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Abstract

Viruses have evolved mechanisms to usurp the host's metabolic resources for their own biosynthesis and
replication, but host's glucose metabolism change after rotavirus (RV) stress remains unclear. The
metabolic profile and differential gluconeogenesis analysis was performed by gas chromatography-mass
spectroscopy on RV-infected cells.47 potential differential metabolites were identified to verify
glycolytic/gluconeogenesis pathway after RV infection. Glucose consumption and key enzymes of
gluconeogenesis (glucose 6-phosphatase (G-6-pase) and phosphoenolpyruvate carboxylase (PEPCK))
were further examined by glucose oxidase-peroxidase method and enzyme linked immunosorbent assay.
We found the impairment of glucose consumption, G-6-pase and PEPCK activities which promote
gluconeogenesis, were tested in RV infected Caco-2 cells. By Western blot analysis, further studies
detected the downregulation expression level of SIK2, which was affected by its upstream proteins of
downregulated PDK1, AKT and upregulation p-JNK, and as a consequence influenced the function of
gluconeogenesis. In short, RV infection altered the glucose consumption in infectious Caco-2 cells and
activated the host cellular gluconeogenesis, which was hijacked through p-JNK-PDK1-AKT-SIK2 signaling
pathway for its proliferation and replication with accelerating non-sugar substances conversion into
glucose.

1. Introduction

Viruses as obligate has evolved mechanisms that target the host cellular energy and macromolecule
synthesis as part of their replication cycle, creating specific microenvironments required for various
stages of their lives cycles(1). However, the detailed mechanism by which viruses alter energy
metabolism, especially glucose metabolism, remains completely unclear.

Recently research has focussed on examining how virus infection alters various glucose metabolism
profiles of host cells, including glucose transport, insulin signaling pathways and glycolysis. The glucose
transporters adjustment effects of virus infection have been investigated for several viruses, including
human T-cell leukemia virus(2), white spot syndrome virus(3), Kaposi's sarcoma-associated
herpesvirus(4), human cytomegalovirus(5) and hepatitis C virus(6), which affected the glucose supply.
Various viruses including poliocirus(7), influenza A(8), human T-cell leukemia virus(9), HSVT-1(10), HIV-
1(11), Mayaro virus(12) and HCMV(13), have been shown to activate Warburg effect under aerobic
conditions, which enhanced glucose uptake and glycolytic activities. Furthermore, hepatitis C virus
interfered with key enzymes in the gluconeogenesis and pentose phosphate pathways, and even
disrupted the function of islet cell(14).

Rotaviruses (RVs), enteropathogenic viruses that infect over 114 million children worldwide(15), invades
enterocyte to stimulate enteric nervous system and chlorinated secretions depending on calcium
ions(16,17). Recent research showed RV infection downregulated sodium-glucose transport 1 expression
and decreased the activity of brush border disaccharidases(18). Normally, RV relies on host cellular
metabolism for the energy and macromolecule synthesis required for their replication. And positive
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clinical evidence indicates that type 1 diabetes in children partly resulted from RV infection(19).
Therefore, deepening the understanding of the glucose metabolic alterations required for the RV
replication becomes an urgent problem to be solved.

In this study, abnormal glucose consumption was found in RV-infected Caco-2 cells, which indicated that
RV infection indeed changed the glucose metabolism. On basis of this, metabolomics was performed to
screen out the differential metabolites and the gluconeogenesis pathway was revealed by bioinformation.
The elevated expression of its associated G-6-pase and PEPCK were also verified after RV infection. In
addition, p-JNK-PDK1-AKT-SIK2 signaling pathway was activated leading to the RV-induced upregulation
of host cellular gluconeogenesis. These results indicate that RV infection facilitates the host cellular
gluconeogenesis approach for its biosynthesis.

2. Material And Methods
2.1. Reagents

Caco-2 cell line was from cell bank of Wuhan University (Wuhan, China). The MA104 cell line was from
the cell bank of Sun Yat-Sen University (Guangzhou, China). The RV Wa strain (G1P[8]) was was from the
immunology institute of the Third Military Medical University (Chongging, China). The glucose assay kit
was obtained from Shanghai Rong Sheng Biotechnology Co., LTD (Shanghai, China). The glucose 6-
phosphatase and phosphoenolpyruvate carboxylase assay kits were from Solarbio (Beijing, China). Anti-
JNK, anti-AKT, anti-SIK2 and anti-PDK1 were obtained from Proteintech (Wuhan, China). Anti-beta-actin,
anti-rabbit IgG were obtained from Cell Signaling Technology (Boston, USA).

2.2. Cell culture

Caco-2 and MA104 cells were cultured with high-sugar DMEM medium containing 1% anti-penicillin,
anti-streptomycin and 10% FBS, which were placed in the cell incubator at constant 37°C and 5% CO, for
conventional culture. When the cells grew to about 85%~90%, original medium was disposed. And an
appropriate amount of trypsin containing 0.25% EDTA was added and incubated for 2 min~7min. Then
fresh culture medium was added to stop digestion. Next, the mixed suspension of cells was centrifuged
at 900 rpm/min for 3 min, and the supernatant was removed. Then 4ml DMEM culture medium was
added for cell suspension, which was divided into new culture bottles according to a certain proportion.
Finally, 7 ml fresh culture medium was added to continue the routine culture.

2.3. Cultivation and amplification of RV on MA104 cells
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Virus were removed from -80°C and dissolve at 4°C. 10 pg/ml trypsin without EDTA was added and
incubated at 37°C for 30min. MA104 cells, which had grown to a monolayer, were added with incubated
RV venom. MA104 cells with RV were routinely cultured at 37°C and 5% CO,. After the cytopathic effect
of MA104 cells were observed under an inverted microscope, the cell culture bottle was taken out and put
at-20°C for 12 h. Next, the cell was placed at 4°C for natural melting, and the above operations were
repeated for 3 times. The cell freeze-thaw solution was collected in the centrifuge tube, and centrifuged at
12000 g for 30 min. Finally, the supernatant RV venom was collected and stored at -80°C. For the titer
determination of RV, the incubated RV venom was first diluted into a series of concentrations, including
107,102,103, 104,10, and 10, in DMEM culture solution without fetal bovine serum, and then applied
to MA104 cells at 100 pl/well. The pathological changes of MA104 cells after RV infection were observed
at different times. When a CPE was no longer present in the 96-well plates of RV venom with the lowest
dilution, the number of wells with a CPE was recorded for each dilution. The median tissue culture
infective dose (TCID50) of the virus was calculated using the Reed and Muench method.

2.4. Preparation and grouping of Caco-2 cells infected
with RV

The RV venom at a virus titer of 10° TCID50/ml (the virus reacted with 10 ug/ml trypsin for 30min) was
added to the 100mm x 100mm culture dish where Caco-2 cells grew to a monolayer. At the same time,
the uninfected Caco-2 cells was set and the equal volume DMEM culture medium was added. After
incubated at 37°C with 5% CO, for 2 h, the cells’ RV venom was replaced with DMEM culture solution.
After 48 hours of continuous culture, the RV-infected Caco-2 cells model was successfully
constructed.

2.5. GC-MS analysis of cellular metabolites

Preparation of samples: the RV-infected and uninfected Caco-2 cells were scraped off by adding 4°C pre-
cooled methanol and transferred into the centrifuge tube. The mixture was centrifuged at 4°C and 1.4 x
10% g for 15 min and take 500pl supernatant with 10 pl internal standard (50 pg/ml L-norvaline). After
dried under nitrogen, 40ul methylamine hydrochloride pyridine was added and the supernatant was
incubated at 37°C for 90 min. Finally, added with 40 LBSTFA (including 1% trimethyl chlorosilane), it
vortexed for 30 seconds and derived at 70°C for 60 minutes. Samples derived from trimethylsilane were
obtained for GC-MS analysis.

GC-MS conditions: Agilent gas chromatogram mass spectrometer (7890A/5975C) and MACHEREY-
NAGEL OPTIMA®5 MSAccent fused silicon capillary column (30 m x 0.25 mm x 0.25 ym) were used to
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conduct metabolomics tests on derived samples. The obtained data files were imported into SIMCA
software (version 14.1) of UmetricsAB for multidimensional statistical analysis such as principal
component analysis (PCA), partial least-square-discriminant analysis (PLS-DA) and orthogonal filtering
partial least-square-discriminant analysis (OPLS-DA). The model quality is described by the R?X or R%Y
and Q? values. R?X (PCA) or R?Y (PLS-DA and OPLS-DA) is defined as the proportion of variance in the
data explained by the models and indicates the goodness of fit. Q2 is defined as the proportion of
variance in the data predictable by the model and indicates the predictability of current model, calculated
by cross-validation procedure. Generally, their value is greater than 0.5, which means that the model
quality is better.

Metabolite structure identification method: The AMDIS software was used for GC-MS deconvolution
analysis of original data automatically, which was matched self-built standard database (including
retention time and mass spectrum), Golm metabolome database and Agilent Fiehn GC/MS
metabonomics RTL database.

2.6. Analysis of gluconeogenesismetabolic enzymes

The supernatant of cell culture with RV infection was disposed, and then cells were scraped and collected
in the centrifuge tube. The cells were centrifuged at 10000 g for 10min, and the precipitation was
preserved. Tml of working solution was added into the precipitate, which crushed by ultrasonic. According
to the enzyme assay kit instructions, G-6-Pase and PEPCK activity were detected.

2.7. Analysis of glucose consumption

The glucose assay kit (glucose oxidase-peroxidase method) was used to detect the glucose content in the
supernatant of cell culture in Caco-2 cells infected by RV, in order to determine the glucose consumption
of Caco-2 cells after RV treatment.

2.8. Western blot

After Caco-2 cells were grown in a 6 cm petri dish and the experimental interventions were conducted,
Radio immunoprecipitation assay lysis buffer (containing 1% PMSF) was added for cleavage. The
protein samples were then added to the 5x SDS loading buffer and denatured at 95°C for 5min. The
denatured protein samples were separated by SDS-PAGE. It was transferred to PVDF membrane through
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wet transfer and incubated with corresponding antibodies. The dilution multiples of antibodies were as
follows: JNK (1:500), PDK1 (1:500), AKT (1:2000), SIK2 (1:1000), and beta-actin (1:1000). Finally, protein
expression levels were analyzed by Image J software, with beta-actin as internal reference.

2.9. Statistical approach

SPSS 13.0 statistical software was used for data analysis. T test was used to compare the two groups of
control experiments, and One-Way ANOVA method was used to compare the mean of multiple samples.
The experimental results were expressed as mean + standard deviation (x + s), and P < 0.05 was
statistically significant.

3. Results

3.1. Impairment of glucose consumption in RV-infected
Caco-2 cells

The level of glucose consumption is used to indicate the ability of cells to consume extracellular glucose.
The results showed that the glucose consumption of RV-infected Caco-2 cells in the medium decreased
significantly (P<0.05, v.s. uninfected Caco-2 cells, Fig.1A).

3.2. RV infection altered the gluconeogenesis metabolism
in Caco-2 cells

In order to determine changes in specific glucose metabolism pathways in Caco-2 cells after RV infection,
high-throughput GC-MS analysis was performed(20).

First, the data were processed to analyze the metabolic profile of the RV-infected and uninfected Caco-2
cells. As shown in the total ion current (TIC) chromatogram (Fig.1B), metabolites in RV-infected and
uninfected Caco-2 cells were well separated. The retention time of the chromatogram was mainly
concentrated at 5-21 min, and there were significant differences in the retention time and peak area of the
metabolites.

Principal component analysis (PCA, R?X=0.629)(21) and Partial least-squares discriminant analysis (PLS-
DA, R?X=0.578, R?Y=0.999, Q2=0.963) were performed on the metabolic profile data to detect the change
of metabolic profile between the RV-infected and uninfected Caco-2 cells (Fig.1C,D). The both diagrams
showed it could be separated and had obvious clustering characteristics, revealing significant metabolic
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differences between the samples of RV-infected and uninfected Caco-2 cells. It is also seen that the
model was non-overfitting with Permutation test (Fig.1E, the criterion of non-overfitting models is that the
value of the cut point between the Q2 slash and the Y-axis is less than 0, or the point to the right of Q2 is
less than all the points to the left).

Next, the markers were identified. According to the result of orthogonal partial least-squares discriminant
analysis (OPLS-DA, R?X=0.578, R?Y=0.999, Q2=0.973, Fig.1F), it was found that it could be divided into
two parts between the samples of RV-infected and uninfected Caco-2 cells. It indicated that the difference
between groups was much greater than the difference within groups. Thus, the samples of RV-infected
and uninfected Caco-2 cells could be effectively distinguished. The variable projection (VIP) importance
of the first principal component from OPLS-DA model (threshold >1) and the p-value of the one-
dimensional test (threshold <0.05) were used as the criteria for judging the differential expression of
metabolites. The qualitative method of differential metabolites was to search the self-established
standard material database, including chromatographic retention time and mass spectrometry. As a
result, a total of 47 differentiated substances were identified, of which 20 decreased and 27 increased.

To further characterize the correlations among metabolites of differences, we performed Pearson
Correlation analysis (Fig.1G) on the quantitative information of these metabolites. Compared with the
uninfected Caco-2 cells, dihydroxyacetone phosphate was significantly decreased in the RV-infected
Caco-2 cells, while glucose 6-phosphate, fructose 6-phosphate, fumaric acid, succinic acid and malic acid
were significantly increased. These metabolites are closely related to the gluconeogenesis of host

cells. Dihydroxyacetone phosphate is the key product of gluconeogenesis. It could convert into glucose 6-
phosphate, which is not only the intermediate material of the gluconeogenesis, but also the intersection
point between pentose phosphate pathway and glycolysis. In addition, fumaric acid, succinic acid and
malic acid are associated with the TCA cycle, which are intermediates of gluconeogenesis and glycolysis.
It indicated that RV infection makes use of the sugar in the cell or uses other substances to generate
sugars or lipids for survival(22-24).

Finally, online software MetaboAnalyst (version 4.0) was used to conduct pathway analysis on the
differential metabolites (Fig.TH). Gluconeogenesis pathway was worthy of study with low P values.
Gluconeogenesis is a way of glucose synthesis from non-carbohydrate precursors, which is essentially a
reversal of glycolysis. Based on the results above, we chose the gluconeogenesis pathway as the study of
the mechanism of RV infection in Caco-2 cells.

3.3. The elevation of G-6-pase and PEPCK activity in RV
infected Caco-2 cells
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To further verify the effect of RV infection on the gluconeogenesis pathway in host cells, we analyzed the
key enzyme activity related the gluconeogenesis. G-6-pase is a phosphatase that hydrolyzes phosphate
compounds. It regulates the amount of glucose released into the blood by hydrolyzing glucose6-
phosphate. PEPCK is an enzyme that catalyzes the conversion of oxaloacetic acid into
phosphoenolpyruvate. Both enzymes are rate-limiting in the gluconeogenesis pathway, whose activity or
transcription determines the efficiency of gluconeogenesis. The results showed that the activity of G-6-
Pase and PEPCK in the RV-infected and Caco-2 cells was significantly facilitated compared with that in
the uninfected Caco-2 cells. It indicated that the gluconeogenesis activity of Caco-2 cells accelerated after
RV infection (Fig.2A).

3.4. RV facilitated the activity of G-6-pase and PEPCK via
p-JNK—- PDK1- AKT- SIK2 signaling pathway

Given the activation of G-6-Pase and PEPCK by RV infection, we assumed that the gluconeogenesis
promotion was related to cyclic adenosine phosphate reaction element binding protein “CREB”(25), which
initiate gluconeogenesis after combined withtarget of rapamycin complex 2 (TORC2)(26,27). It's
corresponding to the result that salt-inducible kinase 2 (SIK2) expression in RV-infected Caco-2 cells was
down-regulated with statistical difference (Fig 2b,c), which resulted in less phosphorylated TORC2 and
formation of CREB-TORC2 complex(28). In addition, SIK2 activation is enhanced by phosphorylation at
Ser358 a process catalyzed by protein kinase B (AKT)(29) that was down-regulated in RV-infected Caco-2
cells (Fig.2B,C), thus reducing the activation of SIK2, which was consistent with the above result. Further,
in view of PI3K/AKT signal pathway, we found that the expression of 3-phosphoinositide-dependent
protein kinase-1 (PDK1) in Caco-2 cells was inhibited after RV infection (Fig.2B,C), which down-regulated
the expression of AKT. Furthermore, the JNK signaling pathway is activated in the case of RV infection
stress(30) based on the result that the expression of phosphorylated JNK (p-JNK) in RV-infected Caco-2
cells was up-regulated, which also could inhibit the PDK1 level referring to the insulin resistance signaling
pathway (Fig.2B,C). As was demonstrated above,RV infection hijacked host gluconeogenesis-related p-
JNK-PDK1-AKT-SIK2 signaling pathway to improve gluconeogenesis activity (Fig.2D).

4. Discussion

RV is the leading cause of diarrhea in infants, which leads to lactose intolerance and down-regulation of
sodium-glucose transport 1 in intestine(31-33). Beyond this, RV could also be found in the different sites
of CSF, heart, testes, kidneys, liver, lung, and bladder(34), which cause seizures, cerebellitis, pancreatitis
and antigenemia(35-37). There is also research suggesting that RV infection has been claimed as a
triggering factor for type | diabetes mellitusin children, which selectively associated islet autoantibody
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markers and destructed the insulin-producing pancreatic B cells(38, 39). Therefore, RV infection is closely
related to energy metabolism, especially glucose metabolism.

In this study, we found that RV infection can reduce glucose in host cells, and gluconeogenesis pathway
related to glucose uptake was screened out from the metabolomics results, which plays an essential role
in maintaining the normal blood glucose level. It was further found that RV infection indeed enhanced the
activity of gluconeogenesis enzymes such as G-6-Pase and PEPCK. These results suggested that RV not
only alterd the uptake of glucose by host cells, but also hijacked the gluconeogenesis pathway,
accelerating the rapid intracellular conversion of non-sugar substances into glucose for its own use. On
the one hand, the decreased glucose uptake of host cells would lead to the decreased function of
intestinal epithelial cells, and even apoptosis or death(40). Meanwhile, intracellular viruses hijack the
cell's gluconeogenesis pathway, thus interfering with and utilizing the normal intracellular energy
metabolism. At a deeper level, gluconeogenesis was regulated by the CBP-CREB-TORC2 complex and
SIK2, while RV infection could change the expression of SIK2. Furthermore, the upstream regulatory
proteins of SIK2 include AKT, PDK1 and p-JNK. These results provide important experimental basis for
the discovery of the key molecular and glucose regulatory targets of RV infection, which was also the
experimental basis for the treatment of RV infection through metabolic intervention.
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Figure 1

The changes in glucose consumption and gluconeogenesis pathway in Caco-2 cells after RV infection: A.
Analysis of glucose consumption in Caco-2 cells after RV infection (#P<0.05); B. TIC chromatogram of
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RV-infected and uninfected Caco-2 cells collected by mass spectrometry full scan mode(mass/charge
ratio (m/z) ranges from 50 to 600); C.The metabolomics PCA of the RV-infected and uninfected Caco-2
cells (abscissa represents the first principal component, PC1, t[1]; the ordinate represents the second
principal component, PC2, t[2].); D. The metabolomics PLS-DA of the RV-infected and uninfected Caco-2
cells; E. Permutation test diagram (Mainly used to characterize whether the model is overfitting. The
method to judge whether the model is overfitting is that the value of the Q2 diagonal line and the Y-axis
cutting point is less than 0 or the rightmost point of Q2 is less than all the points on the left); F. The
metabolomics OPLS-DA of the RV-infected and uninfected Caco-2 cells; G. Pearson Correlation analysis
diagram, each row and column represent a different metabolite. Red indicates a positive correlation and
green indicates a negative correlation between different metabolites. The darker the color, the larger the
square and the greater the correlation; H. Pathway analysis diagram (The higher the p value is, the lower
the possibility that metabolites in this pathway are related to classification and otherwise the opposite)

A ' B
>5- uninfected RV-infected
e o
2.0- s
Sh #i#
— - -
£ s i A e ]
> - : B
- - =
I-E'—-D fenmans = PIOK 1 —_— _I
G-6-Pase PEPCK PBactin | — —

1507 I wninfeced #

3 RV-infected I I;D

Relative protein expression

AKT PDK] p-INK

Figure 2

The changes in gluconeogenesis-related enzymes and signaling pathways in Caco-2 cells after RV
infection: A. The activity of G-6-Pase and PEPCK in Caco-2 cells after RV infection (###P<0.001); B~C.

Page 14/15



The expression level of SIK2, AKT, PDK1 and p-JNK protein in Caco-2 cells after RV infection (#P < 0.05;
ns, not significant). D. The stimulation of cells by RV caused the overexpression of protein p-JNK, which
downregulated the expression of protein PDK1 and AKT through the PI3K-AKT signaling pathway. And
protein SIK2 can be activated by AKT phosphorylation, thereby promoting the entry of TORC2 and CBP-
P300 into the nucleus for CREB complex form and turn on gluconeogenesis.
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