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Abstract
Background: Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have been proven to
provide survival bene�ts for non-small-cell lung cancer (NSCLC), but drug resistance represents a major
therapeutic challenge. This study aimed to map the hub genes and potential pathways that might be
involved in the molecular pathogenesis of EGFR-TKI resistance in NSCLC.

Methods: We performed a comprehensive bioinformatic analysis to identify differentially expressed
genes (DEGs) between EGFR-TKI-sensitive and EGFR-TKI-resistant patient derived xenotransplantation
(PDX) samples based on microarray data in the Gene Expression Omnibus (GEO) database. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were applied for
functional and pathway analysis of DEGs. The STRING database and Cytoscape software were used to
construct protein–protein interaction (PPI) networks and determine gene interactions. Survival analysis
was performed via the GEPIA database. The relationship between the EGFR-TKI resistance key gene
ITGAM and the corresponding potential therapeutic candidates was retrieved from DGIdb.

Results: A total of 1302 DEGs were identi�ed (P <.05, fold change >2) when comparing the EGFR-TKI
resistant and sensitive groups based on the GSE64472 and GSE130160 datasets. GO functional analysis
showed that these DEGs were mainly enriched in plasma membrane, integrin binding, cytokine activity,
growth factor activity, platelet-derived growth factor binding immune response and cell adhesion.
Pathway analyses also indicated that these DEGs are mainly involved in signaling by the chemokine-
cytokine receptor interaction, melanogenesis and basal cell carcinoma. The PPI network highlighted 10
potential hub genes, including six upregulated genes, ITGAM, CCL5, CD4, IDO1, HAVCR2 and CCR7, and
four downregulated genes, IL6, IL10, CXCL9 and TLR9. Only ITGAM was linked to poor DSF in NSCLC
patients. A total of 10 drugs were predicted to be potential therapeutics for NSCLA with EGFR-TKI
resistance.

Conclusion: The results of this study indicate that we have determined the hub genes related to EGFR-TKI
resistance in NSCLC through bioinformatics technologies. Among them, ITGAM may play a role in the
mechanism of resistance to EGFR-TKIs and helps to improve the understanding of the mechanisms of
EGFR-TKI resistance and provide novel insights into therapeutics.

Introduction
Lung cancer is the second most commonly diagnosed cancer worldwide and the leading cause of cancer
death (Sung et al., 2021). Non-small-cell lung cancer (NSCLC) accounts for approximately 85% of all lung
cancers [1,2]. Targeted drugs represented by epidermal growth factor receptor (EGFR)–tyrosine kinase
inhibitors (TKIs) have brought revolutionary progress in the treatment of advanced NSCLC[3,4]. With the
extensive clinical application of epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors
(TKIs), acquired resistance has become a challenge faced by clinicians[5,6]. Although numerous efforts
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have been made to understand the molecular mechanisms of EGFR-TKI acquired drug resistance, the
underlying molecular mechanisms and critical genes are still not completely clear[7,8].

With the rapid development of gene sequencing technology and bioinformatics analysis technology,
researchers can access high-throughput microarray and next-generation sequence functional genomic
data from the international public repository Gene Expression Omnibus (GEO) and The Cancer Genome
Atlas (TCGA)[9–11]. These online databases can obtain expression information of numerous genes
simultaneously, and these genes were analyzed to explore potential biomarkers and therapeutic targets of
EGFR-TKI drug resistance in non-small-cell lung cancer. However, the identi�cation strategies of these
markers largely depend on the comparison of normal and cancer tissue samples, especially the
acquisition of drug-resistant samples, which are di�cult to acquire. Recently, most sequencing studies
have been limited to induced drug-resistant cell lines, which have limited value in analyzing the key genes
involved in tumor drug resistance. The patient-derived xenotransplantation (PDX) model is a useful tool in
cancer biology research based on its advantages in preserving the characteristics of patient tumors and
is thus more suitable for use in experiments exploring the molecular mechanisms of tumor progression
and drug resistance[12, 13]. To identify the genes responsible for EGFR-TKI drug resistance, we screened
the gene chip data by using the GEO database. EGFR-TKI-sensitive and acquired resistant NSCLC public
gene expression datasets (GSE64427 and GSE130160) were selected and downloaded from GEO.

In the present study, the differentially expressed genes (DEGs) between EGFR-TKI-sensitive and acquired
drug-resistant non-small-cell lung cancer-transplanted tumor samples were obtained by mining the gene
expression microarray datasets GSE64472 and GSE130160, and Gene Ontology (GO) annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs were performed by
using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool. A protein–
protein interaction (PPI) network of DEGs was constructed using the Search Tool for the Retrieval of
Interacting Genes (STRING) database and analyzed using Cytoscape software, and the hub genes were
identi�ed. In addition, the survival of patients with abnormal hub gene expression was analyzed using the
TCGA database. The data will undoubtedly aid in the understanding of the roles of such genes in the
development of EGFR-TKI resistance. The present study will contribute to the understanding of the
molecular mechanism of EGFR-TKI resistance and provide new gene targets for future studies.

Materials And Methods
1. Microarray data

We screened the gene chip data by using the GEO (http://www.ncbi.nlm.nih.gov/geo) database, with the
keywords “NSCLC” and “EGFR-TKI resistant” [14]. We screened PDX samples with EGFR mutations and
sensitivity to EGFR-TKI drugs and induced acquired anti-EGFR-TKIs using a PDX model. Two datasets
(GSE64472 and GSE130160) were selected for the analysis of differentially expressed genes (DEGs)
between EGFR-TKI-sensitive and resistant samples in NSCLC. EGFR-TKI‐resistant samples were
characterized by a tumor volume tripled when compared to the pretreatment volume. GSE64472 included
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3 EGFR-TKI-sensitive samples and 2 EGFR-TKI drug-resistant samples, and GSE130160 included EGFR-
TKI-sensitive samples and 1 EGFR-TKI-resistant sample. The platforms used in these datasets were the
GPL6884 Illumina HumanWG-6 v3.0 expression beadchip and the GPL16791 Illumina HiSeq 2500 (Homo
sapiens) platform.

2. Screening of DEGs

The R (http://www.bioconductor.org/) “limma” package was used to normalize the data and perform
differential expression analysis between EGFR-TKI-sensitive and acquired drug-resistant transplanted
NSCLC tumor samples. DEGs were screened with a false discovery rate (FDR)-corrected p value < 0.05
and |log2-fold change (FC)| > 2. Before the analysis of DEGs between EGFR-TKI-sensitive and acquired
drug-resistant transplanted tumor samples, the probe identi�cation numbers were transformed into gene
symbols. When multiple probes corresponded to the same gene, the max value was taken as the gene
expression value.

3. Functional enrichment analysis of DEGs

To further clarify the potential functional roles and pathway enrichment associated with the DEGs, Gene
Ontology (GO) analysis, including biological process, cellular component, and molecular function, and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were completed with the Database
for Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gov/) (version
6.8) [12, 13][20]. Only terms with P values of < 0.05 and ≥ 2 enriched genes were considered statistically
signi�cant.

4. PPI Network Construction and hub gene identi�cation

The PPI network of the DEGs was constructed using the online STRING (https://string-db.org) database
to determine the molecular mechanisms of key signaling pathways and cellular activities in EGFR-TKI
resistance in NSCLC[21].17 We uploaded all 1302 DEGs in the present study to yield an initial PPI and
then visualized this network using Cytoscape Version 3.7.1. Relationships among DEGs were analyzed by
the NetworkAnalyzer plug-in of Cytoscape software to characterize the small-world network by
calculating the network properties, such as the clustering coe�cient of the network, distribution of node
degree and shortest path [23]. Next, the cytoHubb plug-in was used to rate the network, with the top 10
genes rated according to their degree, closeness, and betweenness scores being the candidate hub genes.

5. Hub Gene Survival Analysis

To identify the potential drug resistance role of these hub genes, the NSCLC patient disease-free survival
(DFS) of hub genes was performed using the Kaplan–Meier curves in TCGA
(https://portal.gdc.cancer.gov/) [16], and log rank test P value < 0.05 was the threshold of statistical
signi�cance. Using this approach, we were able to identify those genes associated with drug resistance
progression in NSCLC.
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6. Drug Interaction Prediction for EGFR-TKI Resistance-Speci�c Key Genes

Resistance-Speci�c Key Genes The Drug Gene Interaction Database (DGIdb; www.dgidb.org) was used to
predict the interaction between genes and drugs. We uploaded the EGFR-TKI resistance-speci�c key genes
into the DGIdb to obtain potential targeted drugs effective for EGFR-TKI resistance in NCLC.

Results
1. Identi�cation of DEGs

To screen for meaningful biomarkers between the EGFR-TKI-sensitive and -resistant groups, using the R
limma package and the p < 0.05 and [logFC] > 2 cutoff criteria, we detected a total of 1302 DEGs when
comparing the EGFR-TKI-resistant and -sensitive groups based on the GSE64472 and GSE130160
datasets.773 DEGs were obtained in the resistant group of GSE64472, including 339 upregulated and 436
downregulated DEGs. A total of 529 DEGs were obtained, including 479 upregulated and 52
downregulated DEGs in the resistant group of GSE130160. The volcano plot of DEGs is presented in Fig.
1a, 1b, and the expression heatmap of the top 50 DEGs is presented in Fig. 1c, 1d (ranked by padj. value).

2. GO and KEGG enrichment analyses of DEGs

To clarify the role of these DEGs in the progression of EGFR-TKI resistance in NCLC, we immediately
predicted the functional role of these genes. GO analysis, including cellular components (CC), molecular
function (MF), biological process (BF), and KEGG analysis, was performed using the DAVID database to
understand the functions of DEGs. With an FDR-corrected p value < 0.05 and enrichment score > 1.5 as
the cutoff value, GO functional enrichment analysis resulted in a total of 1302 DEGs mapped to 48
signi�cantly enriched functional clusters. In total, 11 GO terms were signi�cantly enriched in cellular
components, including 'plasma membrane', 'extracellular region', 'extracellular space', 'extracellular
exosome' and 'proteinaceous extracellular matrix' (Fig. 2a). Enrichment of 8 GO terms, such as 'integrin
binding', 'cytokine activity', 'growth factor activity', 'protein homodimerization activity', 'platelet-derived
growth factor binding', 'calcium ion binding', 'extracellular matrix structural constituent' and
'transmembrane signaling receptor activity', belonged to molecular functions (Fig. 2b). A total of 29
biological processes were enriched, mainly involving 'immune response', 'cell adhesion', 'extracellular
matrix organization', 'positive regulation of bone mineralization' and 'positive regulation of T-cell
proliferation' (Fig. 2c). A total of 1303 DEGs were mapped into the KEGG database using DAVID, and
enrichment score > 1.5 and p value < 0.05 were used as enrichment screening standards. In total, 16
enriched functional clusters of the DEGs were obtained (Fig. 2b), such as ‘cytokine–cytokine receptor
interaction’ (34 genes), ‘melanogenesis’ (18 genes), ‘circadian entrainment’ (17 genes), ‘basal cell
carcinoma’ (12 genes), and ‘dopaminergic synapse’ (20 genes).

3. Integration of the protein–protein interaction network and module analysis

http://www.ncbi.nlm.nih.gov/geo


Page 6/19

The PPI network of 1302 DEGs was constructed and visualized using the STRING database. The isolated
nodes and partially loosely connected gene nodes were removed, and the remaining DEGs together
constituted a complex multicenter interaction network map, which contained 1402 nodes and 4761 edges
(Fig. 3a). The average node degree was 7.92, and the average local clustering coe�cient was 0.286.
Among the 1402 nodes, the top 20 and top 10 DEGs with the highest degree of nodes were screened
based on the Cytoscape software analysis results (Fig. 3b, 3c). The expression of the top 20 genes in
GSE64472 and GSE130160 samples is shown in Fig. 3d and 3e. The results of the top 10 DEGs were as
follows: IL6, IL10, CXCL9, ITGAM, CCL5, CD4, IDO1, HAVCR2, TLR9, and CCR7. The full name and
function of these hub genes are listed in Table 1.
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Table 1
Functional roles of 10 hub genes

No. Gene
symbol

Full name Function

1 IL6 interleukin 6 a cytokine that functions in in�ammation and the maturation of B
cells.

2 IL10 Interleukin
10

a cytokine produced primarily by monocytes and to a lesser extent
by lymphocytes. This cytokine has pleiotropic effects in
immunoregulation and in�ammation.

3 CXCL9 C-X-C Motif
Chemokine
Ligand 9

The protein encoded is thought to be involved in T-cell tra�cking.
The encoded protein binds to C-X-C motif chemokine 3 and is a
chemoattractant for lymphocytes but not for neutrophils.

4 ITGAM Integrin
Subunit
Alpha M

This gene encodes the integrin alpha M chain. This I-domain
containing alpha integrin combines with the beta 2 chain (ITGB2)
to form a leukocyte-speci�c integrin. The alpha M beta 2 integrin is
important in the adherence of neutrophils and monocytes to
stimulated endothelium, and in the phagocytosis of complement
coated particles.

5 CCL5 C-C Motif
Chemokine
Ligand 5

This gene is one of several chemokine genes clustered on the q-
arm of chromosome 17. This chemokine, a member of the CC
subfamily, functions as a chemoattractant for blood monocytes,
memory T helper cells and eosinophils.

6 CD4 CD4
molecule

the CD4 membrane glycoprotein acts as a coreceptor with the T-
cell receptor on the T lymphocyte to recognize antigens displayed
by an antigen presenting cell in the context of class II MHC
molecules.

7 IDO1 Indoleamine
2,3-
Dioxygenase
1

a heme enzyme that acts on multiple tryptophan substrates. This
enzyme is thought to play a role in a variety of pathophysiological
processes such as antimicrobial and antitumor defense,
neuropathology, immunoregulation, and antioxidant activity.

8 HAVCR2 Hepatitis A
Virus
Cellular
Receptor 2

The protein belongs to the immunoglobulin superfamily, and TIM
family of proteins. CD4-positive T helper lymphocytes can be
divided into types 1 (Th1) and 2 (Th2) on the basis of their
cytokine secretion patterns.

9 TLR9 Toll Like
Receptor 9

The protein encoded by this gene is a member of the Toll-like
receptor (TLR) family, which plays a fundamental role in pathogen
recognition and activation of innate immunity.

10 CCR7 C-C Motif
Chemokine
Receptor 7

The protein encoded by this gene is a member of the G protein-
coupled receptor family. This receptor is expressed in various
lymphoid tissues and activates B and T lymphocytes.

4. Disease-free surviva (DFS) analyses of hub genes in NSCLC
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Based on the practicality of clinical guidance, we needed to �nd genes in these hub genes that could
promote EGFR-TKI resistance and could be used for cancer progression prediction. We used the Kaplan–
Meier Plotter database to explore how these hub genes were related to NSCLC patient DFS. Of these
genes, we found that only elevated ITGAM expression was linked to better NSCLC patient DFS (HR = 0.73,
95% CI: 1.26–1.81, P = 0.045) (Fig. 4). Taken together, the results show that ITGAM functions as a core
gene that has a close relationship with EGFR-TKI resistance.

5. Drug Interaction Prediction for EGFR-TKI resistance

The relationship between the EGFR-TKI resistance-speci�c gene ITGAM and the corresponding potential
therapeutic candidates was retrieved from DGIdb. A total of 207 drugs were predicted to interact with
ITGAM. Among them, the drugs with the highest number of target genes were liarozole, rovelizumab,
dimethyl, sulfoxide, clarithromycin, fentanyl, phenylephrine, theophylline, morphine, hydrocortisone, and
atorvastatin (Table 2).

 
Table 2

Top 10 drug predictions for the EGFR-TKI resistance-speci�c key gene TIMP1
Drug Interaction Type &

Directionality
Sources Query

Score
Interaction
Score

Liarozole n/a NCI 2.92 4.25

Rovelizumab antagonist (inhibitory) ChemblInteractions 1.46 2.13

Dimethyl
Sulfoxide

n/a NCI 1.46 2.13

Clarithromycin n/a NCI 1.35 0.98

Fentanyl n/a NCI 0.67 0.49

Phenylephrine n/a NCI 0.63 0.91

Theophylline n/a NCI 0.37 0.53

Morphine n/a NCI 0.28 0.41

Hydrocortisone n/a NCI 0.23 0.34

Atorvastatin n/a NCI 0.15 0.21

Discussion
The molecular mechanism of EGFR-TKI resistance is largely divided into two categories: acquired
resistance after EGFR-TKI treatment and primary resistance marked by cancer cell dependence on other
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oncogenes, such as KRAS. The most common possible mechanism of acquired resistance is the
development of an EGFR T790 M gatekeeper mutation, which occurs in 4 ~ 50% of cases [14–17]. Other
reported mechanisms of acquired resistance include MET ampli�cation [18], hepatocyte growth factor
expression [19] and epithelial-mesenchymal transition [20]. Therefore, it is extremely important to identify
the molecular mechanisms underlying the development of EGFR-TKI resistance in NSCLC and to provide
novel gene targets for future treatment measures.

Cancer cell lines have been essential tools in drug screening for more than 25 years. However, cell lines
have been cultured for thousands of generations and differ greatly from primary tumor tissues in genetic
make-up and behavior[21]. Subcutaneous or orthotopic cell-derived tumor xenograft models (CDX models)
cannot accurately mimic the tumor condition in human genetic heterogeneity. Medicine proved to be
e�cient in a traditional animal model [CDXmodels] and had a low response rate when used in clinical
trials[22]. For the past several years, patient-derived xenograft models (PDX models) have attracted
increased attention in preclinical cancer research and have emerged as promising tools for translational
research. Investigators have shown that PDX models maintain most genetic features compared to
primary human tumor tissue[12,13,23,24]. For pancreatic ductal adenocarcinoma (PDAC), the response to
gemcitabine in PDX models showed a strong correlation with that in clinical patients [25]. In hepatocellular
carcinoma (HCC), the e�cacy of sorafenib in the HCC PDX model is similar to that in the primary patient
[26, 27]. This suggests that PDXs are suitable models for the identi�cation of molecular biomarkers related
to drug sensitivity or resistance, as well as a screening tool for the e�cacy of novel drugs.

Microarray technology is one of the most important approaches used by many researchers worldwide to
explore the expression levels of genes involved in complex disorders[28]. The limitation of most previous
bioinformatics studies is that they focused on the results from cell line-based or subcutaneous or
orthotopic cell-derived tumor xenograft models. After a systematic search, two microarray datasets with
an acquired resistance model in vivo were included in our study. In GSE64472 and GSE130160, EGFR-TKI-
sensitive PDXs were initially sensitive to VEGFR inhibition but developed resistance following prolonged
treatment with Vandetanib and osimertinib. We performed a series of bioinformatic analyses to compare
the gene expression of EGFR-TKI-sensitive and EGFR-TKI-resistant PDX samples. The aim of our study
was to identify and analyze the functions of hub genes in EGFR-TKI resistance, to help understand the
molecular mechanisms underlying the development of drug resistance and to provide novel gene targets
for the future.

In the present study, we used the intersection of the two study databases to obtain more reliable DEGs.
Finally, 1203 DEGs were identi�ed. GO functional analysis showed that these DEGs were mainly enriched
in 'plasma membrane', 'extracellular region', 'integrin binding', 'cytokine activity', 'growth factor activity',
'protein homodimerization activity', 'platelet-derived growth factor binding', 'immune response', 'cell
adhesion', and 'extracellular matrix organization'. Several studies have reported that integrin β3 is
upregulated after EGFR-TKI treatment. Kanda and Wang found that acquired erlotinib resistance was
mediated by the integrin β1/Src/Akt signaling pathway in lung cancer [29–31]. A recent study illustrated
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that the FGFR inhibitor-resistant H1703 cell line is dependent on ampli�ed platelet-derived growth factor
receptor-α[32]. KEGG pathway analysis revealed that these DEGs are mainly involved in signaling by
‘cytokine–cytokine receptor interaction’, ‘melanogenesis’ and ‘basal cell carcinoma’. Interestingly,
cytokine–cytokine receptor interactions in NSCLC have been shown to be one of the primary causes of
EGFR-TKI resistance[33]. Loss of microphthalmia-associated transcription factor (MITF) is commonly
observed in acquired resistance and is associated with a mesenchymal-like invasive phenotype or with a
neural crest stem cell (NCSC) phenotype[34]. Studies have shown that the human prostate cancer cell line
obtains enzalutamide resistance during treatment, and its phenotype changes from lumen epithelial cells
to neuroendocrine and basal cells. This shows that the mechanism of differentiation into basal cells
plays an important role in drug-induced resistance[35].

Using a PPI network, we identi�ed 10 candidate hub genes (IL6, IL10, CXCL9, ITGAM, CCL5, CD4, IDO1,
HAVCR2, TLR9, and CCR7) among these DEGs in our study. IL-10, an immunoregulatory component in the
cytokine network, promotes tumor malignancy by promoting T-cell apoptosis and tumor cell survival [36].
Previous reports have shown that a persistently activated IL-6/STAT3 pathway promotes acquired
resistance to targeted therapy with EGFR‐TKIs in NSCLC treatment[37]. CXCL9, also known as MIG, is an
in�ammatory chemokine. A previous study also showed that the presence of CXCL9 in the tumor
microenvironment inhibited NSCLC tumor growth and metastasis by decreasing tumor-derived
angiogenesis, and high CXCL9 levels were found to be related to prolonged DFS and OS in early-stage
lung adenocarcinoma patients [38]. In our study, the gene expression levels of CXCL9 were higher in EGFR-
TKI-sensitive samples than in EGFR-TKI-resistant samples, which is in accordance with some results of
previous studies showing that overexpression of CXCL9 could inhibit tumor-associated angiogenesis,
playing a role in the progression of EGFR-TKI resistance. Human non-small-cell lung cancer is the third
most frequent expresser of IDO1 after endometrial/cervical carcinomas and renal carcinomas. A recent
study of an NSCLC cohort also showed that upregulation of IDO1 expression was signi�cantly correlated
with a higher pathologic stage as well as lymph node metastasis. These studies raise the possibility that
IDO1 expression contributes to immune resistance and tumor progression[39]. CCL5 (chemokine ligand 5)
is associated with the migration and metastasis of human cancer[40]. We used the online software GEPIA
to perform survival analysis on 10 hub genes in the TCGA database. Only ITGAM was signi�cantly
associated with poor NSCLC patient prognosis, and high expression of ITGAM was associated with poor
DFS. ITGAM is one of the genes associated with the development of the in�ammatory response, also
known as CD11b, Mac-1 integrin alpha chain or complement receptor 3. It is of key importance in
regulating macrophage polarization and proin�ammatory macrophage transcription, thereby restraining
immunosuppressive macrophage polarization[41–43]. A recent study showed that ITGAM modulates
angiogenesis through the control of cytokine expression in animal models of murine and human
cancer[44]. The discovery of this result gave us the enlightenment that ITGAM regulates the occurrence of
EGFR-TKI resistance directly or indirectly and may be used as a biomarker for the diagnosis of EGFR-TKI
resistance.
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Furthermore, we predicted the drugs regulating the EGFR-TKI resistance-speci�c gene ITGAM in NSCLC
patients. Among the 10 predicted drugs for ITGAM, some have been reported to be effective in cancer
therapy or combination therapy. Clarithromycin (CLM) inhibits autophagic �ux and was reported to
enhance the cytotoxic effect in NSCLC cell lines when combined with ge�tinib (GEF)[45]. Another study
suggested the possibility of using CLM as a 'chemosensitizer' for EGFR-TKI therapy in pancreatic cancer
patients to enhance nonapoptotic tumor cell death induction[46]. Liarozole downregulates transforming
growth factor (TGF)-alpha and EGFR levels in head and neck squamous cell carcinoma by increasing
endogenous plasma concentrations of retinoid acid (RA)[47]. Several mechanisms of the antitumor
activity of dimethyl sulfoxide (DMSO) have been reported [48]. For example, DMSO has antiangiogenic
effects via inhibition of MMP-2 production and could mimic thalidomide to suppress choriocapillary
endothelial cell proliferation[49]. Theophylline was reported to increase the sensitivity of H1299 lung
cancer cells to the induction of cell death by gemcitabine and cisplatin[50]. Phenylephrine induced
phosphorylation of EGFR, which was partially blocked by an EGFR tyrosine kinase inhibitor. Previous
studies have shown that statins, HMG-CoA reductase inhibitors, enhance the tumor-inhibitory effect of
many antitumor drugs; for example, a study suggested that atorvastatin sensitizes NSCLC cells to
carboplatin through inhibition of AKT activation[51,52]. In addition, atorvastatin overcomes ge�tinib
resistance in KRAS mutant NSCLC cells through inhibition of HMG-CoA reductase-dependent disruption
of the Kras/Raf and Kras/PI3K complexes[53]. Thus, the combination of atorvastatin and chemotherapy
drugs in NSCLC treatment may reduce the resistance of patients. EGFR is coactivated by the µ-opioid
receptor (MOR), which is expressed on NSCLC cells and human lung cancer. Preclinical studies have
demonstrated that opioid receptor agonists increase the rate of non-small-cell lung cancer (NSCLC)
growth and metastasis[54]. Therefore, it is extremely important to predict drugs that deserve further
investigation in the treatment of EGFR-TKI resistance.

Conclusion
Our study analyzed gene expression between EGFR-TKI-sensitive and acquired drug-resistant samples
from the GEO database and identi�ed aberrant expression in EGFR-TKI-resistant PDXs. In this study, a
total of 1302 DEGs and 10 hub genes were identi�ed, and GO and KEGG enrichment analyses con�rmed
the functions and pathways of these DEGs. In addition, ITGAM might play important roles in the
molecular pathogenesis of EGFR-TKI resistance. Furthermore, the core genes and pathways might be
potential biomarkers that could be used for the detection and targeting of EGFR-TKI resistance for
therapy. The predicted drugs have the potential to be used in combination with EGFR-TKIs to reduce
resistance in NSCLC patients and improve therapeutic effectiveness. These �ndings may help in
understanding the mechanisms of drug resistance and in discovering potential targets for EGFR-TKI
resistance, which may help improve the therapeutic outcomes of NSCLC patients. However, further
studies are still needed to conduct a series of experimental studies to prove this hypothesis to obtain
more precise correlation reports.
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Figure 1

Identi�cation of differentially expressed genes. (a, b) Volcano plot of DEGs in the GSE64472 and
GSE130160 datasets. The red dots represent upregulated genes, the green dots represent downregulated
genes, and the black dots represent genes with no signi�cant difference in expression. (c, d) Heatmap of
the top 50 DEGs in the GSE64472 and GSE130160 datasets. Red represents upregulated genes, and blue
represents downregulated genes.
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Figure 2

Gene Ontology and KEGG pathway analysis of DEGs in NSCLC. (a) GO covering the domains of
molecular functions (MF). (b) GO covering the domains of biological processes (BP). (c) GO covering the
domains of cellular components (CC). (d) KEGG pathways that were the most signi�cantly upregulated
pathways during SCLC. The bubbles represent the enrichment pathway with p values <0.05. The bubble
size represents the number of enriched target genes in the process. The bubble coulor represents −log10
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(p value); from green to red, the p value decreases. The Y-axis represents the enrichment target of GO or
pathway. The X-axis is the Richfactor: it is counts divided by the third column.

Figure 3

PPI analysis of DEGs based on Cytoscape. (a) Visualized PPI analysis of DEGs. (b) Top 20 genes with the
highest MCC scores in DEGs. (c) Top 10 genes with the highest MCC scores in DEGs; a darker color
represents higher MCC scores. (d) Heatmap of the top 20 DEGs in GSE64472. (e) Heatmap of the top 20
DEGs in GSE130160. Red represents upregulated genes, and blue represents downregulated genes.

Figure 4

Disease-free survival analyses of 10 hub genes based on The Cancer Genome Atlas


