[1] O’BRIEN, C. L., HUBER, M., THOMAS, E., PAGANI, M., SUPER, J. R., ELDER, L. E. & HULL, P. M. 2020. The enigma of Oligocene climate and global surface temperature evolution. Proceedings of the National Academy of Sciences, 117, 25302-25309.
[2] HAUPTVOGEL, D. W., PEKAR, S. F. & PINCAY, V. 2017. Evidence for a heavily glaciated Antarctica during the late Oligocene “warming” (27.8–24.5 Ma): Stable isotope records from ODP Site 690. Paleoceanography, 32, 384-396.
[3] DE MAN, E. & VAN SIMAEYS, S. 2004. Late Oligocene Warming Event in the southern North Sea Basin: benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences, 83, 227-239.
[4] ZACHOS, J., PAGANI, M., SLOAN, L., THOMAS, E. & BILLUPS, K. 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 292, 686-693.
[5] SCHLUNEGGER, F. & NORTON, K. P. 2015. Climate vs. tectonics: the competing roles of Late Oligocene warming and Alpine orogenesis in constructing alluvial megafan sequences in the North Alpine foreland basin. Basin Research, 27, 230-245.
[6] SUN, Q., ALVES, T. M., ZHAO, M., SIBUET, J.-C., CALVèS, G. & XIE, X. 2020. Post-rift magmatism on the northern South China Sea margin. GSA Bulletin, 132, 2382-2396.
[7] WU, F., MIAO, Y., MENG, Q., FANG, X. & SUN, J. 2019. Late Oligocene Tibetan Plateau Warming and Humidity: Evidence From a Sporopollen Record. Geochemistry, Geophysics, Geosystems, 20, 434-441.
[8] SVENSEN, H., PLANKE, S., CHEVALLIER, L., MALTHE-SøRENSSEN, A., CORFU, F. & JAMTVEIT, B. 2007. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth and Planetary Science Letters, 256, 554-566.
[9] SVENSEN, H., PLANKE, S., MALTHE-SøRENSSEN, A., JAMTVEIT, B., MYKLEBUST, R., RASMUSSEN EIDEM, T. & REY, S. S. 2004. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 429, 542-545.
[10] AARNES, I., FRISTAD, K., PLANKE, S. & SVENSEN, H. 2011. The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochemistry, Geophysics, Geosystems, 12.
[11] AARNES, I., PLANKE, S., TRULSVIK, M. & SVENSEN, H. 2015. Contact metamorphism and thermogenic gas generation in the Vøring and Møre basins, offshore Norway, during the Paleocene–Eocene thermal maximum. Journal of the Geological Society, 172, 588-598.
[12] AARNES, I., SVENSEN, H., CONNOLLY, J. A. D. & PODLADCHIKOV, Y. Y. 2010. How contact metamorphism can trigger global climate changes: Modeling gas generation around igneous sills in sedimentary basins. Geochimica et Cosmochimica Acta, 74, 7179-7195.
[13] REYNOLDS, P., PLANKE, S., MILLETT, J. M., JERRAM, D. A., TRULSVIK, M., SCHOFIELD, N. & MYKLEBUST, R. 2017. Hydrothermal vent complexes offshore Northeast Greenland: A potential role in driving the PETM. Earth and Planetary Science Letters, 467, 72-78.
[14] SYDNES, M., FJELDSKAAR, W., LøTVEIT, I. F., GRUNNALEITE, I. & CARDOZO, N. 2018. The importance of sill thickness and timing of sill emplacement on hydrocarbon maturation. Marine and Petroleum Geology, 89, 500-514.
[15] IYER, K., RüPKE, L. & GALERNE, C. Y. 2013. Modeling fluid flow in sedimentary basins with sill intrusions: Implications for hydrothermal venting and climate change. Geochemistry, Geophysics, Geosystems, 14, 5244-5262.
[16] IYER, K., SCHMID, D. W., PLANKE, S. & MILLETT, J. 2017. Modelling hydrothermal venting in volcanic sedimentary basins: Impact on hydrocarbon maturation and paleoclimate. Earth and Planetary Science Letters, 467, 30-42.
[17] ZHAO, F., BERNDT, C., ALVES, T. M., XIA, S., LI, L., MI, L. & FAN, C. 2021. Widespread hydrothermal vents and associated volcanism record prolonged Cenozoic magmatism in the South China Sea. GSA Bulletin, 133, 2645-2660.
[18] ROELOFSE, C., ALVES, T. M. & OMOSANYA, K. D. O. 2021. Reutilisation of hydrothermal vent complexes for focused fluid flow on continental margins (Modgunn Arch, Norwegian Sea). Basin Research, 33, 1111-1134.
[19] MØLLER HANSEN, D. 2006. The morphology of intrusion-related vent structures and their implications for constraining the timing of intrusive events along the NE Atlantic margin. Journal of the Geological Society, 163, 789-800.
[20] TAO, Z., HE, Z., ALVES, T. M., GUO, X., GAO, J., HE, S. & ZHAO, W. 2022. Structural inheritance and its control on overpressure preservation in mature sedimentary basins (Dongying depression, Bohai Bay Basin, China). Marine and Petroleum Geology, 137, 105504.
[21] WANG, P., LI, S., SUO, Y., GUO, L., SANTOSH, M., LI, X., WANG, G., JIANG, Z., LIU, B., ZHOU, J., JIANG, S., CAO, X. & LIU, Z. 2021. Structural and kinematic analysis of Cenozoic rift basins in South China Sea: A synthesis. Earth-Science Reviews, 216, 103522.
[22] PETERSEN, H. I., NYTOFT, H. P., RATANASTHIEN, B. & FOOPATTHANAKAMOL, A. 2007. OILS FROM CENOZOIC RIFT-BASINS IN CENTRAL AND NORTHERN THAILAND: SOURCE AND THERMAL MATURITY. Journal of Petroleum Geology, 30, 59-78.
[23] TIERCELIN, J.-J. 1991. Natural Resources in the Lacustrine Facies of the Cenozoic Rift Basins of East Africa. Lacustrine Facies Analysis.
[24] MAO X., LUO L., WANG X. & GUO D. 2020. Distribution Characteristics of Cenozoic Volcanic Rocks and Its Geothermal Exploration Potential in Bohai Bay Basin. Geoscience, 2020, 34( 4), 858-864.
[25] JIN C., QIAO D. & DAN W. 2012. Meso-Cenozoic volcanic rock distribution and reservoir characteristics in the Bohai Bay Basin. Oil & Gas Geology, 33(1), 19-36.
[26] CARTWRIGHT, J. & MøLLER HANSEN, D. 2006. Magma transport through the crust via interconnected sill complexes. Geology, 34, 929-932.
[27] MAGEE, C., HUNT-STEWART, E. & JACKSON, C. A. L. 2013. Volcano growth mechanisms and the role of sub-volcanic intrusions: Insights from 2D seismic reflection data. Earth and Planetary Science Letters, 373, 41-53.
[28] HANSEN, D. M. & CARTWRIGHT, J. 2006. The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. Journal of Structural Geology, 28, 1520-1535.
[29] ROCCHI, S., MAZZOTTI, A., MARRONI, M., PANDOLFI, L., COSTANTINI, P., GIUSEPPE, B., BIASE, D. D., FEDERICI, F. & Lô, P. G. 2007. Detection of Miocene saucer-shaped sills (offshore Senegal) via integrated interpretation of seismic, magnetic and gravity data. Terra Nova, 19, 232-239.
[30] SIREGAR, E., OMOSANYA, K. O., MAGEE, C. & JOHANSEN, S. E. 2019. Impacts of fault-sill interactions on sill emplacement in the Vøring Basin, Norwegian North Sea. Journal of Structural Geology, 126, 156-174.
[31] ZHU, H., ZENG, Z., ZENG, H. & XU, C. 2020. 3D seismic data attribute-based characterization of volcanic reservoirs in the BZ34-9 Block, Bohai Bay Basin, eastern China. GEOPHYSICS, 85, IM1-IM13.
[32] WANG, L., SUN, Z., YANG, J., SUN, Z., ZHU, J., ZHUO, H. & STOCK, J. 2019. Seismic characteristics and evolution of post-rift igneous complexes and hydrothermal vents in the Lingshui sag (Qiongdongnan basin), northwestern South China Sea. Marine Geology, 418, 106043.
[33] Skogly, O., 1998. Seismic Characterization and Emplacement of Intrusives in the Vøring Basin. Cand Scient thesis. Department of Geology, University of Oslo.
[34] BERNDT, C., SKOGLY, O. P., PLANKE, S., ELDHOLM, O. & MJELDE, R. 2000. High-velocity breakup-related sills in the Vøring Basin, off Norway. Journal of Geophysical Research: Solid Earth, 105, 28443-28454.
[35] OMOSANYA, K. O., MAIA, A. R. & ERUTEYA, O. E. 2020. Seismic, morphologic and scale variabilities of subsurface pipes and vent complexes in a magma-rich margin. Bulletin of Volcanology, 82, 40.
[36] Planke, S., Rasmussen, T., Rey, S. S., & Myklebust, R. (2005).Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins.In A. G. Doré, & B. A. Vining (Eds.), Petroleum Geology: North-West Europe and Global Perspectives - Proceedings of the 6th Petroluem Geology Conference (pp. 833–844). London: Geological Society.
[37] JOLLEY, D. W., CLARKE, B. & KELLEY, S. 2002. Paleogene time scale miscalibration: Evidence from the dating of the North Atlantic igneous province. Geology, 30, 7-10.
[38] TRUDE, J., CARTWRIGHT, J., DAVIES, R. J. & SMALLWOOD, J. 2003. New technique for dating igneous sills. Geology, 31, 813-816.
[39] DAVIES, R., BELL, B. R., CARTWRIGHT, J. A. & SHOULDERS, S. 2002. Three-dimensional seismic imaging of Paleogene dike-fed submarine volcanoes from the northeast Atlantic margin. Geology, 30, 223-226.
[40] VILLA, G. & PERSICO, D. 2006. Late Oligocene climatic changes: Evidence from calcareous nannofossils at Kerguelen Plateau Site 748 (Southern Ocean). Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 110-119.
[41] MILLER, K. G., FAIRBANKS, R. G. & MOUNTAIN, G. S. 1987. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 2, 1-19.
[42] ZANAZZI, A., KOHN, M. J., MACFADDEN, B. J. & TERRY, D. O. 2007. Large temperature drop across the Eocene–Oligocene transition in central North America. Nature, 445, 639-642.
[43] PäLIKE, H., NORRIS, R. D., HERRLE, J. O., WILSON, P. A., COXALL, H. K., LEAR, C. H., SHACKLETON, N. J., TRIPATI, A. K. & WADE, B. S. 2006. The Heartbeat of the Oligocene Climate System. Science, 314, 1894-1898.
[44] PEKAR, S. F., DECONTO, R. M. & HARWOOD, D. M. 2006. Resolving a late Oligocene conundrum: Deep-sea warming and Antarctic glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 231, 29-40.
[45] BAINS, S., CORFIELD, R. M. & NORRIS, R. D. 1999. Mechanisms of Climate Warming at the End of the Paleocene. Science, 285, 724-727.
[46] KENDER, S., BOGUS, K., PEDERSEN, G. K., DYBKJæR, K., MATHER, T. A., MARIANI, E., RIDGWELL, A., RIDING, J. B., WAGNER, T., HESSELBO, S. P. & LENG, M. J. 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nature Communications, 12, 5186.
[47] WRIGHT, J. D. & SCHALLER, M. F. 2013. Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum. Proceedings of the National Academy of Sciences, 110, 15908-15913.
[48] DICKENS, G. R., O'NEIL, J. R., REA, D. K. & OWEN, R. M. 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 10, 965-971.
[49] KEMP, D. B., COE, A. L., COHEN, A. S. & SCHWARK, L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature, 437, 396-399.
[50] ZACHOS JAMES, C., RöHL, U., SCHELLENBERG STEPHEN, A., SLUIJS, A., HODELL DAVID, A., KELLY DANIEL, C., THOMAS, E., NICOLO, M., RAFFI, I., LOURENS LUCAS, J., MCCARREN, H. & KROON, D. 2005. Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum. Science, 308, 1611-1615.
[51] WIGNALL, P. B. 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53, 1-33.
[52] LIU, Q., HE, L. & CHEN, L. 2018. Tectono-thermal modeling of Cenozoic multiple rift episodes in the Bohai Bay Basin, eastern China and its geodynamic implications. International Journal of Earth Sciences, 107, 53-69.
[53] LIU QiongYing, HE LiJuan. 2019. Tectono-thermal modeling of the Bohai Bay Basin since the Cenozoic. Chinese Journal of Geophysics (in Chinese), 62(1): 219-235.
[54] Jamtveit, B., Svensen, H., Podladchikov, Y.Y., Planke, S., 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. Physical Geology of High-Level Magmatic Systems, 234, 233–241.
[55] S. Li, G. Zhao, L. Dai, L. Zhou, X. Liu, Y. Suo, M. Santosh, 2012. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton Journal of Asian Earth Sciences, 47, pp. 80-93.
[56] J. Su, W. Zhu, J. Wei, L. Xu, Y. Yang, Z. Wang, Z. Zhang, 2011. Fault growth and linkage: implications for tectonosedimentary evolution in the Chezhen basin of Bohai Bay, eastern China AAPG Bulletin, 95, pp. 1-26.