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New MDS Self-Dual Codes From Two Disjoint Subsets ∗

Yuting Cao · Shixin Zhu

Abstract In recent years, some new classes of MDS self-dual codes were construed. The method
is to obtain new structure by generalized GRS codes. In this paper, our idea is to construct
MDS self-dual codes of length n where is composed with two subgroups of Fq. In particular,
these two subgroups do not intersect. Several classes of new q-ary MDS self-dual codes under
specific conditions are given by considering the interval of s, t.
Keywords MDS self-dual codes · Generalized Reed-Solomon codes

1 Introduction

MDS codes are a special class of codes that satisfies the Singleton constraint and have a strong
error correction capability. Especially when the code length is not too long, its performance
is very close to the theoretical value. In addition, it has a good algebraic structure and is
easy to construct. Since MDS codes can reach the singleton bound, they are easier to be
encoded and decoded. Therefore, they have been applied to communication systems. On the
other hand, scholars found various applications of self-dual codes in cryptography [10] and
combinatorics [13]. Therefore, it is natural to consider the intersection of these two types of
codes, i.e., MDS self-dual codes. In the past 20 years, many construction methods for MDS self-
dual codes and complementary MDS self-dual codes have been given, and these construction
methods can be broadly classified into the following three categories according to the tools
used. (1) code-based constructions using known classical codes, i.e., stable codes, algebraic
geometric codes, classical self-dual linear or symmetric codes and generalized RS codes, etc.;
(2) combinatorics-based constructions; (3) algebraic-based constructions. In this paper, based
on the generalized Reed-Solomon codes, we combine the knowledge of coding theory, finite fields
and recent algebra to give MDS self-dual codes with new parameters under specific conditions.
These constructions add new lengths of codes. Since the parameters of self-dual codes are
completely determined by the code length n, construct more MDS self-dual codes of different
code lengths over different finite fields or finite rings is an interest problem.

Let Fq be the finite field with q elements where q is a prime power. A linear code C over
Fq, represented as [n, k, d]q, is a Fq linear subspace of Fn

q having dimension k and minimum
distance d. We call C a maximum distance separable (MDS) code when the parameters can
attain the Singleton bound, i.e., d = n− k + 1. For a linear code C, we will use C⊥ to denote
the dual of C in the Euclidean inner product. A linear code C is called self-dual if C = C⊥.
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1.1 The well-known results

MDS self-dual codes constructed based on orthogonal designs [1, 2] are usually given by the
construction of generating matrices over small fields to obtain MDS self-dual codes over large
finite fields. Guenda used cyclic codes and negative cyclic codes to construct MDS self-dual
codes in [4]. Jin and Xing first proposed a systematic approach to constructing MDS self-dual
codes with GRS codes in [19]. In recent years, GRS codes are one with the most popular
means of building MDS self-dual codes. In [7], MDS self-dual codes over finite fields of even
characteristic with any possible parameters have been discovered. Yan [3] and Grassl et al. [14]
used generalized RS codes and extended generalized RS codes to build new MDS self-dual
codes, and the method was extended to GRS codes with general length. Fang et al. [8] and
Lebed et al. [9] used F ∗

q and its two disjoint multiplicative subgroups to build a family of new
MDS self-dual codes. In [8], Zhang and Feng proposed a number of new constructions of MDS
Euclidean self-dual codes via cyclotomy. In [18], Sok showed some explicit compositions of MDS
Euclidean self-dual codes via rational function fields.

1.2 Our results

In our work, we obtain a few new results regarding MDS self-dual codes over finite fields via
GRS codes. Some of the consequences of this paper generalize the results in [5, 9, 19].

2 Preliminaries

In this section, we will recall the basic knowledge about generalized Reed-Solomon (GRS) codes.
Relevant computational formulas are also cited.

Let Fq be the finite filed where q is a prime power. For n nonzero elements vi of Fq and n
distinct elements ai of Fq, the GRS codes associated with vi and ai are defined as follows:

GRSk(~a,~v) = {(v1f (a1) , . . . , vnf (an)) : f(x) ∈ Fq[x] and deg(f(x)) ≤ k − 1} .

It is well known that GRSk(~a,~v) is a q-ary [n, k, n− k + 1] MDS code.
Let η(x) be the quadratic character of F ∗

q . Let QRq be the set of all squares in F ∗
q . When

x is a square in F ∗
q , then η(x) = 1. When x is a non-square in F ∗

q , then η(x) = −1. I.e.,

η(x) =

{

1, x ∈ QRq

−1, x /∈ QRq
.

For any subset A ⊆ Fq, we denote the polynomial fA(x) over Fq as

fA(x) =
∏

a∈A

(x− a).

For any element a ∈ A, we denote

δA(a) =
∏

a′∈A,a′ 6=a

(a− a′) .
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Table 1 The known results of MDS self-dual codes

q n even Reference

q even n ≤ q [14]

q odd n = q + 1 [14]

q odd (n − 1) | (q − 1), η(1 − n) = 1 [3]

q odd (n − 2) | (q − 1), η(2 − n) = 1 [3]

q ≡ 3(mod 4) n ≡ 0(mod 4), (n − 1) | (q − 1) [9]

q ≡ 1(mod 4) (n − 1) | (q − 1) [9]

q ≡ 1(mod 4) n = 2pl, l ≤ m [7]

q ≡ 1(mod 4) n = pl + 1, l ≤ m [7]

q = r2 n ≤ r [15]

q = r2, q ≡ 3(mod 4) n = 2tr, for any t ≤ r−1
2 [15]

q = r2 n = tr, even t, 1 ≤ t ≤ r [3]

q = r2 n = tr + 1, odd t, 1 ≤ t ≤ r [3]

q = r2 n = tm, 1 ≤ t ≤ r−1
gcd(r−1,m)

, even q−1
m

[11]

q = r2
n = tm + 1, even tm and

1 ≤ t ≤
r − 1

gcd(r − 1,m)
,m | q − 1,

[11]

q = r2
n = tm + 2, odd tm and

1 ≤ t ≤
r − 1

gcd(r − 1,m)
,m | q − 1,

[11]

q = rs, q ≡ 3(mod 4) n − 1 = pm | q − 1, p ≡ 3(mod 4), odd m [4]

q = rs, r ≡ 1(mod 4), odd s n − 1 = pm | q − 1, p ≡ 1(mod 4), odd m [4]

q = rs, odd r, s ≥ 2 n = lr + 1, odd l, l | r − 1, η(l) = 1 [3]

q = rs, odd r, s ≥ 2 n = lr + 1, odd l, l − 1 | r − 1, η(l − 1) = −1 [3]

q = rs, odd r, s ≥ 2 n = lr, even l, 2l | r − 1 [3]

q = rs, odd r, s ≥ 2 n = lr, even l, l − 1 | r − 1, η(1 − l) = 1 [3]

q = pk, odd prime p n = pr + 1, r | k [3]

q = pk, odd prime p n = 2pe, 1 ≤ e [3]

q = pm, odd prime p n = 2tpe, 2t | p − 1, e < m, even q − 1 | 2t [11]

q = pm, even m, odd prime p n = 2trl, r = ps, s | m
2 , 0 ≤ t ≤ m

s
, 1 ≤ t ≤ r−1

2 [7]

q = pm, even m, odd prime p

n = (2t + 1)r
l
+ 1, r = p

s
, s |

m

2
and

0 ≤ t ≤
m

s
, 1 ≤ t ≤

r − 1

2
or, l =

m

s
, t = 0

[7]

q = pm ≡ 1(mod 4) n = pl + 1, 0 ≤ l ≤ m [7]

q = r2, r ≡ 1(mod 4)
n = s(r − 1) + t(r + 1), 1 ≤ s ≤

r + 1

2
and

1 ≤ t ≤
r − 1

2
, even s

[9]

q = r2, r ≡ 3(mod 4)
n = s(r − 1) + t(r + 1), 1 ≤ s ≤

r + 1

2
and

1 ≤ t ≤
r − 1

2
, odd s

[9]

q = r2, r ≡ 1(mod 4)

n = s
q − 1

a
+ t

q − 1

b
, a ≡ 2(mod 4), even s and

1 ≤ s ≤
a

gcd(a, b)
, 1 ≤ t ≤

b

gcd(a, b)

[19]

q = r2, r ≡ 3(mod 4)

n = s
q − 1

a
+ t

q − 1

b
, b ≡ 2(mod 4), odd

(r + 1)b

2a
s
2
and

1 ≤ s ≤
a

gcd(a, b)
, 1 ≤ t ≤

b

gcd(a, b)

[19]
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Table 2 Our new MDS self-dual codes

q n even Reference

q = r2, r ≡ 1(mod4)
n = s

r + 1

b1
+ t

r − 1

b2
, b2,

r + 1

b1
odd, b1 ≡ 2(mod 4) and

1 ≤ s ≤
r − 1

b2
, 1 ≤ t ≤

r + 1

b1
, s even, t odd

Theorem 3.1

q = r2, r ≡ 3(mod 4)
n = s

r + 1

b1
+ t

r − 1

b2
, b1,

r − 1

b2
odd, b2 ≡ 2(mod 4) and

1 ≤ s ≤
r − 1

b2
, 1 ≤ t ≤

r + 1

b1
, t ≡ 0(mod 4)

Theorem 3.5

q = r2, r ≡ 3(mod 4)

n = s
q − 1

b1
+ t(r − 1), b2,

r + 1

b1
odd, b1 ≡ 0(mod 4) and

1 ≤ s ≤
b1
2
, 1 ≤ t ≤

r + 1

b1
, s odd, t even

Theorem 3.8

Lemma 2.1. [17] Let A = {a1, a2, . . . , an} be a subset of Fq, where n is an even integer. If
η (δA(a)) are the same for all a ∈ A, then there exists a q-ary MDS self-dual code of length n.

Lemma 2.2. [8] (1) Let A be a subset of Fq, then for any a ∈ A,

δA(a) = f ′
A(a),

where f ′
A(a) is the derivative of fA(a).

(2) Let A1 and A2 be disjoint subsets of Fq, A = A1 ∪A2, then for a ∈ A,

δA(a) =

{

δA1
(a)fA2

(a), a ∈ A1

δA2
(a)fA1

(a), a ∈ A2
.

Lemma 2.3. [8] Let g ∈ GF (q) be a primitive n-th root of unity. Let n and q be integers
satisfying n | q − 1. We have

(1)
∏i 6=j

1≤i≤n

(

gi − gj
)

= gi(n−1)n = g−in,

(2) xn − γn =
∏

1≤i≤n

(

x− γgi
)

, for any γ ∈ Fq.

3 Construction of MDS self-dual codes

In this section, for q = r2, we construct a concatenation using two disjoint multiplicative
subgroups A and B of F ∗

q , in order to get the new length of q-ary MDS self-dual codes. Let a
be an integer with a | q − 1. We mark it as a = b1b2, where b1 = gcd(a, r + 1), b2 = a

gcd(a,r+1) ,

then b2 | (r − 1) r+1
b1

. It follows that gcd
(

b2,
r+1
b1

)

= gcd
(

a
b1
, r+1

b1

)

= 1, hence b1|(r + 1) and

b2|(r − 1).

Theorem 3.1. Let q = r2 with r an odd prime power and r ≡ 1(mod 4). Assume b2 and r+1
b1

are odd with b1 ≡ 2(mod 4), then a ≡ 2(mod 4). Let n = s r+1
b1

+ t r−1
b2

where 1 ≤ s ≤ r−1
b2

and

1 ≤ t ≤ r+1
b1

. There exists a q-ary MDS self-dual code of length n, if s is even and t is odd.
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Proof. Let n = s r+1
b1

+ t r−1
b2

with b1, b2, r satisfying above condition. Let A and B be subgroups
of F ∗

q . Assume θ is a primitive element of F ∗
q Assume A = 〈α〉, B = 〈β〉 are subgroups of F ∗

q ,

where α = θb1(r−1) and β = θb2(r+1) ∈ QRq. Let λ = θ
a
2 /∈ QRq. Then, define

D =

(

s−1
⋃

i=0

βiA

)

⋃





t−1
⋃

j=0

λ2j+1B



 .

Since b1(r − 1), b2(r + 1) are even and a ≡ 2(mod 4), then α = θb1(r−1), β = θb2(r+1) are
entries of QRq and λ = θ

a
2 /∈ QRq. We have βiA ∩ λ2j+1B = ∅, for any 0 ≤ i ≤ s− 1, 0 ≤ j ≤

t− 1. So we get the union D of two disjoint subsets.
Firstly, we are ready to prove that β0, . . . , βs−1 are the representatives of s distinct cosets

of the subgroup A in F ∗
q . If not, there exist 0 ≤ i1 < i2 ≤ s− 1 such that βi1A = βi2A, for the

subgroup A. Hence, there exists 1 ≤ h ≤ r+1
b1

such that βi1−i2 = αh, i.e.,

θb2(r+1)(i1−i2)−b1(r−1)h = 1 ⇒ q − 1 | b2(r + 1) (i1 − i2)− b1(r − 1)h.

Since b1(r − 1)h < q − 1,

b1(r − 1)

∣

∣

∣

∣

b2(r + 1) (i1 − i2) ⇒
(r − 1)

b2

∣

∣

∣

∣

(r + 1)

b1
(i1 − i2) .

Since i1 − i2 ≤ s− 1 < (r−1)
b2

, there is a contradiction here.

Then, we can also prove that λ1, λ3, . . . , λ2t−1 are the representatives of t distinct cosets of
the subgroup B in F ∗

q . Otherwise, there exist 0 ≤ j1 < j2 ≤ t−1 such that λ2j1+1B = λ2j2+1B,

for the subgroup B. Hence, there exists 1 ≤ m ≤ r−1
b2

such that λ2(j1−j2) = βm, i.e.,

θa(j1−j2)−b2(r+1)m = 1 ⇒ q − 1 | a (j1 − j2)− b2(r + 1)m.

Since b2(r + 1)m ≤ q − 1,

b2(r + 1)

∣

∣

∣

∣

a (j1 − j2) ⇒
(r + 1)

b1

∣

∣

∣

∣

(j1 − j2) .

Since j1 − j2 ≤ t − 1 < (r+1)
b1

, there is a contradiction here. Note that r−1
b2

and s are even, it

follows that |D| = n = s r+1
b1

+ t r−1
b2

is even.

Next, we calculate δD
(

λ2i+1βj
)

. By Lemma 2.2, for 0 ≤ i ≤ t− 1 and 1 ≤ j ≤ r−1
b2

,

δD
(

λ2i+1βj
)

= δλ2i+1B

(

λ2i+1βj
)

fβhA

(

λ2i+1βj
)

=

r−1
b2
∏

v=1,v 6=j

(

λ2i+1βj − λ2i+1βv
)

·

t−1
∏

l=0,l 6=i

r−1
b2
∏

v=1

(

λ2i+1βj − λ2l+1βv
)

·

s−1
∏

h=0

r+1
b1
∏

u=1

(

λ2i+1βj − βhαu
)

=
r − 1

b2
· λ

(2i+1)
(

r−1
b2

−1
)

· β−j ·

t−1
∏

l=0,l 6=i

(

λ(2i+1) r−1
b2 − λ(2l+1) r−1

b2

)

·

s−1
∏

h=0

(

(

λ2i+1βj
)

r+1
b1 − βh r+1

b1

)

.
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Since β ∈ QRq and r−1
b2

is even, we have λ(2i+1) r−1
b2 · β−j · r−1

b2
∈ QRq.

So we should consider

t−1
∏

l=0,l 6=i

(

λ(2i+1) r−1
b2 − λ(2l+1) r−1

b2

)

and
s−1
∏

h=0

(

(

λ2i+1βj
)

r+1
b1 − β

r+1
b1

)

.

Let w =
∏t−1

l=0,l 6=i

(

λ(2i+1) r−1
b2 − λ(2l+1) r−1

b2

)

, then

(

λ(2i+1) r−1
b2

)r+1

=
(

θ
(2i+1)b1

2

)q−1

= 1, i.e.,
(

λ(2i+1) r−1
b2

)r

= λ−(2i+1) r−1
b2 .

Therefor,

wr =
t−1
∏

l=0,l 6=i

(

θ−
(2i+1)b1(r−1)

2 − θ−
(2l+1)b1(r−1)

2

)

,

wr−1 = θ
q−1
2 (t−1)−

b1(r−1)
2 (2(i+1)(t−1)+t(t−1)−2i

)

.

Thus,

w = θ
r+1
2 (t−1)−

b1
2 (2(t−1)(i+1)+t(t−1)−2i)+k(r+1),

for some integer k. If t is odd and b1 ≡ 2(mod 4), we have w ∈ QRq.

For
∏s−1

h=0

(

(

λ(2i+1)βj
)

r+1
b1 − βh r+1

b1

)

, we have

s−1
∏

h=0

(

(

θ
(2i+1)a

2b1
+

jb2(r+1)
b1

)r+1

−

(

θ
hb2(r+1)

b1

)r+1
)

∈ F ∗
r ⊂ QRq.

By the above results, we have

η
(

δD
(

βiαj
))

= η
(

λ−(2i+1)
)

= −1.

Then we calculate δD
(

βiαj
)

for 0 ≤ i ≤ s− 1 and 1 ≤ j ≤ r+1
b1

. By Lemma 2.2,

δD
(

βiαj
)

= δβiA

(

βiαj
)

fλ2h+1B

(

βiαj
)

=

r+1
b1
∏

v=1,v 6=j

(

βiαj − βiαv
)

·
s−1
∏

l=0,l 6=i

r+1
b1
∏

v=1

(

βiαj − βlαv
)

·

r−1
b2
∏

u=1

t−1
∏

h=0

(

βiαj − λ2h+1βu
)

= β
i
(

r+1
b1

−1
)

·
r + 1

b1
· α−j ·

s−1
∏

l=0,l 6=i

(

βi r+1
b1 − βl r+1

b1

)

·

t−1
∏

h=0

(

αj r−1
b2 − λ(2h+1) r−1

b2

)

.

It is easy to find that β
i
(

r+1
b1

−1
)

· α−j ∈ QRq, then we let w′ =
∏t−1

h=0

(

αj r−1
b2 − λ(2h+1) r−1

b2

)

.

Note that

(

αj r−1
b2

)r+1

=

(

θ
b1(r−1)j

b2

)q−1

= 1, i.e.,
(

αj r−1
b2

)r

= α−j r−1
b2 ,

(

λ(2h+1) r−1
b2

)r+1

=
(

θ
a(2h+1)

2b2

)q−1

= 1, i.e.,
(

λ(2h+1) r−1
b2

)r

= λ−(2h+1) r−1
b2 .
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We have

w′r =

t−1
∏

h=0

(

α−j r−1
b2 − λ−(2h+1) r−1

b2

)

,

w′r−1 = θ
q−1
2 t−

(r−1)
b2

(b1t(r−1)j+a
t(t−1)

2 + at
2 ).

Thus,

w′ = θ
t(r+1)

2 −
b1tj(r−1)

b2
−

b1t2

2 +k(r+1),

for some integer k. If b1 ≡ 2(mod 4), we have w′ ∈ QRq.

Similarly, for
∏s−1

l=0,l 6=i

(

βi r+1
b1 − βl r+1

b1

)

, we have

s−1
∏

l=0,l 6=i

(

βi r+1
b1 − βl r+1

b1

)

=

s−1
∏

l=0,l 6=i

(

(

θ
ib2(r+1)

b1

)r+1

−

(

θ
lb2(r+1)

b1

)r+1
)

∈ F ∗
r ⊂ QRq.

By the above results, we can obtain

η
(

δD
(

λ2i+1βj
))

= η(
r + 1

b1
) = −1.

By Lemma 2.1, there exists a q-ary MDS self-dual code of length n.

Remark 3.2. When r ≡ 1(mod 4). The lengths of the MDS self-dual codes we construct are
not in [9] when t is odd. Compared with the Theorem 1 in [19], we obtain new MDS self-dual
codes of different lengths, by extending the range of s, t from 1 ≤ s ≤ r+1

2v , 1 ≤ t ≤ r−1
2u to

1 ≤ s ≤ r−1
b2

, 1 ≤ t ≤ r+1
b1

. Specifically, when s is even, we obtain a new class of MDS self-dual
codes of length n which are not present in [ [19], Theorem 1].

Example 3.3. Let r = 25, q = 252, b1 = 26 and b2 = 3. If s = 2, t = 1, by Theorem 3.1, there
exists a MDS self-dual code of length n = 10. At this point, the length we obtain is not in Table
1.

Example 3.4. Let r = 25, q = 252, b1 = 2 and b2 = 1. If s = 18, t = 13, by Theorem 3.1,
there exists a MDS self-dual code of length n = 546. At this point, the length we obtain is not
in Table 1. It is worth noting that when r = 25, we can obtain 120 new MDS self-dual codes.

Theorem 3.5. Let q = r2 with r an odd prime power and r ≡ 3(mod 4). Assume b1 and r−1
b2

are odd with b2 ≡ 2(mod 4), then a ≡ 2(mod 4). Let n = s r+1
b1

+ t r−1
b2

, where 1 ≤ s ≤ r−1
b2

and

1 ≤ t ≤ r+1
b1

. There exists a q-ary MDS self-dual code of length n, if t ≡ 0(mod 4).

Proof. By the above construction, we have r + 1 ≡ 0(mod 4), r − 1 ≡ 2(mod 4). For 1 ≤ s ≤
r−1
b2

and 1 ≤ t ≤ r+1
b1

, 1et n = s r+1
b1

+ t r−1
b2

. Assume A = 〈α〉, B = 〈β〉 are subgroups of F ∗
q ,

where α = θb1(r−1) and β = θb2(r+1) ∈ QRq. Let ζ = θ
a
2 /∈ QRq. Define

F =

(

s−1
⋃

i=0

ζ2i+1A

)

⋃





t−1
⋃

j=0

αjB



 .

It is easy to find that ζ2i+1A ∩ αjB = ∅ if a ≡ 2(mod 4).
Firstly, we could prove that ζ1, ζ3, . . . , ζ2s−1 are the representatives of s distinct cosets of

the subgroup A in F ∗
q , if 1 ≤ s ≤ r−1

b2
. Similarly, we can also prove that α0, . . . , αt−1 are the
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representatives of t distinct cosets of the subgroup B in F ∗
q , if 1 ≤ t ≤ r+1

b1
. It follows that n is

even when b1 is odd and t is even.
Next, we are ready to calculate δF

(

αiβj
)

for 0 ≤ i ≤ t− 1, 1 ≤ j ≤ r−1
b2

. By Lemma 2.2,

δF
(

αiβj
)

= δαiB

(

αiβj
)

fζ2h+1A

(

αiβj
)

= α
i
(

r−1
b2

−1
)

·
r − 1

b2
· β−j ·

t−1
∏

l=0,l 6=i

(

α
(r−1)i

b2 − α
(r−1)l

b2

)

·

s−1
∏

h=0

(

β
(r+1)j

b1 − ζ
(r+1)(2h+1)

b1

)

.

Since β, α ∈ QRq, we have α
i
(

r−1
b2

−1
)

· β−j ∈ QRq.

Suppose that p =
∏t−1

l=0,l 6=i

(

α
(r−1)i

b2 − α
(r−1)l

b2

)

, we have

p = θ
(r+1)(t−1)

2 −
b1(r−1)

b2
(i(t−2)+

t(t−1)
2 )+k(r+1),

for some integer k. Since b1,
r−1
b2

are odd and t ≡ 0(mod 4), p ∈ QRq.

Since p′ =
∏s−1

h=0

(

βj r+1
b1 − ζ(2h+1) r+1

b1

)

=
∏s−1

h=0

(

(θ
jb2(r+1)

b1 )r+1 − (θ
b2(2h+1)

2 )r+1

)

∈ F ∗
r ,

then p′ ∈ QRq. By the above results, we have

η
(

δF
(

αiβj
))

= η(
r − 1

b2
) = −1.

Then, we calculate δF
(

ζ2i+1αj
)

for 0 ≤ i ≤ s− 1 and 1 ≤ j ≤ r+1
b1

. By Lemma 2.2,

δF
(

ζ2i+1αj
)

= δζ2i+1A

(

ζ2i+1αj
)

fαhB

(

ζ2i+1αj
)

= ζ
(2i+1)

(

r+1
b1

−1
)

·
r + 1

b1
· α−j

s−1
∏

l=0,l 6=i

(

ζ
(2i+1)(r+1)

b1 − ζ
(2l+1)(r+1)

b1

)

·

t−1
∏

h=0

(

(

ζ2i+1αj
)

r−1
b2 − αh r−1

b2

)

.

Since β, α ∈ QRq, we have ζ(2i+1) r+1
b1 · r+1

b1
· α−j ∈ QRq.

Since g =
∏s−1

l=0,l 6=i

(

ζ
(2i+1)(r+1)

b1 − ζ
(2l+1)(r+1)

b1

)

=
∏s−1

l=0,l 6=i

(

(θ
(2i+1)b2

2 )r+1 − (θ
(2l+1)b2

2 )r+1
)

∈

F ∗
r , then g ∈ QRq.

Suppose that g′ =
∏t−1

h=0

(

(

ζ2i+1αj
)

r−1
b2 − αh r−1

b2

)

. When t ≡ 0(mod 4), we have

g′ = θ
(r+1)t

2 −
tb1(2i+1)

2 −jtb1
(r−1)

b2
−b1

t(t−1)(r−1)
2b2

+k(r+1) ∈ F ∗
r ⊂ QRq,

for some integer k. By the above results, we have

η
(

δF
(

ζ2i+1αj
))

= η
(

ζ−(2i+1)
)

= −1.

By Lemma 2.1, there exists a q-ary MDS self-dual code of length n.
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Remark 3.6. When r ≡ 3(mod 4). The MDS self-dual codes we construct is confirmed not to

exist in [9]. Specifically, when (r+1)b
2a s2 is odd, we obtain a new class of MDS self-dual codes of

length n which are not present in [ [19], Theorem 2].

Example 3.7. Let r = 19, q = 192, b1 = 5 and b2 = 2. If s = 9, t = 4, by Theorem 3.5, there
exists a MDS self-dual code of length n = 72. At this point, the length of our construction is
not in Table 1. It is worth noting that when r = 19, we can obtain 61 new MDS self-dual codes.

Theorem 3.8. Let q = r2 with r an odd prime power and r ≡ 3(mod 4). Assume r+1
b1

,b2 are

odd, then b1 ≡ 0(mod 4). Let n = s q−1
b1

+ t(r − 1) where 1 ≤ s ≤ b1
2 and 1 ≤ t ≤ r+1

b1
. There

exists a q-ary MDS self-dual code of length n, if t is even and s is odd.

Proof. By the above construction, for 1 ≤ s ≤ b1
2 and 1 ≤ t ≤ r+1

b1
, let n = s q−1

b1
+ t(r − 1).

Assume A = 〈α〉, B = 〈β〉 are subgroups of F ∗
q , where α = θb1 and β = θr+1 ∈ QRq. Let

γ = θb2 /∈ QRq. Define

T =

(

s−1
⋃

i=0

γ2i+1A

)

⋃





t−1
⋃

j=0

αjB



 .

It is easy to find that γ2i+1A ∩ αjB = ∅. Since q−1
b1

and r − 1 are even, it follows that

n = s q−1
b1

+ t(r − 1) is even, i.e., |T | is even.

Firstly, we can prove that γ1, . . . , γ2s−1 are the representatives of s distinct cosets of the
subgroup A in F ∗

q if 1 ≤ s ≤ b1
2 . Similarly, we can also prove that α0, α2, . . . , αt−1 are the

representatives of t distinct cosets of the subgroup B in F ∗
q , if 1 ≤ t ≤ (r+1)

b1
.

Next, we are ready to calculate δT
(

γ2i+1αj
)

for 0 ≤ i ≤ s− 1 and 1 ≤ j ≤ q−1
b1

. By Lemma
2.2,

δT
(

γ2i+1αj
)

= δγ2i+1A

(

γ2i+1αj
)

fαhB

(

γ2i+1αj
)

= γ(2i+1)( q−1
b1

−1) ·
q − 1

b1
· α−j ·

s−1
∏

l=0,l 6=i

(

γ
(q−1)(2i+1)

b1 − γ
(q−1)(2l+1)

b1

)

·
t−1
∏

h=0

(

(

γ2i+1αj
)r−1

− αh(r−1)
)

.

Since q−1
b1

, α ∈ QRq, we have γ(2i+1) q−1
b1 · q−1

b1
· α−j ∈ QRq.

Suppose that v =
∏s−1

l=0,l 6=i

(

γ(2i+1)
(q−1)

b1 − γ(2l+1)
(q−1)

b1

)

, we have

v = θ
(r+1)(s−1)

2 −
2b2(r+1)

b1
((i+1)(s−1)+

s(s−1)
2 −i)+k(r+1) ∈ F ∗

r ⊂ QRq,

for some integer k.

Suppose that v′ =
∏t−1

h=0

(

(

γ2i+1αj
)r−1

− αh(r−1)
)

, when t is even, we have

v′ = θ
(r+1)t

2 −tb2(2i+1)−b1tj−b1
t(t−1)

2 +k(r+1) ∈ F ∗
r ⊂ QRq,

for some integer k. By the above results, we have

η
(

δT
(

γ2i+1αj
))

= η
(

γ−(2i+1)
)

= −1.
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Then we calculate δT
(

αiβj
)

for 0 ≤ i ≤ t− 1 and 1 ≤ j ≤ r − 1. By Lemma 2.2,

δT
(

αiβj
)

= δαiB

(

αiβj
)

fγ2h+1A

(

αiβj
)

= αi(r−2) · (r − 1) · β−j ·

t−1
∏

l=0,l 6=i

(

αi(r−1) − αl(r−1)
)

·

s−1
∏

h=0

(

βj q−1
b1 − γ(2h+1) q−1

b1

)

.

Since β, α ∈ QRq, we have αi(r−2) · (r − 1) · β−j ∈ QRq.

Suppose that g =
∏t−1

l=0,l 6=i

(

αi(r−1) − αl(r−1)
)

. When b1 is even, we have

g = θ
(r+1)(t−1)

2 −b1(i(t−2)+
t(t−1)

2 )+k(r+1) ∈ F ∗
r ⊂ QRq,

for some integer k. Suppose that g′ =
∏s−1

h=0

(

βj q−1
b1 − γ(2h+1) q−1

b1

)

. When s, b2 and r+1
b1

are

odd, we have

g′ = θ
s(r+1)

2 − r+1
b1

((r+1)js+s2b2)+k(r+1),

for some integer k. Thus,
η (g′) = −1.

By the above results,
η
(

δT
(

αiβj
))

= −1.

By Lemma 2.1, there exists a q-ary MDS self-dual code of length n.

Remark 3.9. When r ≡ 3(mod 4). The length of the MDS self-dual codes is the form of
k1(r+1)+ k2(r− 1) in [9]. By calculating, we obtain a new class of q-ary MDS self-dual codes
of length n = k(r − 1), where k is odd. Compared with [19], n = s q−1

b
+ t q−1

a
, the condition of

construction in [ [19], Theorem 2] is not met when a = r + 1 ≡ 0(mod 4) and b ≡ 0(mod 4).

Example 3.10. Let r = 19, q = 192, b1 = 4. If s = 1, t = 4, by Theorem 3.8, there exists
a MDS self-dual code of length n = 162. At this point, the length we obtain is not in Table
1. It is worth noting that when r = 19, we can obtain 2 new MDS self-dual codes of length
n = {126, 162}.

4 Conclusion

In this paper, we extend the construction methods of [5,9,19]. On the basis of two different mul-
tiplicative subgroups of F ∗

q and generalized RS codes we obtain some new MDS self dual codes
over finite fields of odd characteristics. The crucial aspect of our construction is the selection of
appropriate mutually disjoint subgroups and specific parameters such that their corresponding
GRS codes are Euclidean MDS self-dual codes. We continue the previous approach and prove
that further extensions to obtain codes of additional lengths are possible. The direction of
future studies remains to find more new Euclidean self-dual codes.
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