1. Lopez-Otin, C. & Bond, J. S. Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433–30437 (2008).
2. Lichtenthaler, S. F., Lemberg, M. K. & Fluhrer, R. Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO J. 37, e99456 (2018).
3. Solary, E., Eymin, B., Droin, N. & Haugg, M. Proteases, proteolysis, and apoptosis. Cell. Biol. Toxicol. 14, 121–132 (1998).
4. Neurath, H. Proteolytic processing and physiological regulation. Trends Biochem. Sci. 14, 268–271 (1989).
5. Pahl, H. L. & Baeuerle, P. A. Control of gene expression by proteolysis. Curr. Opin. Cell Biol. 8, 340–347 (1996).
6. Chung, H.K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364(2019).
7. Daringer, N.M., Dudek, R.M., Schwarz, K.A. & Leonard, J.N. Modular extracellular sensor architecture for engineering mammalian cell-based devices. ACS Synth Biol 3, 892-902 (2014).
8. Fink, T. et al. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat. Chem. Biol. 15, 115–122 (2019).
9. Chung, H. K. & Lin, M. Z. On the cutting edge: protease-based methods for sensing and controlling cell biology. Nat. Methods 17, 885–896 (2020).
10. Gray, D. C., Mahrus, S. & Wells, J. A. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142, 637–646 (2010).
11. Kapust, R. B. et al. Tobacco etch virus protease mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Prot. Eng. Des. Sel. 14, 993–1000 (2001).
12. Kapust, R. B., Tözsér, J., Copeland, T. D. & Waugh, D. S. The P1′ specificity of tobacco etch virus protease. Biochem. Biophys. Res. Commun. 294, 949–955 (2002).
13. Wehr, M. C. et al. Monitoring regulated protein-protein interactions using split TEV. Nat. Methods 3, 985–993 (2006).
14. Baeumler, T. A., Ahmed, A. A. & Fulga, T. A. Engineering synthetic signaling pathways with programmable dCas9-based chimeric receptors. Cell Rep. 20, 2639–2653 (2017).
15. Dolberg, T. B. et al. Computation-guided optimization of split protein systems. Nat. Chem. Biol. 17, 531–539 (2021).
16. Lee, D. et al. Temporally precise labeling and control of neuromodulatory circuits in the mammalian brain. Nat. Methods 14, 495–503 (2017).
17. Lee, D., Hyun, J. H., Jung, K., Hannan, P. & Kwon, H. B. A calcium- and light-gated switch to induce gene expression in activated neurons. Nat. Biotechnol. 35, 858–863 (2017).
18. Ross, B., Mehta, S. & Zhang, J. Molecular tools for acute spatiotemporal manipulation of signal transduction. Curr. Opin. Chem. Biol. 34, 135–142 (2016).
19. Shekhawat, S. S. & Ghosh, I. Split-protein systems: beyond binary protein–protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).
20. Voss, S., Klewer, L. & Wu, Y. W. Chemically induced dimerization: reversible and spatiotemporal control of protein function in cells. Curr. Opin. Chem. Biol. 28, 194–201 (2015).
21. Stanton, B. Z., Chory, E. J. & Crabtree, G. R. Chemically induced proximity in biology and medicine. Science 359, eaao5902 (2018).
22. Kramer, M. M., Lataster, L., Weber, W. & Radziwill, G. Optogenetic approaches for the spatiotemporal control of signal transduction pathways. Int. J. Mol. Sci. 22, 5300 (2021).
23. Sanchez, M. I., Nguyen, Q.A., Wang, W., Soltesz, I. & Ting, A.Y. Transcriptional readout of neuronal activity via an engineered Ca2+-activated protease. Proc. Natl. Acad. Sci. U. S. A. 117, 33186–33196 (2020).
24. Xu, X. et al. A single-component optogenetic system allows stringent switch of gene expression in yeast cells. ACS Synth. Biol. 7, 2045–2053 (2018).
25. Kaberniuk, A. A., Baloban, M., Monakhov, M. V., Shcherbakova, D. M. & Verkhusha, V. V. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat. Commun. 12, 3859 (2021).
26. Chung, H. K. et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720 (2015).
27. Jacobs, C. L., Badiee, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat. Methods 15, 523–526 (2018).
28. Zhang, W. et al. Optogenetic control with a photocleavable protein, PhoCl. Nat. Methods 14, 391–394 (2017).
29. Lu, X. et al. Photocleavable proteins that undergo fast and efficient dissociation. Chem. Sci. 12, 9658–9672 (2021).
30. Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl. Acad. Sci. U. S. A. 112, 112–117 (2015).
31. Berger, J., Hauber, J., Hauber, R., Geiger, R. & Cullen, B.R. Secreted placental alkaline phosphatase a powerful new quantitative indicator of gene expression in eukaryotic cells. Gene 66, 1–10 (1988).
32. Kapust, R. B. & Waugh, D. S. Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr. Purif. 19, 312–318 (2000).
33. Carrington, J. C. & Dougherty, W. G. A viral cleavage site cassette: identification of amino acid sequences required for tobacco etch virus polyprotein processing. Proc. Natl. Acad. Sci. U. S. A. 85, 3391–3395 (1988).
34. Seo, J. K., Choi, H. S. & Kim, K. H. Engineering of soybean mosaic virus as a versatile tool for studying protein–protein interactions in soybean. Sci. Rep. 6, 22436 (2016).
35. Nallamsetty, S. et al. Efficient site-specific processing of fusion proteins by tobacco vein mottling virus protease in vivo and in vitro. Protein Expr. Purif. 38, 108–115 (2004).
36. Cella, F., Wroblewska, L., Weiss, R. & Siciliano, V. Engineering protein-protein devices for multilayered regulation of mRNA translation using orthogonal proteases in mammalian cells. Nat. Commun. 9, 4392 (2018).
37. Fernandez-Rodriguez, J. & Voigt, C. A. Post-translational control of genetic circuits using Potyvirus proteases. Nucleic Acids Res. 44, 6493–6502 (2016).
38. Gao XJ, Chong LS, Kim MS & MB., E. Programmable protein circuits in living cells. Science 361, 1252-1258 (2018).
39. Lee, D. & Kwon, H. B. Current and future techniques for detecting oxytocin: Focusing on genetically-encoded GPCR sensors. J. Neurosci. Methods 366, 109407 (2022).
40. Mignocchi, N., Krüssel, S., Jung, K., Lee, D. & Kwon, H. B. Development of a genetically-encoded oxytocin sensor. bioRxiv 202598 (2020).
41. Kanaji, S., Iwahashi, J., Kida, Y., Sakaguchi, M. & Mihara, K. Characterization of the signal that directs Tom20 to the mitochondrial outer membrane. J. Cell. Biol. 151, 277–288 (2000).
42. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U. S. A. 89, 5547–5551 (1992).
43. Rivera, V. M. et al. A humanized system for pharmacologic control of gene expression. Nat. Med. 2, 1028–1032 (1996).
44. Lu, X., Shen, Y. & Campbell, R. E. Engineering photosensory modules of non-opsin-based optogenetic actuators. Int. J. Mol. Sci. 21(2020).
45. Klewer, L. & Wu, Y. W. Light-induced dimerization approaches to control cellular processes. Chemistry 25, 12452–12463 (2019).
46. Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).
47. Krueger, D. et al. Principles and applications of optogenetics in developmental biology. Development 146, dev175067 (2019).
48. Rogers, K. W. & Muller, P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr. Top. Dev. Biol. 137, 37–77 (2020).
49. Mizuno, H. et al. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol. Cell. 12, 1051–1058 (2003).
50. McEvoy, A. L. et al. mMaple: a photoconvertible fluorescent protein for use in multiple imaging modalities. PLoS One 7, e51314 (2012).
51. Miyamae, Y., Chen, L. C., Utsugi, Y., Farrants, H. & Wandless, T. J. A method for conditional regulation of protein stability in native or near-native form. Cell Chem. Biol. 27, 1573–1581.e3 (2020).
52. Goh, C. J. & Hahn, Y. Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of NIa-Pro protease in each of seven cleavage sites. PLoS One 16, e0245853 (2021).
53. Chen, S. et al. Identification of highly selective covalent inhibitors by phage display. Nat. Biotechnol. 39, 490–498 (2021).