series, while the curve less than 0 indicates a downward trend. When 251 

the curve exceeds the threshold (α=0.05), it indicates that the upward or downward 252 

trend is significant, and the part that exceeds α is the time range for abrupt change. 253 

UFK is a standard normal distribution, which is a series of statistics calculated in the 254 

order of time series x, UBK=-UFK. The intersection point between UFK and UBK 255 

curves is the abrupt change time (Wei 2007). In addition, the separate MK trend analysis 256 

does not take into account the seasonal cycle changes, and cannot take into account the 257 

impact of the previous time period on the current time period. Therefore, the Correlated 258 

Seasonal MK Test is carried out on the basis of the MK trend analysis to compare 259 

whether the results of the MK trend analysis and the Correlated Seasonal MK Test are 260 

consistent (Yue and Wang 2004; Yue and Wang 2002). 261 

2.2.5 Technical process 262 

In this study, the relative soil moisture data in the CLDAS dataset were used to 263 

delineate the different adaptability of sugarcane in conjunction with the optimum 264 

relative soil moisture indicators for sugarcane at different fertility stages in Table 1. 265 

Then the temperature data, precipitation data, wind speed data, soil temperature data in 266 

the CLDAS dataset, and actual sugarcane yield were used as the x and y variables in 267 

the model training. Finally temperature data, wind speed data, relative soil moisture 268 

data, and soil temperature data from CMIP6 were used as x variables in the test set to 269 



predict future sugarcane yields under different scenarios. 270 

 271 

FIG. 3. Flow chart of sugarcane yield prediction based on random forest algorithm. 272 

3. Results 273 

3.1 Spatial distributions of soil moisture based on the CLDAS data 274 

Requirements of soil water vary at different sugarcane growth stages, i.e., more 275 

water at the elongation stage and less water at the ripening stage. Based on the CLDAS 276 

data, the daily relative soil moisture at different soil depths that vary at different growth 277 

stages are obtained, of which the spatial distributions are shown in Fig. 4. Figure 4a 278 

shows the spatial distribution of relative soil moisture on April 1, 2019, when the 279 

sugarcane is at the germination-seedling stage. The result indicates that the relative soil 280 

moisture is relatively low in the Hengduan Mountains in northwestern Yunnan Province, 281 

which is not conducive to sugarcane growth. It is between 60% and 80% in the eastern 282 

part of Yunnan Province bordering Guangxi, which is suitable for sugarcane growth. In 283 

east Guangxi and Guangdong, the relative soil moisture is generally high (above 80%), 284 



which is prone to cause root rot of sugarcane seedlings, thus leading to yield reduction.  285 

Generally, the relative soil moisture gradually increases from the west to the east. 286 

The spatial distribution on May 20, 2019 during the sugarcane tillering stage (Fig. 4b) 287 

shows that the relative soil moisture is relatively low in Yunnan, unfavorable to 288 

sugarcane growth. Guangxi and southern Guangdong have relative soil moisture of 289 60%– 90%, which is adaptable for sugarcane growth. Guangdong Province has low 290 

relative soil moisture that is not conducive to sugarcane growth. In general, the relative 291 

soil moisture is low in the west and high in the east at the tillering stage. The spatial 292 

distribution of relative soil moisture on July 1, 2019 during the elongation stage (Fig. 293 

4c) demonstrates that the soil moisture is relatively high in the southeast of Guangxi 294 

and the southern and northern regions of Guangdong. In northwestern Yunnan, the 295 

relative soil moisture is relatively low. While the junction of Yunnan and Guangxi as 296 

well as the northeastern part of Guangxi have relative soil moisture of 60%– 90%, 297 

which is adaptable for sugarcane growth. Figure 4d illustrates the spatial distribution of 298 

relative soil moisture on December 1, 2019 during the ripening stage.  299 

The result shows that the relative soil moisture in Hainan Province is relatively 300 

high, which is not conducive to sugar accumulation; while in eastern Yunnan, central 301 

Guangxi and southern Guangdong, the relative soil moisture is between 40%  and 302 60%, adaptable for sugar accumulation. 303 



 304 

FIG. 4. Spatial distributions of relative soil moisture in the main sugarcane producing 305 

regions on (a) April 1, 2019 during the seedling-germination stage, (b) May 20, 2019 306 

during the tillering stage, (c) July 1, 2019 during the elongation stage and (d) 307 

December 1, 2019 during the ripening stage.  308 

3.2 Adaptability for sugarcane growth based on the CLDAS data 309 

Based on the relative soil moisture from the CLDAS version 2.0 data and by 310 

referrring to the adaptable indicators of soil water requirement at different sugarcane 311 

growth stages (Table 1), the sugarcane growth adaptabilities on the above four 312 

representative dates are obtained, of which the spatial distributions are shown in Fig. 5.  313 

Figure 5a shows the distribution of sugarcane growth adaptability on April 1, 2019. 314 

Since the sugarcane water requirement is not high at the germination-seedling stage, 315 

eastern Guangxi and Guangdong with high soil moisture are unadaptable for sugarcane 316 

growth, and even more, excessive soil moisture can inhibit sugarcane growth. Figure 317 

5b presents the spatial distribution of sugarcane growth adaptability on May 20, 2019. 318 

Since the sugarcane water requirement gradually increases at the tillering stage, the 319 

regions with low relative soil moisture are no longer adaptable for sugarcane growth, 320 



and the unsuitable areas are mainly located in the Hengduan Mountains of western 321 

Yunnan and northern Guangdong. Figure 5c is the same as Fig. 5b, but for July 1, 2019 322 

at the elongation stage, which is a critical stage for sugarcane growth, and the water 323 

requirement reaches the highest at this stage. Excessively low relative soil moisture can 324 

inhibit sugarcane growth. Therefore, the unsuitable regions are mainly concentrated in 325 

west Yunnan and southeast Guangxi. Figure 5d shows the sugarcane growth 326 

adaptability on December 1, 2019 at the ripening stage. Sugarcane water requirement 327 

is not high at this stage, and excessively high relative soil moisture can cause sugarcane 328 

re-growth or root rot, leading to a decrease in sugarcane yield. Therefore, northeastern 329 

Yunnan, central Guangxi, a few parts of southern and northern Guangdong, and Hainan 330 

are not adaptable for sugarcane growth. 331 

 332 

FIG. 5. Spatial distributions of adaptability in the main sugarcane producing regions 333 

on (a) April 1, 2019 during the seedling-germination stage, (b) May 20, 2019 during 334 

the tillering stage, (c) July 1, 2019 during the elongation stage and (d) December 1, 335 

2019 during the ripening stage. (Based on the adaptability indicators in TABLE 1 and 336 

the relative soil moisture in FIG 4. ) 337 



3.3 Analysis of relative soil moisture in typical regions 338 

In the main sugarcane producing areas of China, four typical regions of Fusui, 339 

Lincang, Xingbin and Danzhou are selected to analyze the changes of relative soil 340 

moisture over time and the corresponding sugarcane growth adaptability (Fig. 6).  341 

As shown in Fig. 6a, the relative soil moisture can meet sugarcane growth needs 342 

at the germination-seedling stage in Fusui, and it is generally adaptable for sugarcane 343 

growth at the tillering and elongation stages. While at the ripening stage, the relative 344 

soil moisture is relatively high in Fusui, which is not conducive to sugar accumulation. 345 

Overall, the relative soil moisture in Fusui County basically meets sugarcane water 346 

requirement during the entire growth period. The sugarcane yield per unit area in Fusui 347 

was relatively high in 2019, reaching 87.1 t·ha−1.  348 

In Lincang (Fig. 6b), the relative soil moisture generally meets the optimum 349 

demand of sugarcane growth at the seedling-germination stage. It is relatively low at 350 

the early and late elongation stage, while high at the ripening stage, which is not 351 

conducive to sugar accumulation. The sugarcane yield per unit area in Lincang was 63.2 352 

t·ha−1 in 2019, basically the same as that in 2018 (63.0 t·ha−1).  353 

In Danzhou (Fig. 6c), the relative soil moisture is abnormally high at the 354 

germination-seedling stage. It does not meet the optimum sugarcane growth conditions 355 

in the tillering stage except a few days. At the elongation stage, the relative soil moisture 356 

fluctuates at the upper limit of the optimum relative soil moisture, mostly higher than 357 

the optimum. Abnormally high relative soil moisture at the ripening stage can easily 358 

lead to sugarcane root rotting and death, thereby reducing the yield of sugarcane. In 359 

2019, the relative soil moisture in Danzhou did not meet the water requirement of 360 

sugarcane growth, resulting in the sugarcane yield per unit area being only 55.8 t·ha−1.  361 

For Xingbin (Fig. 6d), the relative soil moisture is abnormally high at the 362 

germination-seedling stage, which can easily cause seedling death and leading to yield 363 

reduction. At the early elongation stage, the relative soil moisture is greater than the 364 

optimum soil moisture; while in the middle and late stages, however, the relative soil 365 

moisture is adaptable for sugarcane growth. Losses caused by unexpected deaths at the 366 

sugarcane seedling stage can be saved by measures such as timely replanting. Therefore, 367 



although the relative soil moisture at the early stage failed to meet the optimum water 368 

requirement of sugarcane in Xingbin in 2019, the sugarcane yield per unit area still 369 

reached as high as 97.2 t·ha−1. 370 

 371 

FIG. 6. Comparison of relative soil moisture and water requirement during the 372 

sugarcane growth period in 2019 in four typical regions of (a) Fusui, (b) Lincang, (c) 373 

Danzhou and (d) Xingbin. 374 

3.4 Validation of sugarcane yield model and importance analysis of factors 375 

As mentioned in section 2.2.2, 10%  of the sample data are left to verify the 376 

performance of sugarcane yield model. Based on the three evaluation indicators, the 377 

quality evaluation results of the fitting yields are shown in Table 3. It can be seen that 378 



the RMSE  and MRE  of the fitted sugarcane yields under the SSP370 scenario are 379 

smaller than those under the other two scenarios, while the MAE of the yield is smaller 380 

under the SSP585 scenario than those under the other two scenarios. The overall 381 

performance reaches the best under the SSP370 scenario. 382 

 383 

TABLE 3. Verifications of sugarcane yields simulated under different scenarios. 384 

Year 
SSP370 SSP460 SSP585 

MAE MRE RMSE MAE MRE RMSE MAE MRE RMSE 

2018 7.49 0.24 19.3 11.3 0.3 26.45 8.4 0.26 20.64 

2019 2.09 0.024 15.09 10.5 0.12 24.46 0.7 0.007 14.63 

 385 

The comprehensive error of the SSP370 scenario mode is the smallest, so taking 386 

the scenario as an example, the spatial distributions of relative errors for sugarcane 387 

yields in main sugarcane producing regions in China are shown in Fig. 7. Results show 388 

that the relative errors of sugarcane yields are greater than 100% in Kunming and 389 

Qujing of Yunnan, Liunan of Guangxi, Shantou of Guangdong and Lingshui of Hainan. 390 

The absolute values of relative errors are larger than 50% in southeastern Yunnan, 391 

northwestern and eastern Guangxi, central Guangdong and southeastern Hainan. In 392 

major sugarcane producing regions such as Xingbin, Fusui, Jiangzhou and Ningming, 393 

the absolute values of relative errors are smaller than 25%. In general, relative errors 394 

are relatively larger in the Yunnan-Guizhou Plateau, while relatively smaller in Guangxi 395 

and the plains of Guangdong. 396 



 397 

FIG. 7. Relative errors of sugarcane yields under the SSP370 scenario. The relative 398 

errors between simulated and actual sugarcane yields of CMIP6 for different years 399 

was calculated according to Eq 3.  400 

Table 4 is a comparison table of the correlation coefficient and slope between 401 

different meteorological elements and sugarcane yield. From the analysis in Table 4, it 402 

can be seen that the relative soil moisture maintains a high correlation with sugarcane 403 

yield both in the correlation coefficient and the slope. Precipitation has the largest 404 

negative contribution to sugarcane yield among all variables 405 

 406 

TABLE 4. Correlation coefficient and slope comparison table between different 407 

meteorological elements and sugarcane yield.  408 

Variable RSM TMP TMP-MAX WIN GST PRE 

Reg 0.165 -0.101 -0.044 0.067 -0.123 -0.143 

R 0.165 -0.106 -0.048 0.068 -0.129 -0.156 

 409 



3.5 Projected sugarcane yields under future scenarios 410 

Figure 8 shows the results from the Mann-Kendall test for sugarcane yields under 411 

different scenarios. Under the SSP370 scenario (Fig. 8a), the UFK curve is firstly in the 412 

positive-value zone, indicating an upward trend of sugarcane yield. Then, the UFK 413 

curve is in the negative-value zone, suggesting that the sugarcane yield has a downward 414 

trend. From 2020 to 2100, the sugarcane yield shows a trend of first increasing and then 415 

decreasing, where an abrupt change appears in 2064. Figure 8b shows that the UFK 416 

curve is all in the negative-value zone under the SSP460 scenario, indicating that 417 

sugarcane yield has been in a decreasing trend, where an abrupt change appears in 2052. 418 

Under the SSP585 scenario (Fig. 8c), the change trend of sugarcane yield is generally 419 

similar to that under the SSP370 scenario, while the sudden change appears earlier in 420 

2051, showing that the emission increase under the climate scenario makes the abrupt 421 

change appear earlier. 422 

 423 

FIG. 8. Results of the Mann-Kendall test under different scenarios of (a) SSP370, (b) 424 

SSP460 and (c) SSP585. 425 

 426 



The results of the Correlated Seasonal MK Test are shown in Table 5. According 427 

to the results of the Correlated Seasonal MK Test, the sugarcane yield showed a 428 

downward trend under the three scenarios of SSP370, SSP460 and SSP585, and they 429 

all passed the 0.05 significance test. The results of both trend tests indicated that the 430 

sugarcane yield would show a downward trend in the future. (P: p-value of the 431 

significance test; Z: normalized test statistics; Tau: Kendall Tau; S: Mann-Kendal's 432 

score; var_s: Variance S; slope: Theil-Sen estimator/slope; intercept: intercept of 433 

Kendall-Theil Robust Line, where full period cycle consider as unit time step) 434 

 435 

TABLE 5 Correlated Seasonal MK Test results in different scenarios. 436 

 P Z Tau S var_s slope intercept trend 

SSP370 0.01  -2.60  -0.72  -181.00  4847.67  -2.85  91.80  Decreasing 

SSP460 0.02  -2.37  -0.55  -138.00  3388.67  -1.14  87.03  Decreasing 

SSP585 0.01  -2.72  -0.79  -199.00  5361.00  -2.96  85.36  Decreasing 

 437 

In this study, sugarcane yields in 2020, 2060 and 2100 under the low- and medium-438 

emission scenario (SSP370) are selected to analyze their spatial variations in these three 439 

years. The sugarcane yield distributions in main producing regions under the SSP370 440 

scenario are shown in Fig. 9. In 2020 (Fig. 9a), the regions with annual yield of 441 

sugarcane exceeding four million tons are concentrated in Lincang of Yunnan, Leizhou 442 

and Suixi of Guangdong, as well as Fusui and Xingbin of Guangxi. Compared with 443 

2020, the sugarcane yield in 2060 (Fig. 9b) decreases by 0 to 578,000 tons. Among 444 

them, the sugarcane yield in Xingbin decreases the most. Figure 9c shows that the 445 

sugarcane yield in 2100 further decreases compared with that in 2060. Compared with 446 

2020, the sugarcane yield in 2100 decreases by 0–1.39 million tons, where the yield 447 

decreases by 1.387 million tons in Xingbin and 1.3 million tons in Fusui. Overall, the 448 

sugarcane yield in 2100 drops by 18% approximately compared with that in 2020 in the 449 

main sugarcane producing regions of China. 450 



 451 

FIG. 9. Distributions of sugarcane yields under SSP370 scenario in (a) 2020, (b) 2060 452 

and (c) 2100. 453 

4. Discussion 454 

Based on the relative soil moisture data from the CLDAS, this study determines 455 

the water requirement indicators for sugarcane growth, realizes dynamic monitoring of 456 

the daily growth and conducts sugarcane yield forecasts and trend analysis under future 457 

scenarios by CMIP6 models.  458 

In this study, the sugarcane adaptable indicators is mainly based on relative soil 459 

moisture. As indicated earlier, the relative soil moisture is essential for sugarcane 460 

growth. At the early stage of sugarcane growth, the water requirement is relatively 461 

low—excessively more water can cause the root rot and death of seedlings, while 462 

excessively less water will inhibit the sugarcane growth. In the middle stage of growth, 463 



the soil moisture affects the growth and thickening of sugarcane as the water 464 

requirement is high—excessively more water can cause the sugarcane leaves to turn 465 

yellow, worse growth, rotten roots and even death, while excessively little water will 466 

slow down the sugarcane elongation rate (Guozhang 1993), and even more, the stems 467 

and leaves may dry out to death. In the later stage of sugarcane growth, the water 468 

requirement is relatively low, and soil moisture affects the sugar accumulation. 469 

Excessively less water can slow down the sugar accumulation rate, while excessively 470 

more water can lead to sugarcane re-growth.  471 

However, there are many other factors affecting the sugarcane growth, such as 472 

high temperature, low temperature and other extreme weather disasters (Verma et al. 473 

2019). If these refined data can be obtained, a composite indicators influencing the 474 

sugarcane growth can be proposed, and thus the monitoring and analysis of sugarcane 475 

growth will be more accurate. In addition, the training data acquired at two levels 476 

(municipal and county levels) in constructing the sugarcane yield model are not fine 477 

enough, where the data from Yunnan is only at the municipal level, and the data for 478 

Guangxi, Guangdong and Hainan are at the county level. In the following work, we 479 

should collect more refined yield data, which plays a vital role in yield retrieval by 480 

remote sensing data. For example, we can collect yield data on specific sugarcane-481 

producing regions through field surveys. 482 

Combined with weather forecast services, the sugarcane water requirement 483 

evaluation based on the CLDAS data conducted in this study can provide daily water 484 

requirement of sugarcane planting fields in the next few days for farmers and sugarcane 485 

planting companies, aiming to timely supplement soil water for sugarcane growth.  486 

Transition from Regional Competition (SSP3) to Traditional Fossil Fuel 487 

Combustion (SSP5), we will find that with the increase of shared socio-economic path 488 

( SSPs ) scenarios, sugarcane yield under SSP3 socio-economic scenario decreased, and 489 

sugarcane yield under SSP5 socio-economic scenario increased between 2022 and 2033. 490 

However, after 2050, the decline trend of sugarcane yield under the SSP5 socio-491 

economic scenario model was larger than that under the SSP3 socio-economic scenario 492 

model. Therefor, a country’s strategy may have major impact on future sugarcane 493 



production. The main reasons are that under three future scenarios, air temperature and 494 

soil temperature continue to rise, and thus the relative soil moisture continues to 495 

decrease. Such meteorological conditions are not adaptable for sugarcane growth. Some 496 

effective measures that can be taken to improve the declining trend of sugarcane yield 497 

include cultivating new sugarcane varieties with higher yields, improving the ability to 498 

cope with climate change and prevent meteorological disasters, promoting the 499 

transformation of sugarcane planting from farmer-based to farm-based, and upgrading 500 

the modernization level of farming and field management techniques. 501 

5. Conclusions 502 

In this study, we use the CLDAS data to dynamically evaluate the sugarcane water 503 

requirement at different growth stages and forecast the sugarcane yields from 2020 to 504 

2100 under three future scenarios. The results suggest that the relative soil moisture 505 

from the CLDAS dataset can effectively characterize the growth status of sugarcane 506 

and directly affect the final yield.  507 

1) Sugarcane requires more water during the tillering and elongation stages, 508 

while less water at seedling-germination and ripening stages.  509 

2) Relative soil moisture has a more significant impact on sugarcane yield during 510 

the tillering and elongation stages than during the seedling and ripening stages.  511 

3) Under three future scenarios, sugarcane yield shows an overall decreasing 512 

trend during 2020–2100. The sugarcane yield decreases more obviously under 513 

the higher emission scenario of SSP585 compared with SSP370. 514 

The evaluation of sugarcane growth adaptability in this study is mainly based on 515 

relative soil moisture. In the following work, composite meteorological and 516 

environmental indicators will be applied to investigate their adaptabilities for sugarcane 517 

growth, aiming to evaluate the sugarcane growth at different stages in a more 518 

comprehensive and fine way. 519 
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