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Abstract
Helicobacter pylori is a common bacterial pathogen responsible for gastrointestinal diseases worldwide.
Clarithromycin has been considered the best tolerable and safe antibiotic in treating H. pylori infection,
but increased levels of clarithromycin resistance have reduced the effectiveness of the recommended
treatment regimens. So alternative treatment approaches such as nanotechnology have been considered
recently. This study aimed to determine the effect of silver nanoparticles (Ag-NP) alone and their
combination with clarithromycin on H. pylori isolates.

Gastric biopsy specimens were collected from 163 patients with different gastrointestinal signs referred
to the endoscopy ward of Beheshti Hospital in Kashan, Iran. H. Pylori strains were isolated from 40
patients out of 163 (24.5%). Minimum inhibitory concentration (MIC) of clarithromycin on H. pylori
isolates was determined by the Epsilometer test. The effect of the combination of Ag-NP with
clarithromycin on the growth inhibition of clarithromycin-sensitive and resistant H. pylori isolates was
determined by the checkerboard titration method.

The clarithromycin resistance rate to H. pylori was 42.5%. The MIC of Ag-NP in clarithromycin-sensitive
was 31.25-125 µg/ml and resistant H. pylori isolates ranged from 62.5-250 µg/ml. Due to the
combination of Ag-NP with clarithromycin, 70.58% of clarithromycin-resistant isolates and 78.26% of
clarithromycin-sensitive isolates showed a synergistic effect.

A signi�cant difference was observed in comparing the MIC of clarithromycin in combination with Ag-NP
and clarithromycin or Ag-NP alone. The MIC clarithromycin was decreased in the presence of Ag-NP
against clarithromycin sensitive, and resistant H. Pylori isolates. 

Introduction
H. Pylori is one of the most common causes of gastrointestinal infection that affects humans worldwide
(1–3). The prevalence of H. Pylori infection varies from 18.9–87.7% (4). The goal of eliminating H. Pylori
is to treat and reduce the risk of stomach cancer (5). The standard eradication therapy plan in
symptomatic patients includes PPI (proton pump inhibitors), amoxicillin, and clarithromycin (3). In Iran,
the rate of clarithromycin resistance increased from 17–45%. Due to the presence of clarithromycin in
many global guidelines, this antibiotic plays a vital role in the treatment of H. Pylori, and even bacterial
resistance cannot remove it from the treatment lines (6). Recently, metal nanoparticles, known as
antibacterial agents, have been used against isolates resistant to antibacterial drugs (7). The signi�cant
bene�ts of nanoparticles used as drug carriers are high stability, high carrying capacity, the possibility of
combining hydrophilic and hydrophobic materials, and the possibility of utilization in various routes,
including food and inhalation. These properties of nanoparticles improve the biological availability of the
drug, reduce the dose of the drug, and solve non-compliance with the prescribed treatment (8). Currently,
silver nanoparticles have become more and more critical in their uses in several �elds, including
antimicrobial abilities. Studies show that silver nanoparticles have multidimensional effects such as
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antibacterial and anti-bio�lm activity against H. Pylori (9). This study aimed to determine the effect of
silver nanoparticles alone and their combination with clarithromycin on H. Pylori isolates.

Material And Methods
Sample collection

One hundred sixty-three patients with signs of abdominal pain or burning, nausea, vomiting, frequent
burping, bloating, and weight loss with an average age of 51.5 years (ranged from 20 to 83) had
undergone endoscopic investigations at Beheshti Hospital in Kashan, Iran, from May 2019 to November
2020. Patients, who received antibiotic therapy three months before endoscopy, including PPI, non-
steroidal anti-in�ammatory drugs, and clarithromycin, were excluded from the study. Written informed
consent was obtained from the patients. In sum, 163 patients, 119 (73%) cases presented with non-ulcer
dyspepsia and 44 (27%) cases with peptic ulcer diseases (including four peptic ulcers, �ve duodenal
ulcers, and thirty-�ve cases with both gastritis and peptic ulcers. 

H. Pylori Culture

Gastric biopsy specimens are transferred to the microbiology laboratory in two pieces, one in the Stuart
transport medium and the other in the rapid urea medium. The biopsy sample was cultured on Brucella
agar enriched with 10% horse serum and 5mg/l trimethoprim, 10 mg/l vancomycin, 5 mg/l amphotericin
B, 5 mg/ml in cefsulodin (H. pylori selective supplement SR147) (OXOID, USA). The cultured plates were
incubated at 37˚C under microaerophilic conditions (5% O2, 10% CO2, and 85% N2) for 5 to 7 days to
obtain a single colony. H. Pylori are detected using gram staining, urease test, catalase test, and oxidase
test.

Silver Nanoparticle characterization

Silver Nanoparticle (Ag-NP) with an approximate size of 5 to 8 nm purchased in solution from Pishgaman
Iranian Nanomaterials Company, Mashhad, Iran.  True density was 10.9 g/cm3. The purity of Ag-NP was
99.99%. Also, the color of Ag-np was black, and Morphology was spherical. Speci�c surface area (SSA)
was ~25-42 m2/g. Figure 1 shows the size distribution report by the intensity measured by Zetasizer
Version 6.00 from Malvern Instruments Ltd. Figure 2 illustrated a micrograph of silver
nanoparticles obtained by transmission electron microscopy. The XRD pattern of silver nanoparticles
showed in Figure 3. 

Antimicrobial susceptibility tests

E-test

The pattern of sensitivity and resistance to clarithromycin is determined by the E-test method on enriched
Muller Hinton Agar medium with 10% horse serum. The H. pylori culture is prepared with turbidity
equivalent to 3 McFarland standard, and after inoculation on the medium, the E-test strips (LIOFIL CHEM,
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Italy) are placed on the surface of the cultured medium. The plates were incubated at a temperature of
37˚C for 72 hours under microaerophilic conditions. After the incubation period, MIC was determined by
the oval aura formed around the strip. If the MIC was ≤1µg/ml, the isolate was sensitive to
clarithromycin, and if ≥1µg/ml, the isolate was resistant to clarithromycin (10, 11).

Determination of MIC of silver nanoparticle (Ag-Np) 

Determination of MIC was carried out in 96-well microtitre plates using a standard twofold broth
microdilution method of the antibacterial agents in Mueller–Hinton broth following Clinical and
Laboratory Standards Institute (CLSI) guidelines (11). Broth microdilution was performed in Mueller–
Hinton broth supplemented with 5% horse serum. Twofold dilutions of silver nanoparticles ranging from
3.90 to 2000 µg/ml were used. The standardized inoculum was diluted to achieve a �nal inoculum
concentration of approximately 5*105 CFU per well. Each test was performed in triplicate. The microtiter
plates were incubated at 37°C under microaerophilic conditions. MICs were read after 72 h of incubation.
The MIC was de�ned as the lowest concentration of silver nanoparticles inhibiting visible growth (11, 12).

Combination assay

Standard powder forms of Clarithromycin (C9742 Sigma-Aldrich Inc., Germany) were stored at 2 to 8°C
until use. The stock solutions and serial twofold dilutions of each drug to at least double the MIC were
prepared. The MICs of Clarithromycin and silver nanoparticles alone or in combination were determined
by broth microdilution method in a 96-well plate by CLSI standards using MH broth supplemented with
5% horse serum. For the double treatment, a 2D checkerboard with twofold dilutions was used to test the
different combinations. The checkerboard method was adjusted by twofold dilutions of Ag-Np and
clarithromycin for combination treatment. Growth control wells containing the medium were included in
each plate. Each test was performed in triplicate. The index of fractional inhibitory concentration (FICs)
was calculated as follows: (13, 14)

FIC of Clarithromycin: MIC clarithromycin in combination/ MIC clarithromycin alone 

FIC of Ag-Np: MIC Ag-Np in combination/ MIC Ag-Np alone

FICi is calculated as the sum of each FIC and is interpreted as follows:

FICi <0.5, synergy; 0.5 ≤ FICi<1, partial synergy; FICi=1, additive; 2≤FICi<4, indifferent; FICi>4, antagonism

Statistical analysis

The statistical analysis of data was conducted using SPSS software version 16 (SPSS, Inc.).
Kolmogorov–Smirnov test was used for all analyzes. Tests such as Chi-square, T-Test, Fischer Exact Test,
and Mann Whitney were used for comparison. The p-Values < 0.05 were considered statistically
signi�cant.
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Results
Characteristics of patients

H. Pylori strain was isolated from 40 patients out of 163(24.5%). Patient's demographic and clinical
characteristics are presented in Table 1. 

Results of clarithromycin resistant 

The clarithromycin resistant rate to H. pylori was 42.5% (MICs ≥1 µg/ml) (Figure 4). According to
resistance to clarithromycin, there was no signi�cant difference between age, sex, and type of disease
(Table 2).

Results of MIC of silver nanoparticles

The frequency percent of MIC (µg/ml) of silver nanoparticles in clarithromycin-sensitive and resistant H.
Pylori isolates illustrated in Figure 5. Nano-Ags showed antibacterial activity against both clarithromycin
sensitive, and resistant H. Pylori isolates with MIC values of 31.25-250 µg/ml. The dispersion of the MIC
of silver nanoparticles in clarithromycin sensitive isolates was 13.04% -65.21%, and in clarithromycin
resistant isolates was 17.64% -52.94%. In general, the MIC of nanoparticles insensitive and resistant to
clarithromycin isolates was in the range of 31.25-250 µg/ml. The MIC dispersion of silver nanoparticles in
clarithromycin-sensitive isolates was in the range of 31.25-125 µg/ml compared to 62.5-250 µg/ml in
clarithromycin-resistant isolates. The highest MIC frequency was 125 µg/ml, and this value was applied
to both groups.

Results of combination assay

The synergistic effect of silver nanoparticles with clarithromycin in clarithromycin-sensitive and resistant
H. Pylori isolates shown in Figure 6. This combination showed a 70.58% synergistic effect against
clarithromycin resistant isolates compared to 78.26% against clarithromycin sensitive isolates.
Comparison of the MIC of clarithromycin, silver nanoparticles, and the combination of  both in
clarithromycin sensitive and resistant H. Pylori isolates described in Table 3. There was a signi�cant
difference between the clarithromycin sensitive and resistant groups (p-value = 0.003). Also, there was a
signi�cant difference in comparing the MIC of silver nanoparticles between two clarithromycin sensitive
and resistant groups concerning p-value = 0.039. A signi�cant difference was observed in the comparison
of the MIC of clarithromycin and clarithromycin in combination with silver nanoparticles and the
comparison of the MIC of Nano-Ags and the combination of nanoparticles with clarithromycin according
to p-value = 0.001. Comparison of the MIC of clarithromycin alone and the combination of clarithromycin
with silver nanoparticles in H. Pylori isolates are shown in Table 4. Comparing the MIC of silver
nanoparticles alone and the combination of clarithromycin with silver nanoparticles in all H. Pylori
isolates are described in Table 5. 
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Discussion
During the last years, a rise in clarithromycin resistance rates has been seen worldwide, which affects the
effectiveness of treatment (10, 15, 16). In this study, the resistance to clarithromycin in H. Pylori isolates
was 42.5%. Increased clarithromycin resistance over several years in the area highlights the need for new
treatments (10, 17). Today, due to the lack of treatment for the complete eradication of H. Pylori infection
and increased antibiotic resistance, attention to alternative approaches, including nanotechnology, has
increased (18). The mechanisms of action of silver nanoparticles are the binding of silver nanoparticles
to the surface of cell walls and membranes, the penetration of silver nanoparticles into cells, and damage
to intracellular structures and biomolecules, causing toxicity and cellular oxidative stress by producing
oxygen free-radicals (19). In this study, the MIC range of silver nanoparticles was 31.25–250 µg/ml. Most
of the MIC for clarithromycin-sensitive H. Pylori isolates at 125 µg/ml was 65.2% versus 53% for resistant
ones. The effect of silver nanoparticles on gram-negative bacteria was stronger than gram-positive
bacteria, and MIC was similar between antibiotic-resistant and sensitive bacteria, and the lethal effect
was greater in antibiotic-sensitive isolates (20). Saravanakumar et al. found that nanoparticles at a
concentration of 18.14 µg/ml inhibit H. Pylori (21). The study of Muhammad Amin et al. showed that the
MIC of silver nanoparticles in clarithromycin-resistant H. Pylori isolates was 1–16 µg/ml and in
clarithromycin-sensitive H. Pylori isolates was 4–16 µg/ml (22). Nazari et al. investigated the
antibacterial effect of bismuth nanoparticles against various clinical isolates and the standard strain of
H. Pylori (ATCC 26695). The MIC between clinical isolates varied between 60–100 µg /ml. Exposure of H.
Pylori to an inhibitory concentration of bismuth nanoparticles (100 µg/ml) results in some metabolites
release such as acetate, formic acid, glutamate, valine, glycine, and uracil from the bacteria into their
supernatants. This result indicates that these nanoparticles interfere with the Krebs cycle, nucleotide, and
amino acid metabolism (23). Gurunathan et al. showed that silver nanoparticles have multidimensional
effects such as antibacterial and anti-bio�lm activity against H. Pylori and Helicobacter felis, as well as
cytotoxic effects against human cancer cells. This study found that silver nanoparticles reduce the
formation of bio�lms and increase the production of reactive oxygen species (ROS) and DNA
fragmentation in H. Pylori and Helicobacter felis (9). Physicochemical properties of nanoparticles,
including size, zeta potential, surface morphology, and crystal structure, are important elements in
regulating the function of nanoparticles on bacterial cells. Also, environmental conditions, bacterial
strains are other factors affecting the antibacterial effects of nanoparticles (24). In this study, silver
nanoparticles were 5–8 nm in size and spherical. Higher inhibition can be due to the smaller size of the
nanoparticles (25). Smaller nanoparticles have larger surface areas that lead to greater contact and
passage through the bacterial cell membrane (26). Nanoparticles in different shapes can cause varying
degrees of bacterial cell damage by interacting with periplasmic enzymes (27). Silver nanoparticles in
cubic form show stronger antibacterial activity than silver nanoparticles in the spherical form (28). A
synergistic effect of the combination of clarithromycin and silver nanoparticles was 70.58% in
clarithromycin resistant isolates and 78.26% of sensitive ones. Porntip Pan-In et al. found that the
combination of antibiotics with nanoparticles increased the inhibition of different isolates of H. Pylori two
to four times (29). The combination of nanoparticles and antibiotics could reduce the MIC from 125
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µg/ml to 15.6 µg/ml (30). The MIC of zinc oxide-polyethyleneimine nanoparticles on H. Pylori was 100
µg/ml, and the inhibition of bacteria by nanoparticles alone was 40%. However, combining nanoparticles
and ampicillin increased the inhibition of bacteria to 80%. This combination reduced the MIC of ampicillin
from more than 5µg/ml to 1µg/ml (31). The combination of nanoparticles and antibiotics has a higher
inhibitory effect on bacteria than the use of nanoparticles and antibiotics alone (32). The increased
bacterial resistance to antibiotics due to the use of nanoparticles is reported (33). Nanoparticles are
highly mutagenic, and they increase the bacterial resistance to antibiotics by enhancing stress tolerance
through intracellular ROS induction (34). Resistance to nanoparticles is unlikely because multiple
simultaneous gene mutations are required in a microbial cell (35). The combination of nanoparticles with
antibiotics not only reduces the toxicity of both agents to human cells at lower doses but also enhances
their antimicrobial properties (36). Besides, nanoparticles combined with antibiotics increase the
concentration of antibiotics at the site of interaction between bacteria and antibiotics, and it facilitated
the binding of antibiotics to microorganisms (37).

Conclusion
Compared to using nanoparticles and antibiotic alone, when combining nanoparticles with
clarithromycin, an increase in the synergistic effect of bacterial inhibition and the lack of antagonism was
observed. This study showed that the combination of Ag-NP with clarithromycin reduced the MIC in
different isolates of H. Pylori up to two times. Data obtained from in vivo studies carried out to test the
toxicity and e�cacy of the AgNPs was the limitation of this study. We conclude that using this
combination is a new approach in the treatment of H. pylori infection. Future In-vivo studies can
determine the toxicity of the nanoparticles. Further In-vivo investigations through well-de�ned studies and
clinical trials will lead to applications of AgNPs in treatments of H. pylori infection.
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Tables
Table1. Demographic and clinical characteristics of patients in this study

CIOdds
ratio

P-
value

H. Pylori Negative
No. (%)

H. Pylori positive
NO. (%)

Characteristics of
patients 

 

0.48-
2.005

 

0.98

 

0.95

 

59 (75.6)

64 (75.3)

 

19 (24.4)

21 (24.7)

Age (year)

50≥ (78)

50< (85)

 

0.68-
3.003

 

1.4

 

0.33

 

84 (77.8)

39 (70.9)

 

24 (22.2)

16 (29.1)

Sex

Female (108)

Male (55)

 

 

3.002-
14.38

 

 

6.57

 

 

0.001

 

102 (85.7)

 

21(47.7)

 

17(14.3)

 

23 (52.3)

Disease

Non ulcer dyspepsia
(119)

Peptic ulcer (44)

Table 2. Frequency percent of patients based on age, sex and type of gastric disease and clarithromycin
resistance pattern 

CIOdds
ratio

P-
value

Sensitive No.
(%)

Resistant No.
(%)

 

 

0.43-
0.52

 

1.5

 

0.49

 

12 (63.2)

11(52.4)

 

7 (36.8)

10 (47.6)

Age (year)

50≥ (19)

50< (21)

 

0.38-5.1

 

1.4

 

0.6

 

13 (54.2)

10 (62.5)

 

11 (45.8)

6 (37.5)

Sex

Female (24)

Male (16)

 

 

0.16-2.1

 

 

0.59

 

 

0.42

 

11 (47.8)

 

12 (52.2)

 

6 (35.3)

 

11 (64.7)

Disease

Non ulcer dyspepsia
(17)

Peptic ulcer (23)

Table 3. Comparison of the MIC of clarithromycin, silver nanoparticles, and the combination of the both in
clarithromycin sensitive and resistant H. Pylori isolates 
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CLRNano-AgNano-Ag + CLRAntibacterial agent

SRSRSRStatistical index

0.4346.3299.21.500.820.84X̄

0.2754.8237.1970.081.091.06SD

0.0030.0390.665P-value

(S= Sensitive, R= Resistant)

Table 4. Comparison of the MIC of clarithromycin alone and the combination of clarithromycin with silver
nanoparticles in H. Pylori isolates in this study

 

Clarithromycin

 

Clarithromycin + Nano-Ag

MIC

Statistical index

19.938.68X̄

41.9625.5SD

0.001P-value

Table 5. Comparison of the MIC of silver nanoparticle alone and the combination of clarithromycin with
silver nanoparticles in all H. Pylori isolates

 

Nano-Ag

 

Clarithromycin + Nano-Ag

MIC

Statistical index

121.158.03X̄

58.8102.17SD

0.001P-value

Figures
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Figure 1

Size distribution of Nano-Ag
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Figure 2

Transmission electron micrograph of Nano-Ag showing the spherical morphologies and size range

 

Figure 3

XRD pattern of silver nanoparticle
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Figure 4

MIC of clarithromycin in H. pylori isolates in this study.

S, sensitive; R, resistance

Figure 5



Page 16/16

 The frequency percent of MIC (µg/ml) of silver nanoparticles in clarithromycin-sensitive and resistant H.
Pylori isolates

 

Figure 6

The synergistic effect of silver nanoparticles with clarithromycin in clarithromycin-sensitive and resistant
H. Pylori isolates


