

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

The impact of Non-alcoholic Fatty Liver disease on Bone Mineral Density of Lumbar Spine in Type 2 Diabetes Mellitus

Juan Du

Chengdu Second People's Hospital Chengdu

Changquan Huang

Chengdu Second People's Hospital[®]Chengdu

Yan Ma

Chengdu Second People's Hospital Chengdu

Hongmei Lang

Chengdu Second People's Hospital Chengdu

Xingping Zhang (dd15882615003@163.com)

Chengdu Second People's Hospital[®]Chengdu

Research Article

Keywords: Nonalcoholic fatty liver, Diabetes, Lumbar, Bone mineral density

Posted Date: May 13th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1628977/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

1 Article type : Original Article

2 Running title: Association between NAFLD and BMI	2	Running title:	Association	between NAFLE	and BME
---	---	-----------------------	-------------	---------------	---------

3	The impact of Non-alcoholic Fatty Liver disease on Bone Mineral Density of
4	Lumbar Spine in Type 2 Diabetes Mellitus
5 6	Juan Du, MS, Changquan Huang, MD, Yan Ma, MS, Hongmei Lang,MD, Xingping Zhang, MS#
7	Affiliations:
8	Department of General Medicine, Chengdu Second People's Hospital, Chengdu 610000, China
9	*Corresponding authors:
10	Xingping Zhang MS
11	Department of General Medicine, Chengdu Second People's Hospital, Chengdu, China
11	E-mail: dd15882615003@163.com
12	Abstract
13	Objective: To evaluate the association between Nonalcoholic fatty liver disease (NAFLD) and lumbar spine
14	bone mineral density (BMD) in type 2 diabetes mellitus (T2DM).
15	Methods: The lumbar BMD of 1088 subjects was measured using dual-energy X-ray absorptiometry
16	(DXA). Liver fat content was quantified via ultrasound. According to clinical diagnosis, subjects were
17	divided into T2DM and non diabetes groups. The groups were further divided into NAFLD and non-

10	NAFLD groups. Student's t-test assessed the differences in BMD between the NAFLD and non-NAFLD
19	groups. Multivariable linear regression analysis adjusted for confounders was performed to evaluate the
20	association between lumbar BMD and NAFLD.
21	Results: The lumbar BMD in the T2DM group and the non diabetes group was higher in the NAFLD group
22	than in the non-NAFLD group (P<0.001). Multivariate regression analysis in the T2DM group showed that
23	after adjusting for confounders, the association between lumbar spine BMD and NAFLD remained
24	(P=0.027). In the non diabetes group, after adjusting for confounders, the association between NAFLD and
25	lumbar spine BMD disappeared.
26	Conclusions: The lumbar BMD of NAFLD patients is higher than that of non-NAFLD. After adjusting for
27	confounding factors, lumbar BMD was associated with NAFLD in T2DM patients but not in non diabetes
28	patients.
29	Keywords: Nonalcoholic fatty liver; Diabetes; Lumbar; Bone mineral density.
30	INTRODUCTION

Student's t test assessed the differences in DMD between the NAELD and non NAELD

10

NATID

```
Nonalcoholic fatty liver (NAFLD) is a disease in which excessive fat deposits in liver cells in the absence
of excessive drinking or other causes of liver damage and is related to hepatic lipotoxicity(1). Lipotoxicity
is often secondary to the accumulation of toxic metabolites derived from triglycerides (TGs), which leads
to inflammatory diseases and the activation of insulin resistance(2). The liver and bones are both active
endocrine organs that have various metabolic functions(3). Insulin resistance and obesity are the key
pathogenic factors for NAFLD and type 2 diabetes mellitus (T2DM)(4). Therefore, these two diseases
```

37	usually coexist. Studies have indicated that 75% of T2DM patients have NAFLD. (5, 6). Currently, clear
38	evidence suggests that the bone mineral density (BMD) of T2DM patients is higher than that of non diabetes
39	people, especially in the spine and hips. However, T2DM is associated with an increased risk of fractures(7,
40	8). In addition, some studies have suggested that there is a latent association between NAFLD and BMD.
41	In addition to osteoporosis, which is commonly thought of as an age-dependent disease, other latent factors
42	are associated with liver and bone tissue(9).

43	Although some previous studies have separately examined the effects of NAFLD and diabetes on BMD,
44	there is little work discussing the impact of NAFLD coexisting with T2DM on BMD. Moreover, most of
45	the previous studies have been concentrated in specific groups, such as postmenopausal women and obese
46	adolescents. Therefore, in this study, we examined the association between BMD and NAFLD in T2DM
47	patients.

49 Subjects and methods

50 Subjects

51 In this study, 1300 subjects who underwent dual-energy X-ray absorptiometry (DXA) and abdominal

52 ultrasonography between January 2016 and March 2020 were included.

- 53 **Inclusion criteria:** 1)All participants were \geq 18 years old, 2) NAFLD patients were diagnosed with an
- 54 ultrasound examination; 3) BMD was measured by dual energy X-ray absorptiometry.

55	Exclusion criteria: 1) autoimmune, viral or drug-induced hepatitis disease; 2) excessive alcohol
56	consumption (over 20 g per day); 3) patients with diabetes other than T2DM; 4) other diseases that may
57	affect BMD except fatty liver and diabetes (hyperthyroidism, hyperparathyroidism, malignant tumors, etc.);
58	5) long-term use of drugs that affect BMD (such as glucocorticoids, steroids).
59	
99	

- After excluding subjects who did not meet the criteria and had incomplete data, 1088 subjects were included.
 The subjects were divided into the T2DM group and the non diabetes group. The diagnosis of T2DM was
 based on the recommendations of the current guidelines of the American Diabetes Association(10). T2DM
- 63 patients were divided into a T2DM with NAFLD group (181 patients) and a T2DM without NAFLD group
- 64 (353). The non diabetes group was divided into the NAFLD group (144) and the non-NAFLD group (410).
- 65 Methods

66 Dual-energy X-ray absorptiometry to measure lumbar spine BMD

- 67 According to the World Health Organization (WHO) diagnostic criteria, the T-score, Z-score and BMD
- 68 value at the lumbar spine (L1–L4) were measured using DXA (GE Lunar Health Care, DPX-L, USA).

69 NAFLD diagnosis via abdominal ultrasound

- 70 The sonographer used a 3-5 MHz probe to examine and evaluate the liver. The NAFLD diagnostic criteria
- ⁷¹ based on ultrasound are the presence of signs of liver steatosis, such as bright liver echo patterns, increased
- recho beam attenuation, and loss of structural details in the liver(11).

74 Collection of laboratory and baseline data

75	The height, weight, and smoking and alcohol consumption history of the participants were collected. Body
76	mass index (BMI) is the weight (kg) divided by the standing height squared (m ²). (12). Laboratory data
77	included total serum cholesterol (TC), TGs, high-density lipoprotein cholesterol (HDL-C), low-density
78	lipoprotein cholesterol (LDL-C), creatinine, uric acid (UA), alanine transaminase (ALT), alanine
79	aminotransferase (AST), glycosylated hemoglobin A1c (HbA1c), calcium, and fasting and postprandial
80	blood sugar.
81	
82	Statistical analysis
83	Statistical analyses were performed with IBM SPSS (version 22.0, IBM SPSS Inc., Armonk, New York,
84	US). Continuous standard variables are expressed as the mean±standard deviation. Categorical variables
85	are expressed in numbers (percentages) and were compared using the χ^2 test. Student's t-test was used to
86	evaluate the difference between the NAFLD and non-NAFLD groups. Linear regression analysis was used
87	to evaluate the correlation between NAFLD and lumbar spine BMD. First, we used the average lumbar

- 88 spine BMD as the dependent variable and selected variables based on the clinical background as
- 89 independent variables for univariate regression analysis. The confounding factors with p<0.1 in the
- 90 univariate analysis were included in the multivariate analysis. To avoid multicollinearity, the variance
- 91 inflation factor was evaluated before adjustment.

93 Results

94	The baseline characteristics and laboratory data of the T2DM group and non diabetes group are shown in
95	Table 1. There was no significant difference in age, sex, or smoking or alcohol consumption history between
96	the two subgroups (P>0.05). In the T2DM group, the average weight, BMI, TGs, ALT, AST, UA, and
97	calcium in the NAFLD subgroup were higher than those in the non-NAFLD subgroup (P<0.05). The HDL-
98	C and creatinine levels of the non-NAFLD subgroup were higher than those of the NAFLD subgroup
99	(P<0.05). In the non diabetes group, the BMI, TGs, LDL-C, and ALT in the NAFLD subgroup were higher
100	than those in the non-NAFLD subgroup (P<0.05). The non-NAFLD subgroup's HDL-C was higher than
101	that of the NAFLD subgroup ($P < 0.05$).
102	

103 Figure 1 describes lumbar spine BMD according to NAFLD presence. Lumbar spine BMD in the T2DM

104 group (-0.91±1.68 vs -1.3±1.63 g/cm²) and the non diabetes group (-1.2±1.76 vs -2.12±1.74 g/cm²),

- 105 NAFLD group were significantly higher than non-NAFLD group (P< 0.001).
- 106 The relationship between lumbar spine BMD and NAFLD in different groups is shown in Table 2 and Table
- 107 3. In the T2DM group, univariate analysis revealed an association of lumbar spine BMD with NAFLD
- 108 (p<0.05). After adjusting for confounding factors (BMI, sex, age, TGs, HDL-C, serum calcium, UA,
- 109 creatinine, ALT, glycosylated hemoglobin), NAFLD and lumbar spine BMD were still associated (P<0.05).
- 110 In the non diabetes group, univariate analysis revealed an association of lumbar spine BMD with NAFLD

- 111 (P<0.05). After adjusting for confounding factors (TGs, HDL-C, sex, age, ALT, blood calcium, UA,
- creatinine, calcium, glycosylated hemoglobin), there was no correlation between lumbar spine BMD and
 NAFLD (p>0.05).

115 Discussion

- 116 This study assessed the correlation between NAFLD and lumbar spine BMD in T2DM patients and non
- 117 diabetes patients. The main findings are as follows: First, the lumbar spine BMD in the NAFLD group was
- 118 higher than that in the non-NAFLD group regardless of whether the patients had T2DM. Second, after
- $119 \qquad \text{adjusting for confounding factors, NAFLD was still associated with lumbar spine BMD in the T2DM group,}$
- 120 while NAFLD was not associated with lumbar spine BMD in the non diabetes group.

122	Studies have been conducted on the correlation between NAFLD and BMD, but the results are still
123	controversial. A retrospective study found that NAFLD harms male femoral neck BMD but positively
124	affects lumbar spine BMD in postmenopausal women(13). Another study that used liver biopsy as a
125	diagnostic method for NAFLD found that the BMD of the lumbar spine in the NAFLD group was higher
126	than that in the control group(14). Nevertheless, there was no significant difference in femoral neck BMD
127	between the two groups. These results show that NAFLD does not reduce lumbar spine BMD or that
128	NAFLD increases lumbar spine BMD, which is partly consistent with our findings. We speculate that one
129	reason for this difference in BMD between the lumbar spine and the femoral neck may be related to different

body fat distributions. Subcutaneous and visceral fat have different metabolic characteristics(15). They may have different effects on BMD in different areas, and this correlation may vary with age and sex. Previous studies have shown that fat in the upper body can prevent bone loss and is associated with higher BMD in the lumbar spine(16). The effect of NAFLD on increased lumbar spine BMD may be related to the structural characteristics of the lumbar spine. NAFLD may prevent bone loss by increasing mechanical load and enhancing cortical bone formation. Some studies have also observed that serum fetuin-A is elevated in NAFLD patients(17-19). Nevertheless, research on fetuin-A is currently limited to in vitro experiments.

We noticed that several cross-sectional studies have reported that NAFLD is associated with a decrease in BMD. However, the subjects in these studies were mostly children and adolescents, and some were postmenopausal women(20-22). These findings indicate that the relationship between NAFLD and BMD is different among different people. At present, the mechanism underlying the low BMD in adolescents and postmenopausal women with NAFLD is not completely clear. In addition to being related to age, this association may also be related to low calcium, low growth hormone (GH) and low insulin growth factor (IGF-1)(23-25), yet these mechanisms have not yet been fully clarified.

144

145

146	Although there have been some studies on the relationship between NAFLD and BMD, few studies have
147	examined the relationship between NAFLD and BMD in patients with T2DM. Our research revealed that
148	the BMD of NAFLD patients was higher than that of non-NAFLD people regardless of diabetes status.
149	After adjusting for confounding factors, lumbar BMD in T2DM patients with NAFLD was still higher

150	than that in non-NAFLD patients. NAFLD and T2DM are both metabolic diseases and have similar
151	disease mechanisms. Most of the current studies support that the BMD of T2DM subjects is identical or
152	higher than that of people without T2DM, which may be related to the higher obesity rate of T2DM
153	patients(26). Obesity may lead to an increase in mechanical load and strain, thus increasing BMD(27).
154	Several previous studies on the relationship of T2DM with liver fibrosis and bone found low bone
155	turnover(28). The investigators did not mention the relationship with BMD, and these study sample sizes
156	were insufficient. Most of the subjects were postmenopausal women. Our study found that lumbar spine
157	BMD increased in patients with T2DM and may be associated with pancreatic and intestinal hormone
158	secretion in T2DM patients. T2DM can affect many hormones that act on bone through endocrine
159	pathways, affecting bone metabolism and increasing bone formation(15).
160	

150

161 There are several limitations to this study. First, in this study, we did not use liver biopsy to evaluate NAFLD. 162 Liver biopsy is the gold standard for NAFLD diagnosis, but it is invasive and difficult to implement widely. 163 Therefore, we chose abdominal ultrasound, which has been widely used in the clinic as a diagnostic method. 164 Although it is not the gold standard, we believe that this method is well-tested and reliable. Second, 165 although the current research considers many other factors that were not evaluated in previous research, it 166 is still impossible to completely exclude all confounding factors, such as bone turnover biomarkers, vitamin 167 D, and steroids. However, we believe that these factors will not significantly impact the results of this study. 168 Third, our study found differences in NAFLD's effect on BMD according to diabetes status, but this was 169 only a cross-sectional study. More prospective and mechanism-related studies are needed to evaluate the

- 170 relationships among T2DM, NAFLD and BMD.
- 171
- 172

173 Conclusions

- 174 This study shows differences in the relationship between NAFLD and lumbar spine BMD according to
- 175 diabetes status. In addition, increasing BMI only within a specific range has a positive effect on lumbar
- spine BMD. As T2DM and NAFLD coexist commonly, the impact of NAFLD on bone needs to be
- 177 evaluated in different clinical backgrounds. When clinical intervention is required, it is necessary to
- 178 consider the different effects of different metabolic factors on patients.

179 Declarations

180 Ethics approval and consent to participate

- 181 This study was approved by the ethics committee of Sichuan Provincial center for disease control and prevention.
- 182 Consent for publication
- 183 All the authors were consent for publication
- 184 Availability of data and materials
- 185 The supporting data can be acquired via correspondence author.
- **186** Competing interests
- 187 The authors declare no competing interests.
- 188 Funding
- 189 Not applicable
- 190 Authors' contributions
- 191 JD designed the study. JD analyzed the data and wrote the manuscript. CQH participated in the study design, data analyze, editing and review of the manuscript. XPZ supervised the overall study and contributed to study design, editing and review of the manuscript. YM, HMLwere responsible for collecting, sorting and statistical data. XPZ is the guarantor of this work and, as such, had full access to all the data in the study and takes

responsibility for the integrity of the data and the accuracy of the data analysis. All authors read and approved the final manuscript.

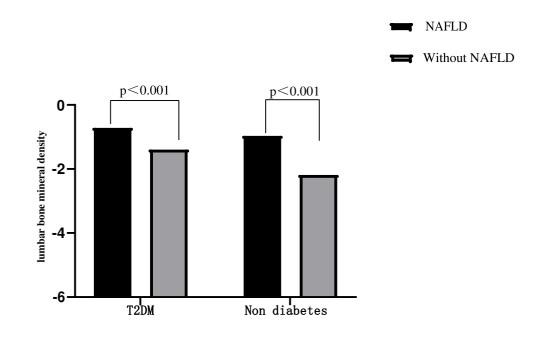
115 **References**

116 1. Lonardo A, Nascimbeni F, Mantovani A, Targher G. Hypertension, diabetes, atherosclerosis and

- 192 NASH: Cause or consequence? Journal of hepatology. 2018;68(2):335-52.
- 193 2. Filip R, Radzki RP, Bieńko M. Novel insights into the relationship between nonalcoholic fatty liver
- 194 disease and osteoporosis. Clinical interventions in aging. 2018;13:1879-91.
- 195 3. Muzica CM, Sfarti C, Trifan A, Zenovia S, Cuciureanu T, Nastasa R, et al. Nonalcoholic Fatty Liver
- 196 Disease and Type 2 Diabetes Mellitus: A Bidirectional Relationship. Canadian journal of
- 197 gastroenterology & hepatology. 2020;2020:6638306.
- 198 4. Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Bailly-Maitre B. Endoplasmic reticulum stress
- 199 signalling and the pathogenesis of non-alcoholic fatty liver disease. Journal of hepatology.
- 196 2018;69(4):927-47.
- 197 5. Cusi K. Treatment of patients with type 2 diabetes and non-alcoholic fatty liver disease: current
- 198 approaches and future directions. Diabetologia. 2016;59(6):1112-20.
- 199 6. Poggiogalle E, Donini LM, Lenzi A, Chiesa C, Pacifico L. Non-alcoholic fatty liver disease
- 200 connections with fat-free tissues: A focus on bone and skeletal muscle. World journal of
- 201 gastroenterology. 2017;23(10):1747-57.
- 202 7. Ghodsi M, Larijani B, Keshtkar AA, Nasli-Esfahani E, Alatab S, Mohajeri-Tehrani MR. Mechanisms
- 203 involved in altered bone metabolism in diabetes: a narrative review. Journal of diabetes and
- 204 metabolic disorders. 2016;15:52.

- 205 8. Compston J. Type 2 diabetes mellitus and bone. Journal of internal medicine. 2018;283(2):140-
- 207 9. Targher G, Lonardo A, Rossini M. Nonalcoholic fatty liver disease and decreased bone mineral
- 208 density: is there a link? Journal of endocrinological investigation. 2015;38(8):817-25.

- 209 10. Chamberlain JJ, Herman WH, Leal S, Rhinehart AS, Shubrook JH, Skolnik N, et al. Pharmacologic
- 210 Therapy for Type 2 Diabetes: Synopsis of the 2017 American Diabetes Association Standards of
- 211 Medical Care in Diabetes. Annals of internal medicine. 2017;166(8):572-8.
- 212 11. Joy D, Thava VR, Scott BB. Diagnosis of fatty liver disease: is biopsy necessary? European journal
- 213 of gastroenterology & hepatology. 2003;15(5):539-43.
- 214 12. Appropriate body-mass index for Asian populations and its implications for policy and
- 215 intervention strategies. Lancet (London, England). 2004;363(9403):157-63.
- 216 13. Lee SH, Yun JM, Kim SH, Seo YG, Min H, Chung E, et al. Association between bone mineral
- 217 density and nonalcoholic fatty liver disease in Korean adults. Journal of endocrinological investigation.
- 218 2016;39(11):1329-36.
- 219 14. Kaya M, Işık D, Beştaş R, Evliyaoğlu O, Akpolat V, Büyükbayram H, et al. Increased bone mineral
- 220 density in patients with non-alcoholic steatohepatitis. World journal of hepatology. 2013;5(11):627-
- 221 34**.**
- 222 15. Ma C, Tonks KT, Center JR, Samocha-Bonet D, Greenfield JR. Complex interplay among
- adiposity, insulin resistance and bone health. Clinical obesity. 2018;8(2):131-9.
- 16. Reid IR. Fat and bone. Archives of biochemistry and biophysics. 2010;503(1):20-7.
- 225 17. Cui Z, Xuan R, Yang Y. Serum fetuin A level is associated with nonalcoholic fatty liver disease in
- 226 Chinese population. Oncotarget. 2017;8(63):107149-56.
- 227 18. Haukeland JW, Dahl TB, Yndestad A, Gladhaug IP, Løberg EM, Haaland T, et al. Fetuin A in
- 228 nonalcoholic fatty liver disease: in vivo and in vitro studies. European journal of endocrinology.


229 2012;166(3):503-10.

- 230 19. Sato M, Kamada Y, Takeda Y, Kida S, Ohara Y, Fujii H, et al. Fetuin-A negatively correlates with
- 231 liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver international : official
- journal of the International Association for the Study of the Liver. 2015;35(3):925-35.
- 233 20. Sun Y, Dai W, Liang Y, Yang P, Yang Q, Liang M, et al. Relationship between nonalcoholic fatty
- 234 liver disease and bone mineral density in adolescents with obesity: a meta-analysis. Diabetes,
- 235 metabolic syndrome and obesity : targets and therapy. 2019;12:199-207.
- 236 21. Campos RM, de Piano A, da Silva PL, Carnier J, Sanches PL, Corgosinho FC, et al. The role of
- 237 pro/anti-inflammatory adipokines on bone metabolism in NAFLD obese adolescents: effects of
- 238 long-term interdisciplinary therapy. Endocrine. 2012;42(1):146-56.
- 239 22. Moon SS, Lee YS, Kim SW. Association of nonalcoholic fatty liver disease with low bone mass in
- 240 postmenopausal women. Endocrine. 2012;42(2):423-9.
- 241 23. Blakytny R, Spraul M, Jude EB. Review: The diabetic bone: a cellular and molecular perspective.
- 242 The international journal of lower extremity wounds. 2011;10(1):16-32.
- 243 24. Moyer-Mileur LJ, Slater H, Jordan KC, Murray MA. IGF-1 and IGF-binding proteins and bone
- 244 mass, geometry, and strength: relation to metabolic control in adolescent girls with type 1 diabetes.
- 245 Journal of bone and mineral research : the official journal of the American Society for Bone and
- 246 Mineral Research. 2008;23(12):1884-91.
- 247 25. Yaturu S. Diabetes and skeletal health. Journal of diabetes. 2009;1(4):246-54.
- 248 26. Carracher AM, Marathe PH, Close KL. International Diabetes Federation 2017. Journal of

- 249 diabetes. 2018;10(5):353-6.
- 250 27. Yamamoto M. Insights into bone fragility in diabetes: the crucial role of bone quality on skeletal

- 251 strength. Endocrine journal. 2015;62(4):299-308.
- 252 28. Mantovani A, Sani E, Fassio A, Colecchia A, Viapiana O, Gatti D, et al. Association between non-
- 253 alcoholic fatty liver disease and bone turnover biomarkers in post-menopausal women with type 2

254	diabetes. Diabetes & metabolism. 2019;45(4):347-55.
255	
256	
257	Figure legends
258	
259	Figure 1 Mean values of lumbar BMD (L1-L4) in different diabetes status classification by NAFLD.

- 260
- 261 Note: NAFLD, non-alcoholic fatty liver disease; T2DM, type 2 diabetes mellitus.

262 P values calculated by t-test.

263

Table legends

Table 1 General characteristics of the study population with and without NAFLD after their classification

according to T2DM.

	T2DM (n=534)			Non diabetes (n=554)			
	With NAFLD Without		p-value With NAF		Without NAFLD	p-value	
Demographics							
Age (years)	65.71±10.13	67.91±11.19	0.069	69.9±10.7	70.5±12.4	0.785	
Female	113 (62.6))	202 (57.2)	0.293	100 (68.7)	243 (59.5)	0.237	
Height (cm)	159.3±9.3	158.3±8.6	0.433	155.5±8.1	155.9±9.9	0.808	
Body weight (kg)	67.9±10.5	59.4±9.4	0.001*	67.6±12.5	54.6±10.1	0.001*	
BMI (kg/cm2)	26.6±3.7	23.7±3.3	0.001*	28.2±3.7	22.2±2.9	0.001*	
Smoking history	51 (28.1)	86 (24.3)	0.392	21 (14.6)	94 (22.9)	0.204	
Drinking history	38 (20.7)	76 (21.7)	0.765	24 (16.7)	76 (18.5)	0.762	
Laboratory data							
HbA1c (%)	8.8±2.1	8.9±2.4	0.677	5.9±1.1	5.61±0.5	0.174	
T-chol (mmol/L)	4.7±1.9	4.6±1.4	0.373	4.7±1.4	4.4±0.9	0.208	
Triglyceride (mmol/L)	2.8±2.6	1.9±1.4	0.001*	2.0±1.0	1.33±0.9	0.001*	
HDL-C (mmol/L)	1.2±0.4	1.3±0.3	0.001*	1.36±0.4	1.43±0.4	0.01*	
LDL-C (mmol/L)	2.7±0.9	2.6±0.9	0.189	2.79±1.14	2.4±0.79	0.03*	

-							
	ALT (U/I)	32.2±18.4	22.8±14.5	0.001*	31.8±19.3	22.2±13.3	0.003*
	AST (U/l)	29.3±15.8	24.7±17.5	0.016*	32.4±23.1	26.5±9.2	0.096
	Creatinine (umol/L)	58.6±14.3	63.2±16.4	0.014*	57.3±13.6	63.4±14.8	0.012*
	Uric acid (umol/L)	351.1±97.1	316.9±89.8	0.002*	337.9±97.6	319.8±99.2	0.282
	calcium (mmol/L)	2.34±0.1	2.29±0.2	0.022*	2.29±0.1	2.25±0.1	0.11

270 Note: The values are the mean ± SD, Numbers in the brackets are percentages. n, number of patients;

271 T2DM, type 2 diabetes mellitus; BMI, body mass index; HDL, high-density lipoprotein cholesterol; LDL,

272 low-density lipoprotein cholesterol; T-chol, total cholesterol, AST, aspartate aminotransferase; ALT,

- alanine aminotransferase; HbA1c, glycosylated hemoglobin; *P<0.05

Table 2 Univariate regression analysis: the effect of the study variables on Lumbar spine BMD.

	T2DM				Non- diabetes			
	β	95% CI		p-value	β	95% CI		p-value
Age (years)	-0.035	-0.05	-0.02	0.001*	-0.04	-0.057	0.023	0.001*
Sex (female)	1.569	1.261	-1.877	0.001*	1.553	1.153	1.954	0.001*
Height (cm)	0.081	0.059	0.103	0.001*	0.078	0.054	0.103	0.001*
Body weight (kg)	0.065	0.046	0.083	0.001*	0.081	0.063	0.098	0.001*
BMI (kg/cm2)	0.069	0.012	0.125	0.017*	0.16	0.097	0.224	0.001*
Smoking history	0.027	-0.361	0.416	0.890	0.001	-0.5	0.502	0.997
Drinking history	-0.026	-0.445	0.394	0.905	0.047	-0.499	0.592	0.866
HbA1c (%)	0.017	-0.059	0.094	0.653	0.26	-0.453	0.972	0.472
T-chol (mmol/L)	-0.011	-0.46	0.124	0.872	-0.051	-0.248	0.147	0.615
Triglyceride (mmol/L)	0.26	-0.02	0.163	0.126	0.186	-0.041	0.413	0.109
HDL-C (mmol/L)	-0.679	-1.167	-0.19	0.007*	-1.238	-1.728	-0.747	0.001*
LDL-C (mmol/L)	-0.022	-0.207	0.163	0.957	0.15	-0.098	0.399	0.235
ALT (U/l)	-0.699	-1.078	-0.32	0.001*	-1.238	-1.897	-0.578	0.001*
AST (U/l)	0.013	0.002	0.023	0.021*	0.021	0.007	0.036	0.004*
Creatinine (umol/L)	0.006	-0.005	0.016	0.305	-0.004	-0.02	0.012	0.621
Uric acid (umol/L)	0.014	0.003	0.025	0.014*	0.009	0.000	0.018	0.056
calcium (mmol/L)	0.014	0.000	0.004	0.044*	0.005	0.002	0.007	0.001*

282	Note: T2DM, type 2 diabetes mellitus; BMI, body mass index; HDL, high-density lipoprotein cholesterol;								
283	LDL, low-density lipoprotein cholesterol; T-chol, total cholesterol; AST, aspartate aminotransferase;								
284	ALT, alanine aminotransferase; HbA1c, glycosylated hemoglobin; *P<0.05								
285									
286									
287									
288									
289	Table 3 Mu	ltivariate linear an	alysis: the effe	ct of the study variabl	es on Lumbar spine BM	D			
290									
291			β	P-value	R ²				
292		T2DM							
293		NAFID	0.400	0.027	0.401				
294		NAFLD	-0.488	0.027	0.401				
295		BMI	0.085	0.004					
296		Age	-0.03	0.005					
297		Sex(female)	1.366	0.001					
298		Non diabetes							
299		BMI	0.107	0.031	0.498				
300		Sex(female)	2.158	0.001					
301	Note: For				um, UA, creatinine, A LT	`, and			
302	olycosylate	ed hemoglobin we	re adjusted						

302 glycosylated hemoglobin were adjusted.

- 303 For Non diabetes group, TGs, HDL-C, sex, age, ALT, blood calcium, UA, creatinine, calcium, and
- 304 glycosylated hemoglobin were adjusted.
- 305 BMI, body mass index; NAFLD, non-alcoholic fatty liver disease.