1. Tanioka H, Tanioka S, Kaga K. Why COVID-19 is not so spread in Africa: How does Ivermectin affect it? medRxiv 2021 Mar doi: 10.1101/2021.03.26.21254377.
2. Kory P, Meduri GU, Varon J, Iglesias J, Marik PE. Review of the Emerging Evidence Demonstrating the Efficacy of Ivermectin in the Prophylaxis and Treatment of COVID-19. Am J Ther. 2021 Apr 22; 28(3): e299-e318. doi: 10.1097/MJT.0000000000001377. PMID: 34375047; PMCID: PMC8088823.
3. Locatelli I, Trächsel B, Rousson V. Estimating the basic reproduction number for COVID-19 in Western Europe. PLOS ONE 2021 16(3): e0248731. doi: https://doi.org/10.1371/journal.pone.0248731
4. Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane FA, et al. Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N Engl J Med. 2021; NEJMoa2114114. doi:10.1056/NEJMoa2114114
5. Goldberg Y, Mandel M, Bar-On YM, Bodenheimer O, Freedman L, Haas EJ, et al. Waning Immunity after the BNT162b2 Vaccine in Israel. N Engl J Med. 2021;10.1056/NEJMoa2114228. doi:10.1056/NEJMoa2114228
6. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet. 2021;398(10309):1407-1416. doi:10.1016/S0140-6736(21)02183-8
7. CDC (Centers for Disease Control and Prevention). Delta Variant: What We Know About the Science. https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html
8. UK Health Security Agency. Investigation of SARS-CoV-2 variants: technical briefings. https://www.gov.uk/government/publications/investigation-of-sars-cov-2-variants-technical-briefings
9. Accorsi EK, Britton A, Fleming-Dutra KE, Smith ZR, Shang N, Derado G, et al. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA. 2022;10.1001/jama.2022.0470. doi:10.1001/jama.2022.0470
10. Hope JR. Ivermectin obliterates 97 percent of Delhi cases. https://www.thedesertreview.com/news/national/ivermectin-obliterates-97-percent-of-delhi-cases/article_6a3be6b2-c31f-11eb-836d-2722d2325a08.html
[Accessed 10 October 2021]
11. Lifson T. Number of COVID cases in Delhi crashes after mass distribution of ivermectin. IifeSite 2021 May 31
https://www.lifesitenews.com/news/number-of-covid-cases-in-delhi-crashes-after-mass-distribution-of-ivermectin/ [Accessed 10 October 2021]
12. wnd.com. COVID Deaths Plunge After Mexico City Introduces Ivermectin. Principia Scientific International 2021 June 10. https://principia-scientific.com/covid-deaths-plunge-after-mexico-city-introduces-ivermectin/ [Accessed 10 August 2021]
13. Vaccine development and perspective. Ministry of Health, Labour and Welfare. https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00223.html
In Japanese [Accessed 7 July 2021]
14. Mok CKP, Cohen CA, Cheng SMS, Chen CC, Kwok KO, Yin K, et al. Comparison of the immunogenicity of BNT162b2 and CoronaVac COVID-19 vaccines in Hong Kong. Respirology (Carlton, Vic.). 2021 Nov. doi: 10.1111/resp.14191.
15. United Nations: Population and Vital Statistics Report. Population, latest available census, and estimates, latest available data. (Last Updated: 15 January 2021) https://unstats.un.org/unsd/demographic-social/products/vitstats/seratab2.pdf
16. Global ivermectin adoption for COVID-19: 36%. https://ivmmeta,com
17. Statistics and Research Coronavirus (COVID-19) Vaccinations. Our world in data https://ourworldindata.org/covid-vaccinations?country= [Accessed 1 September 2021]
18. Worldometer: COVID-19 coronavirus pandemic. https://www.worldometers.info/coronavirus/ [Accessed 10 September 2021]
19. World Health Statistics 2021: Monitoring Health for the SDGs. from World Health Organization 2021. https://www.who.int/data/gho/publications/world-health-statistics. [Accessed 2 February 2022]
20. Levin A, Owusu-Boaitey N, Pugh S, Fosdick BK, Zwi AB, Malani A, et al. Assessing the Burden of COVID-19 in Developing Countries: Systematic Review, Meta-Analysis, and Public Policy Implications. medRxiv 2021.09.29.21264325; doi: https://doi.org/10.1101/2021.09.29.21264325
21. Yang W, Kandula S, Huynh M, Greene SK, Van Wye G, Li W, et al. Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis. Lancet Infect Dis. 2021 Feb;21(2):203-212. doi: 10.1016/S1473-3099(20)30769-6. Epub 2020 Oct 19. Erratum in: Lancet Infect Dis. 2021 Jan;21(1):e1.
22. Zee Media Bureau. Two-thirds of Indians have COVID-19 antibodies but 40 crore people still vulnerable. ZEENEWS 2021 July 21
https://zeenews.india.com/india/two-thirds-of-indians-have-covid-19-antibodies-but-40-crore-people-still-vulnerable-2377638.html [Accessed 10 December 2021]
23. Heidary F, Gharebaghi R. Ivermectin: a systematic review from antiviral effects to COVID-19 complementary regimen. J Antibiot (Tokyo). 2020 Sep;73(9):593-602. doi: 10.1038/s41429-020-0336-z. Epub 2020 Jun 12.
24. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020 Jun; 178:104787. doi: 10.1016/j.antiviral.2020.104787.
25. Sen Gupta PS, Biswal S, Panda SK, Ray AK, Rana MK. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. J Biomol Struct Dyn. 2022 Mar; 40(5): 2217-2226. doi: 10.1080/07391102.2020.1839564.
26. Choudhury A, Das NC, Patra R, Bhattacharya M, Ghosh P, Patra BC, Mukherjee S. Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: an in silico approach. Future Virol. 2021 Mar:10.2217/fvl-2020-0342. doi: 10.2217/fvl-2020-0342.
27. Lehrer S, Rheinstein PH. Ivermectin Docks to the SARS-CoV-2 Spike Receptor-binding Domain Attached to ACE2. In Vivo. 2020 Sep-Oct; 34(5): 3023-3026. doi: 10.21873/invivo.12134.
28. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16; 181(2): 271-280.e8. doi: 10.1016/j.cell.2020.02.052.
29. Monie TP. Section 2 - Immune Cells and the Process of Pattern Recognition. The Innate Immune System. In: Monie TP, editor. A compositional and functional perspective. London, UK Academic Press; 2017, p. 41-82. https://doi.org/10.1016/B978-0-12-804464-3.00002-8
30. Furr SR, Moerdyk-Schauwecker M, Grdzelishvili VZ, Marriott I. RIG-I mediates non-segmented negative-sense RNA virus-induced inflammatory immune responses of primary human astrocytes. Glia. 2010 Oct 58(13): 1620–1629. doi:10.1002/glia.21034.
31. Peisley A, Wu B, Yao H, Walz T, Hur S. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell. 2013 Sep 12;51(5):573-83. doi: 10.1016/j.molcel.2013.07.024.
32. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005 Oct;6(10):981-988. doi: 10.1038/ni1243.
33. Yang H, Guo HZ, Li XY, Lin J, Zhang W, Zhao JM, et al. Viral RNA-Unprimed Rig-I Restrains Stat3 Activation in the Modulation of Regulatory T Cell/Th17 Cell Balance. J Immunol. 2017 Jul 1; 199(1): 119-128. doi: 10.4049/jimmunol.1700366.
34. Suthar MS, Ramos HJ, Brassil MM, Netland J, Chappell CP, Blahnik G, et al. The RIG-I-like receptor LGP2 controls CD8+ T cell survival and fitness. Immunity. 2012 August 24; 37(2): 235–248. doi: 10.1016/j.immuni.2012.07.004.
35. Wu B, Hur S. How RIG-I like receptors activate MAVS. Curr Opin Virol. 2015 Jun 12: 91-98. doi: 10.1016/j.coviro.2015.04.004.
36. Jarjour NN, Masopust D, Jameson SC. T Cell Memory: Understanding COVID-19. Immunity. 2021 Jan 12;54(1):14-18. doi: 10.1016/j.immuni.2020.12.009.
37. Quast I, Tarlinton D. B cell memory: understanding COVID-19. Immunity. 2021 Feb 9;54(2):205-210. doi: 10.1016/j.immuni.2021.01.014.
38. Lee NR, Ban J, Lee NJ, Yi CM, Choi JY, Kim H, et al. Activation of RIG-I-Mediated Antiviral Signaling Triggers Autophagy Through the MAVS-TRAF6-Beclin-1 Signaling Axis. Front Immunol. 2018 Sep 12; 9: 2096. doi: 10.3389/fimmu.2018.02096.
39. Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020 Oct 5, 1185–1191. https://doi.org/10.1038/s41564-020-00789-5
40. Ahmed S, Karim MM, Ross AG, Hossain MS, Clemens JD, Sumiya MK, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis. 2021 Feb; 103: 214-216. doi: 10.1016/j.ijid.2020.11.191.
41. Babalola OE, Yahaya N, Ajayi AA, Ogedengbe JO, Thairu Y, Omede O. A Randomized Controlled Trial of Ivermectin Monotherapy Versus Hydroxychloroquine, Ivermectin, and Azithromycin Combination Therapy in Covid-19 Patients in Nigeria. Research Square; 2021. doi: 10.21203/rs.3.rs-950352/v1.