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Abstract
Background

Papillary thyroid carcinoma (PTC) is considered an inflammation-driven cancer. However, a systematic
investigation of the relationship between the tumor immune microenvironment and the prognosis of PTC
has not been conducted.

Methods

A prognostic model based on differentially expressed genes (DEGs) and progression-free survival (PFS)
data from The Cancer Genome Atlas (TCGA) was established by least absolute shrinkage and selection
operator (LASSO) and multivariate Cox analyses. In total, 502 PTC cases were divided into low prognostic
risk score (PR) (L-PR) and high PR (H-PR) groups according to the median PR. We then compared the
immune characteristics between groups and verified these differences in five validation cohorts
(GSE33630, GSE60542, GSE58545, GSE5364, and GSE27155). Furthermore, we explored cancer stem
cells (CSCs) and the tumor mutation burden (TMB) to explain the prognostic results.

Results

A prognostic signature (PR) based on 13 DEGs performed well in prognostic prediction (5-year area under
the curve (AUC) = 0.861). The PR was positively correlated with age, stage, T classification, metastasis,
RAS mutation, and subtypes (follicular or tall cell PTC). Importantly, the H-PR group, which had poor
prognostic features, exhibited four main characteristics: comprehensive weakening of the immune
system that was not observed in the L-PR group, a higher ratio of tumor-promoting immune cells, more
CSCs, and a higher TMB than the L-PR group. Gene set enrichment analysis (GSEA) results also showed
the enrichment of immune-related pathways in the L-PR group.

Conclusions

Our prognostic model can effectively predict the prognosis and revealed that immune escape and tumor
heterogeneity in the tumor microenvironment (TME) could be mechanisms of poor prognosis in PTC.

1 Introduction

Thyroid cancer (TC), which accounts for 90% of endocrine malignancies and 70% of endocrine cancer
deaths (1), is the fifth most common cancer among American women, and the incidence of TC is
increasing (2). Papillary thyroid carcinoma (PTC) is a differentiated thyroid carcinoma (DTC) accounting
for approximately 84% of TC cases (3). In most patients, standard treatment (surgery + radioactive iodine)
has an excellent overall prognosis. While the 5-year survival rate of patients with iodine-sensitive DTC is
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approximately 98%, a small proportion (< 10%) of DTC cases cannot be cured by standard therapies and
are classified as "advanced thyroid cancer" (4, 5). The recurrence and metastasis of these locally
advanced PTCs hinder the survival and clinical management in certain patients. Current treatment
strategies for these cancers are inadequate. Using novel and sensitive biomarkers to effectively identify
specific patients and provide personalized treatment has become an important research topic.

Inflammatory cells in the tumor microenvironment (TME) show conflicting activities; various proportions
of tumor-antagonizing and tumor-promoting immune cells coexist in tumor lesions and can be traced to
sites of both chronic inflammation and tumor formation (6). As the largest endocrine organ in the human
body, the thyroid gland is a common target for autoimmune diseases (7). Inflammatory cells are widely
distributed in the PTC microenvironment. Based on TME immune subgroup, PTC is classified into
"inflammatory"” tumors (8). A considerable number of previous studies have reported the role of immune
cells in TC. Among them, B cells, CD8 + T cells, M1 macrophages, T helper 1 (TH1) cells, natural killer (NK)
cells, myeloid dendritic cells (mDCs), and yd T cells have antitumor effects, while T regulatory cells
(Tregs), T helper 2 (TH2) cells, M2 macrophages, myeloid-derived suppressor cells (MDSCs), immature
dendritic cells (iDCs), mast cells, monocytes, and neutrophils have tumor-promoting effects (9-11).
However, the roles of immune cells in PTC have not been fully elucidated, and their molecular mechanism
and causal link with PTC remain unclear. A systematic investigation of the relationship between the
tumor immune microenvironment and prognosis in PTC has not been carried out.

Immunotherapy, which strengthens the human immune system to fight tumors, has developed rapidly in
recent decades and become the main driving force for personalized medicine. Different immunotherapies
targeting TC in which tumor-associated macrophages (TAMs), dendritic cells (DCs), and T cells are
targeted to resist tumors are in the trial stage (4). Immunotherapies, especially immune checkpoint
inhibitors, are expected to serve as new alternative treatment options for PTC patients with poor
prognosis, as their targeting of CTLA-4, PD-1, TIM-3, Lag-3, and TIGIT and their ligands can release the
immune system and activate cytotoxic lymphocytes (CTLs) to kill TC cells (4). Additionally, the use of
tumor mutation burden (TMB) as a biomarker of the response to immune checkpoint blockade has
gradually been revealed to have important prognostic value in immunotherapy (12-15). Immunotherapy
is more efficacious in tumors with a high TMB, and TMB was added to the 2019 NCCN guidelines for non-
small cell lung cancer. However, the report on the role of TMB in PTC has not been carried out. Exploring
the relationship between the TMB and PTC may help to screen populations for effective immunotherapy.
A further understanding of the molecular and immunological characteristics of the TME will provide novel
and more effective immunotherapy strategies for PTC.

Our goal in this study was to understand the characteristics of the inflammatory TME in the prognostic
stratification of patients with PTC and to explore more possibilities for PTC treatment. Based on clinical
information, we systematically analyzed the expression and prognostic correlation of DEGs and
developed a personalized prognostic marker (prognostic risk score, PR) for PTC patients. Bioinformatics
analysis was performed to explore immunological interpretations of differences in prognosis at the TME,
cellular and molecular levels (Fig. 1). The results of this study can serve as a reference for subsequent
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immune-related research and are expected to facilitate screening of suitable populations for PTC
immunotherapy.

2 Materials And Methods
2.1 Materials

A thyroid carcinoma (THCA) dataset from The Cancer Genome Atlas (TCGA) with 58 normal thyroid
samples (N) and 512 PTC samples (T) was selected as the discovery cohort. Normalized level-three RNA-
seq fragments per kilobase of exon per million fragments mapped (FPKM) data and simple nucleotide
variation data (VarScan) were downloaded from the TCGA Genomics Data Commons (GDC)
(https://portal.gdc.cancer.gov/). Clinical THCA TCGA data were downloaded from the University of
California at Santa Cruz (UCSC) Xena platform (https://xena.ucsc.edu/).

The following 7 PTC gene expression microarray datasets were downloaded from the National Center for
Biotechnology Information Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo): GSE33630 (N =45, T = 49), GSE60542 (N = 30, T = 33), GSE58545 (N
=18, T=27), GSE3467 (N=9, T=9), GSE3678 (N=7, T = 7), GSE5364 (T = 35), and GSE27155 (T = 51).

2.2 Screening of differentially expressed genes (DEGS)

DEGs between PTC and normal thyroid tissues in the TCGA dataset were determined with the “limma”
package and the Wilcoxon test in R (adjusted p-value<0.05 and |log,FCI|>1).

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) was applied to screen GEO datasets (GSE33630,
GSE60542, GSE58545, GSE3467, and GSE3678) for DEGs.

2.3 Functional enrichment analysis

To efficiently use DEG data, DEGs that satisfied the following criteria were selected for Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses (DAVID 6.7,
https://david-d.ncifcrf.gov/):

e 1 differential expression in the TCGA dataset and

o 2 differential expression in at least 4 of the 5 GEO datasets.

2.4 Construction of a prognostic model

We defined common DEGs from comparisons of the TCGA data and the five GEO datasets as verified
differentially expressed genes (VDEGs); these VDEGs were then subjected to least absolute shrinkage and
selection operator (LASSO) analysis (16). Modeling genes with the best A values, which were screened by
1000-fold cross-validation, were determined. Multivariate Cox analysis of the modeling genes and
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progression-free survival (PFS) were used to generate prognostic risk scores (PRs) with the following
equation:

PR=Y (mRNA expression * regression coefficient B).

A total of 502 TCGA cases were divided into low PR (L-PR) and high PR (H-PR) groups based on the
median PR. To validate the reliability of the modeling genes, univariate Cox regression analysis was used
to verify the association of each modeling gene with the prognosis.

2.5 Comparison of the tumor immune microenvironment in
the L-PR and H-PR groups

2.5.1 ESTIMATE

ESTIMATE was used to evaluate the level of immune cell infiltration (immune score), stromal content
(stromal score), stromal-immune comprehensive score (ESTIMATE score) and tumor purity for each
THCA sample (17).

2.5.2 Expression-based stemness index (mRNAsi)

The mRNAsi levels of the THCA data were used to measure the cancer stem cell (CSC) content (18).
mRNAsi levels were evaluated with a predictive model using one-class logistic regression (OCLR). We
downloaded mRNAsi data from https://gdc.cancer.gov/about-data/publications/PanCanStemness-2018.

2.5.3 TIMER

The TIMER online database was used to analyze and visualize the abundance of 6 subtypes of tumor-
infiltrating immune cells (B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and DCs) (19).
We downloaded data on immune infiltration in THCA from the TCGA and calculated the association
between PR and immune cell infiltration.

2.5.4 CIBERSORT

CIBERSORT was used to calculate the proportions of 22 human immune cell subsets with a sum of 1
(20). One thousand permutations and a p-value < 0.05 were set as the criteria for effective sample
deconvolution. We compared the proportions of immune cell subsets between the L-PR and H-PR groups
using the Mann-Whitney test. We performed Spearman correlation analysis between immune cells with
the “corrplot” package.

2.5.5 Single-sample gene set enrichment analysis (sSGSEA)

We quantified the enrichment levels of 29 immune signatures in each THCA sample by the ssGSEA score
(21). Based on the ssGSEA scores of the 29 immune signatures, we explored differences in the immune
characteristics of the L-PR and H-PR groups (Table S1).
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We corrected the data to facilitate presentation of the overall results. Each ssGSEA score, Xi, was
transformed into Xi' with the equation Xi'=(Xi = Xin)/ Xmax=Xmin), Where X,i, and X, represent the
minimum and maximum ssGSEA scores, respectively, for the immune gene set across all THCA samples.

2.5.6 TMB

THCA simple nucleotide variation data from the TCGA (VarScan) and a validated algorithm (22) were
used to calculate the TMB, which was defined as the number of mutations per megabase.

2.5.7 Gene set enrichment analysis (GSEA)

GSEA software (version 2.0.1) was downloaded from the Broad Institute
(http://www.broad.mit.edu/gsea). Normalized enrichment score (NES) and false discovery rate (FDR)
values were used to sort the results of GSEA (KEGG pathway) of the L-PR and H-PR groups with 1000
gene set permutations for each analysis. Results for which [NES | =1.0, p-value < 0.05, and FDR g-val <
0.25 were considered statistically significant.

2.6 GEO verification

The PR for each PTC sample in the TCGA dataset was calculated using the prognostic model, and
samples were divided into L-PR and H-PR groups by the median PR. ssGSEA and ESTIMATE were used to
verify the immune efficacy of the PR in five GEO datasets (GSE33630, GSE60542, GSE58545, GSE5364,
and GSE27155).

2.7 Statistical analysis

Kaplan-Meier (K-M) survival analysis was performed using the R package "survival" (with PFS as the
ending indicator). The survival receiver operating characteristic (ROC) curve and area under the ROC
(AUC) were determined with the "survival ROC" package in R. The chi-square test was used to assess
differences in clinical parameters between the L-PR and H-PR groups. The Mann-Whitney U test and ttest
were used for comparisons between the two groups. The Spearman and Pearson methods were used for
correlation analysis. Significant survival p-values were calculated using the log-rank method. SPSS
version 25.0 software and R software (version 3.6.0) were used to analyze the data. Data were visualized
with R, GraphPad Prism version 8.0 and Excel software.

3 Results
3.1 Identification of DEGs

A total of 2696 DEGs between PTC and normal tissues, comprising 1470 upregulated and 1226
downregulated DEGs, were extracted from the TCGA (Figure STA and B). A total of 115 upregulated and
118 downregulated DEGs were common to analyses of PTC and normal tissues in 5 GEO datasets
(GSE33630, GSE60542, GSE58545, GSE3467, and GSE3678) and were used to verify the DEGs from the
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TCGA dataset. A total of 113 upregulated and 105 downregulated genes were common to all 6 datasets
(Figure S1C), which indicated the accuracy of gene selection.

3.2 Inflammatory manifestations in PTC

As expected, inflammatory pathways were most frequently implicated by functional enrichment analysis
of PTC data. The GO terms “extracellular structure organization,” “extracellular matrix,” and “serine-type
peptidase activity” were the GO biological process, cellular component, and molecular function GO terms,
respectively, most enriched in the DEGs (Fig. 2A). The “cytokine-cytokine receptor interactions” pathway
was the KEGG pathway most significantly enriched in the DEGs (Fig. 2B). According to ssGSEA score, the
expression levels of 29 immune-associated gene sets representing diverse immune cell types, functions,
and pathways tended to be increased in PTC compared to the adjacent normal tissues (Fig. 2C). In
summary, PTC exhibited significant inflammatory characteristics.

3.3 Evaluation of modeling clinical outcomes

Thirteen genes were selected by LASSO during the modeling process (Fig. 3A and B and Table S2).
Univariate Cox regression analysis was used to determine whether these genes are potential biomarkers
and qualified to monitor prognosis (Figure S2).

Based on the results of multivariate Cox regression analysis, we constructed a prognostic signature to
divide the PTC patients into two groups with discrete clinical outcomes as determined by PFS (Fig. 3C-E).
The following formula was used:

PR=[expression level of FAXDC2* (0.01224)] + [expression level of COLTAT * (0.0005941)] + [expression
level of MLF1* (0.4253)] + [expression level of CTSC* (0.02736)] + [expression level of WWOX* (0.2452)]
+ [expression level of FNT7 * (0.0005180)] + [expression level of NPC2* (-0.0002628)] + [expression level
of HBB* (-0.007181)] + [expression level of LYVET * (-0.5555)] + [expression level of MPZL2* (-0.02449)]
+ [expression level of TENM1T * (0.04534)] + [expression level of DUSP6 * (-0.0004503)] + [expression level
of AHNAK2* (0.05361)].

The PR could be an important tool in distinguishing PTC patient clinical outcomes (Fig. 4A). The AUC at
3,5, and 10 years was 0.831, 0.861, and 0.873, respectively (Fig. 4B), suggesting that the prognostic
signature can be used to efficiently monitor survival. Multivariate Cox regression analysis suggested that
PR is an independent predictor after other parameters (age, gender, American Joint Committee on Cancer
(AJCC) stage, T classification, N classification, metastasis, radiation therapy, TMB and mutations in
BRAF and RAS) are adjusted (Table 1). The prognostic signature was also found to be a viable index
reflecting overall survival (OS) and relapse-free survival (RFS) in different PTC patients (Fig. 4C and D).
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Table 1
Univariate and multivariate regression analysis of PTC.

Variables Univariate analysis Multivariate analysis
Hazard ratio (95%Cl) P value Hazard ratio (95%CI) P value

Age 1.054 (1.028 -1.080) <0.001 1.044 (1.004-1.086) 0.031
Gender(male/female)  1.240 (0.539-2.854) 0.612  1.151(0.435-3.043) 0.777
Stage 2.049 (1.440-2.915) <0.001 1.160 (0.595-2.260) 0.664
Metastasis 6.485(2.182-19.28) <0.001 2.071(0.428-10.02) 0.365
N classification 1.291(0.597 -2.792) 0.517 0.556 (0.197 - 1.568) 0.268
T classification 1.539 (0.995-2.380) 0.053 1.041 (0.562-1.928) 0.898
Radiation therapy 1.896 (0.797 -4.512) 0.148 1.863 (0.607 - 5.715)  0.277
BRAF mutation 0.672 (0.307 -1.468) 0.318 1.045(0.342-3.191) 0.939
RAS mutation 1.715(0.586-5.018)  0.325  1.644(0.324-8.331)  0.548
TMB 5.008 (2.414-10.39) <0.001 1.611(0.482-5.382) 0.439
Risk score 1.284 (1.204-1.369) <0.001  1.306 (1.179-1.448) <0.001

In summary, the PR exhibited outstanding efficacy as an independent prognostic factor.

3.4 Clinical utility of the prognostic signature

The relationships between the PR and the following clinical parameters were analyzed: age, gender, stage,
T classification, N classification, metastasis, pathologic type, radiation therapy, mutation of BRAF and
RAS, and vital statistics (Table 2). The PR was significantly higher in seniors; patients with advanced
stage PTC, advanced T classification, distant metastasis, RAS mutation, and follicular and tall cell PTC.

Page 8/25



Table 2

Comparison of clinical parameters between L-PR and H-PR groups in PTC.

Clinical parameters

Age(y)
<55

=55
Gender
Female
Male
Stage

I

Il

0l

v

NA

T classification
T1

T2

T3

T4

NA

N classification
NO

N1

NA
Metastasis
MO

M1

NA

Risk score

Low (n=251, %)

195 (77.7)
56 (22.3)

182 (72.5)
69 (27.5)

165 (65.7)
18 (7.2)
43 (17.1)
25 (10.0)
0

93 (37.1)
79 (31.5)
70 (27.9)
8(3.2)
1(0.4)

115 (45.8)
120 (47.8)
16 (6.4)

155 (61.8)
1(0.4)
95 (37.8)
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High (n =251, %)

140 (55.8)
111 (42.2)

185 (73.7)
66 (26.3)

116 (46.2)
34 (13.5)
69 (27.5)
30 (12.0)
2(0.8)

50 (20.0)
85 (33.9)
100 (39.8)
15 (6.0)
1(0.4)

114 (45.4)
103 (41.0)
34 (31.5)

127 (50.6)
8(3.2)
116 (46.2)

Pvalue

<0.001

0.763

<0.001

<0.001

0.445

0.009




Clinical parameters Risk score Pvalue
Low (n=251,%) High (n=251,%)

Radiation therapy

No 99 (39.4) 78 (31.1) 0.056

Yes 143 (57.0) 162 (64.5)

NA 9 (3.6) 11 (4.4)

Pathologic type

Classical 195 (77.7) 161 (64.1) 0.006

Follicular 42 (16.7) 59 (23.5)

Tall Cell 11 (4.4) 25 (10.0)

Other 3(1.2) 6 (2.4)

BRAF

Wild 89 (35.5) 106 (42.2) 0.115

Mutation 152 (60.6) 135 (53.8)

NA 10 (4.0) 10 (4.0)

RAS

Wild 220 (87.6) 202 (80.5) 0.013

Mutation 21 (8.4) 39 (15.5)

NA 10 (4.0) 10 (4.0)

Vital stats(as follow-up)

Alive 250 (99.6) 235 (93.6) <0.001

Dead 0 16 (6.4)

NA 1(0.4) 0

In addition, due to the lack of clinical data in the GEO dataset, we only retrieved and verified the clinical
data in the GSE60542 cohort. The results also showed that the PR was positively correlated with stage,
maximum primary tumor size, and maximum metastatic lymph node size (Figure S3A-D).

In summary, the PR is positively correlated with PTC progression.
3.5 Comparison of the TME compositions of the L-PR and
H-PR groups
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The results of ESTIMATE analysis suggested that the L-PR group had a higher immune score and stromal
score, while the H-PR group had a higher tumor purity score (Fig. 5A-D). These results indicated that the
group with a good prognosis had a higher proportion of immune cells and stromal cells, while the group
with a poor prognosis had a higher proportion of tumor cells.

mRNAsi analysis showed that the H-PR group had higher mRNAsi levels (Fig. 5E). This finding indicated
that a high PR is positively correlated with a large number of CSCs.

In summary, low immune infiltration and a large number of CSCs in the TME were highly correlated with
poor prognosis in PTC.

3.6 Comparison of immune cell abundance in the L-PR and
H-PR groups

We used the ssGSEA score to quantify the enrichment levels of immune cells, functions and pathways in
the groups with different PRs (Fig. 6A). The expression levels of genes in the immune-associated gene
sets in the L-PR group generally tended to be increased, and this difference was significant in 20 of the 29
gene sets (p <0.05) (type Il IFN response, Tregs, tumor-infiltrating lymphocytes (TILs), TH1 cells, follicular
helper T (Tfh) cells, T helper cells, T cell costimulation, T cell coinhibition, plasmacytoid dendritic cells
(pDCs), parainflammation, neutrophils, mast cells, macrophages, inflammation-promoting activity,
cytolytic activity, checkpoints, CD8 + T cells, CCR, B cells, and antigen-presenting cell (APC)
costimulation).

To determine whether the PR accurately reflects the status of the PTC immune microenvironment, TIMER
was used to analyze the relationship between PR and immune cell infiltration (Fig. 6B-G). With the
exception of CD4 + T cells, the numbers of which were no different, B cells, CD8 + T cells, neutrophils,
macrophages, and DCs were significantly elevated in the L-PR group compared to the H-PR group.

Additionally, immune-related gene expression levels in the L-PR group were increased overall compared to
those in the H-PR group. Expression of the immune cell marker genes (23) CD8A (cytotoxic T cells), CD20
(B cells), CXCR5 (Tfh cells), CD68 (macrophages), IL3RA (pDCs), and FOXP3 (Tregs) tended to be
increased in general in the L-PR group compared to the H-PR group (Figure S4A). HLA genes, especially
HLA class Il genes that present exogenous antigens, exhibited increased expression levels in the L-PR
group compared to the H-PR group (Figure S4B). Moreover, expression levels of classical checkpoints that
suppress the immune system (CTLA4 and PD7) were also increased in L-PR group compared to the H-PR
group (Figure S4C).

In summary, compared to the L-PR group, the overall immune cell abundance of the H-PR group was
decreased.

3.7 Comparison of immune cell proportions in the L-PR and
H-PR groups
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CIBERSORT was used to calculate the proportion of each of the 22 immune cell types, which were
compared between the L-PR and H-PR groups (Fig. 7A-C). The L-PR group exhibited higher proportions of
antitumor immune cells (B cells, CD8 + T cells, M1 macrophages, and yd T cells), while the H-PR group
exhibited higher proportions of tumor-promoting immune cells (Tregs, monocytes, and activated dendritic
cells (aDCs)). Additionally, positive correlations between antitumor immune cells (plasma cells, CD8 + T
cells, M1 macrophages, and Tfh cells) were observed (Fig. 7D). In addition, these tumor-antagonizing
immune cells were negatively correlated with immune cells with tumor-promoting effects (M2
macrophages, MO macrophages, aDCs, resting mast cells, and resting memory CD4 +T cells) (Fig. 7D).
To facilitate the understanding of these results, we listed the results in a balance chart (Fig. 7E). The
balance chart was constructed based on reviews by Varricchi et al. (9) Galdiero et al. (10) and Ferrari et
al. (11).

In summary, compared to the L-PR group, the H-PR group had a higher proportion of tumor-promoting
immune cells and a lower proportion of antitumor immune cells.

3.8 Correlation between the TMB and the PR or PTC
prognosis

We calculated the PTC TMB to reveal the top ten most frequently mutated genes in PTC (Fig. 8A). Then,
we divided the 487 cases in the TCGA dataset into high-TMB and low-TMB groups based on the median
TMB value. K-M survival analysis indicated that a high TMB is associated with a worse prognosis (log-
rank p-value = 0.022) (Fig. 8B). Our results showed that TMB levels were significantly higher in the H-PR
group (Fig. 8C). In addition, we also found that PTC samples with mutations (BRAF, RET and RAS) in the
GSE60542 verification cohort had a higher PR (Figure S5).

These results indicate that the PR and TMB are positively correlated, and the TMB is negatively correlated
with prognosis.

3.9 GSEA of the L-PR and H-PR groups

To understand the mechanism of PTC prognosis and functional differences between the L-PR and H-PR
groups, GSEA was used to identify KEGG pathways enriched in each group. Interestingly, citrate cycle
(TCA cycle); propanoate metabolism; valine, leucine and isoleucine degradation; pyruvate metabolism;
aminoacyl tRNA biosynthesis, arginine and proline metabolism; nicotinate and nicotinamide metabolism;
glycolysis gluconeogenesis; lysine degradation; tryptophan metabolism; and fatty acid metabolism
pathways were enriched in the H-PR group (Fig. 9A). This suggests that a high PR is associated with
dysregulated energy metabolism. In contrast, immune-related pathways were highly enriched in the L-PR
group (Fig. 9B); these pathways included the cytokine-cytokine receptor interaction, JAK-STAT signaling,
B cell receptor signaling, NK cell-mediated cytotoxicity, Toll-like receptor signaling, T cell receptor
signaling, leukocyte transendothelial migration, complement and coagulation cascade pathways. This
finding confirmed that the L-PR group had higher immunological activity. In addition, we identified a
number of cancer-associated pathways enriched in the L-PR group; these pathways included the TC, ErbB
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signaling, Notch signaling, and colorectal cancer pathways, which suggests that the activity of these
cancer-related pathways is related to PR (Table S3). In general, immune-related pathways and some
cancer-related pathways were enriched in the L-PR group, while metabolic pathways were enriched in the
H-PR group.

3.10 GEO verification of immune characteristics of the L-PR
and H-PR groups

Five GEO validation cohorts (GSE33630, GSE60542, GSE58545, GSE5364, and GSE27155) were used to
verify the immune value of the PR (Fig. 10A-Y). The PR for each PTC sample in the TCGA dataset was
calculated with the established model, and samples were also divided into L-PR and H-PR groups by the
median PR. Through ssGSEA, we confirmed that genes involved in immune-related functions and
pathways were more highly expressed in the L-PR group. In addition, through ESTIMATE, we also verified
that the PR was negatively correlated with the immune score and stromal score and positively correlated
with tumor purity. In summary, we confirmed the negative correlation between PR and immune infiltration.

4 Discussion

In this study, we established a scoring model (PR) that can effectively predict prognosis and explored the
potential relationship between prognosis and the TME. The H-PR group, which had poor prognostic
features, showed four main characteristics: 1. comprehensive weakening of the immune system, 2. an
increased ratio of tumor-promoting immune cells, 3. an increased number of CSCs, and 4. an increased
TMB (Fig. 11).

The importance of the TME in tumor progression and immunotherapy has been recognized. TC is an
inflammation-driven cancer (8, 24, 25). Our research confirmed the enrichment of inflammatory features
in PTC, which was our initial clue to examine the TME. In recent years, remarkable progress has been
made in the characterization of several immune cell types (but not all) in the TME of different TCs (9, 24—
34). In different stages of PTC, tumor-promoting and antitumor immune cells engage in confrontation.
However, many aspects of the immune-related molecular mechanisms of PTC remain unclear, and the
relationship between immune cells and prognosis has yet to be discovered. Our research provides
adequate data for such an assessment. Studies have reported differences in the TME between PTC and
nontumor samples, but no systematic study to explore the characteristics of the TME and progression in
PTC has been carried out. We have conducted a series of studies on the above issues and obtained
abundant interpretive results.

To develop a simple and convenient signature with which to monitor the immune status of PTC patients
and suggest clinical outcomes, we created a prognostic model based on 13 VDEGs. Due to the excellent
prognosis of PTC, the number of OS and DFS events in PTC are small, and metastasis and recurrence
have become the main in its clinical management. Therefore, we chose PFS as the ending indicator. In
recent years, models that predict the prognosis of PTC have developed rapidly. The 35 gene-based

Page 13/25



prognostic scoring system developed by Pak et al. (35) shows strong discriminatory power in the
prediction of event-free survival. Lin et al. (36) used DEGs to develop a risk index model to predict the
prognosis of PTC. Liu et al. (37) established a prognostic model based on two microRNAs. You et al. (38)
defined a signature to predict the prognosis of PTC consisting of three long noncoding RNAs (IncRNAs).
A competing endogenous RNA (ceRNA) network for the prediction of tumor recurrence has also been
reported (39). Our study was performed not only to establish an accurate and reliable prognostic model,
but also to compare the differences between prognostic groups and to explore the potential mechanisms
that cause differences in PTC prognoses.

By ESTIMATE analysis, we found that a high PR indicated a lower degree of immune cell and stromal cell
infiltration and a higher tumor purity, and these samples showed that overall immune infiltration was
decreased in the poor prognosis group. ssGSEA and TIMER analysis confirmed an overall decrease in
immune cell abundance in the H-PR group. Moreover, the comprehensive increase in immune-related gene
expression levels in the L-PR group confirmed a highly active immune system (with both tumor-
antagonizing and tumor-promoting effects) in the group with a good prognosis. This finding is different
from the general conclusion of previous TC studies that anticancer immune cells are positively correlated
with prognosis, while cancer-promoting immune cells are negatively correlated with prognosis (34, 40—
47). Our previous research also found that the immune system as a whole has a high degree of
consistency in the occurrence and development of PTC. Immune escape as a tumor hallmark has been
shown to be associated with poor prognosis in a variety of tumors (48, 49). The immune editing
hypothesis was proposed by Dunn et al. (50) and divided the interaction between the immune system and
the tumor into three stages: 1. elimination, in which immune effector cells (NK cells, CTLs and yd T cells)
recognize and destroy transformed tumor cells; this stage is also called immune surveillance; 2.
equilibrium, in which the immune system eliminates tumor cells with high immunogenicity, while tumor
cells with low immunogenicity survive; and 3. escape, in which tumor cells eventually escape the body's
immune surveillance. The entire process results in decreased tumor immunity (51). In our study, the L-PR
group showed the characteristics of the "elimination” stage, while the H-PR group showed more
characteristics of the "escape” stage. Poschke et al. (52) suggested that tumors have two methods of
immune escape: camouflage and sabotage. Camouflage refers to the malformation and loss of the major
histocompatibility complex class | (MHC-I) molecules on the surfaces of tumors, allowing tumors to
escape the detection of the immune system. The MHC in humans is also called HLA, and our results
showed that HLA gene expression was lower in the H-PR group than in the L-PR group. Sabotage refers to
the ability of some tumors, including PTC, to manipulate part of the immune system to fight against the
body's immune response to protect themselves. In this process, tumors attract and even mediate some
immune cells, such as TAMs, MDSCs, Tregs, and mast cells (MCs). In general, MDSCs, Tregs, and MCs
respond to uncontrolled inflammatory reactions in the body, but during tumor progression, they create an
immune microenvironment that allows this process.

Existing evidence shows that B cells, CD8 + T cells, M1 macrophages, TH1 cells, NK cells, mDCs, and y0 T
cells have tumor-antagonizing effects in the PTC TME, while Tregs, TH2 cells, M2 macrophages, MDSCs,

iDCs, mast cells, monocytes, and neutrophils have tumor-promoting effects (9—11). Our previous research
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also showed that during the occurrence and development of PTC, the proportion of tumor-promoting
immune cells (M2 macrophages, Tregs, monocytes, neutrophils, DCs, MCs, and M0 macrophages)
increased, while the proportion of antitumor immune cells (M1 macrophages, CD8 + T cells, B cells, NK
cells, Tfh cells, and yd T cells) decreased (53). In this study, the H-PR group showed a high proportion of
tumor-promoting immune cells (Tregs, monocytes and aDCs) and a lower proportion of antitumor
immune cells (B cells, CD8 + T cells, M1 macrophages and y& T cells), indicating that the tumor cells
escaped the body's immune surveillance by "sabotage" and achieved immune escape. Based on the
above conclusions, we speculate that the irreversible progression of tumors caused by immune escape in
the PTC TME is a crucial cause of poor prognosis. The enrichment of immune-related pathways in the L-
PR group by GSEA also supports the above view.

Tumor heterogeneity, one of the characteristics of malignant tumors, can cause differences in tumor
growth rate, invasion and prognosis. Two models have been used to explain the heterogeneity of cancer
cells (54). The first is the stochastic model, in which the development of cancer is triggered by the
accumulation of gene mutations in a single cancer cell, followed by different subsequent genetic events
in different subpopulations of cells. We found that the H-PR group had a significantly higher TMB than
the L-PR group. In 2019, the TMB was included in the NCCN index as an emerging prognostic indicator in
non-small cell lung cancer immunotherapy (12-15, 55). We found that PTC patients with a high TMB had
a worse prognosis. Other studies have also reported that patients with a variety of cancer types with a
high TMB can obtain a better prognosis after immunotherapy; however, without immunotherapy, patients
with a high TMB show a poor prognosis (56). Our study fills the gap in knowledge of the role of TMB in
PTC. The high TMB observed in patients with a poor prognosis suggests immunotherapy as a viable
option for these patients.

The second model is the CSC model, which postulates that a small population of cells in the tumor is
responsible for tumor initiation, growth, and recurrence (57). We found that the H-PR group had a higher
CSC content than the L-PR group. The positive correlation between CSCs and recurrence and metastasis
in our data can be explained well by the CSC model (6). CSCs in cancer biology are resistant to
conventional therapies (such as surgery and radioactive iodine therapy), and TC usually relapses as CSCs
recur (58). The combination of CSC-specific therapies (such as drugs that target the Notch or MEK and
JNK pathways as therapeutics to eliminate CSCs) with conventional therapies has the potential to
eradicate highly lethal cancers (58).

In addition, PTCs with high tumor heterogeneity have a higher frequency of weak immunogenic tumor
cells, which will also accelerate the body's immune selection for tumor cells and exacerbate immune
escape (59).

At present, PTC immunotherapy is an active research field, and the study of the tumor immune
microenvironment is an important pillar of research on PTC management via immunotherapy (4). The
results of this study provide a reference for subsequent research on the PTC immune microenvironment.
The high level of immune escape and high TMB shown by the H-PR group suggest that immunotherapy
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is a viable option for patients with poor prognosis. The PR as a prognostic signature and an immune
status indicator can assist in the clinical stratification of PTC patients to identify patients who respond to
immunotherapy.

However, this study has some limitations. 1. Because the TCGA is the only public database with sufficient
data on both PTC expression and prognosis, we did not use other independent cohorts to verify the
prognostic value of the PR. However, we confirmed the negative correlation between the PR and immune
infiltration in 5 GEO verification cohorts and verified the positive correlation between the PR and PTC
progression and mutation in GSE60542 using clinical data. 2. The PR has a strong predictive effect on
PTC prognosis, but there may still be slight differences in the TME between the PR grouping method and
the actual different prognosis grouping method. However, related prognostic research is ongoing. 3.
Cancer-related pathway enrichment in the L-PR group has not been well explained, but we suspect that
this enrichment is related to increased immune infiltration. It was also found in triple-negative breast
cancers that a group with a high level of immune infiltration showed a better prognosis, accompanied by
the enrichment of cancer-related pathways (60).

5 Conclusions

In summary, we have established a prognostic model that can effectively predict the prognosis of PTC
and revealed that immune escape and tumor heterogeneity in the TME could be mechanisms of poor
prognosis in PTC.
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Figure 1

Main flow chart. A PTC prognostic model was established based on VDEGSs, and its predictive efficacy
and clinical characteristics were analyzed. Then, a series of experiments to explain prognostic differences
based on the immune microenvironment were carried out. Finally, the results were verified in multiple
datasets. ESTIMATE was used to evaluate the immune score, stromal score, and tumor purity in the PTC
TME. The mRNAsi was used to evaluate the CSC content in the PTC TME. ssGSEA andTIMER were used

Page 22/25



to calculate the immune cell abundance of PTC samples. CIBERSORT was used to calculate the immune
cell proportions of PTC samples. GSEA was used to analyze the enrichment pathways related to PTC
prognosis.

Figure 2

Functional enrichment in DEGs and inflammatory differences between PTC and normal tissues. (A) GO
analysis; the blue, red and green areas represent biological processes, cellular components and molecular
functions, respectively; (B) The top 9 most significantly enriched KEGG pathways; (C) ssGSEA of the 29
immune signatures. *p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001 here and in the following figures.

Figure 3

Establishment of a prognostic model. (A) In the LASSO model, 1000-fold cross-validation was used for
tuning parameter selection (A as a tuning parameter to plot partial likelihood deviance); (B) LASSO
coefficient profiles of 218 VDEGs. The dotted line indicates the value after 1000 cross-validations. In (A)
and (B), the number above the figure indicates the number of genes subjected to LASSO analysis; (C) A
total of 502 PTC cases were divided into low prognostic risk score (L-PR) and high prognostic risk score
(H-PR) groups according to the median PR; (D) Survival status of patients with PTC; (E) Heatmap
showing the expression of 13 modeling genes.

Figure 4

The prognostic value of the prognostic model. (A) The H-PR group showed a shorter PFS time; (B) ROC
curve validation of the predictive performance of the prognostic model. Survival analysis with an ending
indicator of (C) OS or (D) RFS in PTC.

Figure 5

Relationship between PR and the tumor microenvironment in PTC. The H-PR group exhibited (A) lower
stromal scores; (B) lower immune scores; (C) lower ESTIMATE scores; (D) a higher tumor purity, and (E)
more cancer stem cells (CSCs) than the L-PR group. Stromal score, immune score, ESTIMATE score and
tumor purity were evaluated by ESTIMATE. CSC levels were evaluated by expression-based stemness
index (MRNAsi).
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Figure 6

Comparison of immune cell infiltration (abundance) between the L-PR and H-PR groups. (A) Immune-
related cells, functions, and pathways were comprehensively enriched in the H-PR group, as shown by
ssSGSEA; (B) B cells; (C) CD4+ T cells; (D) CD8+ T cells; (E) DCs; (F) macrophages, and (G) neutrophils.
The abundance of the immune cell types from B to F was evaluated with the TIMER database. The
Spearman method was used for correlation analysis.

Figure 7

Comparison of immune cell infiltration (proportion) between the L-PR and H-PR groups. Proportions of 22
types of immune cells (CIBERSORT) in (A) the L-PR group and (B) the H-PR group; (C) Comparison of
immune cell proportions between the L-PR and H-PR groups. (D) Correlation analysis between immune
cell types in PTC; (E) Balance chart of the differences in immune cell infiltration between the L-PR and H-
PR groups.

Figure 8

The relationship of tumor mutation burden (TMB) to prognosis and the PR in PTC. Number of gene
mutations and the top 30 most significantly mutated genes in (A) L-PR group and (B) H-PR group; (C) The
high-TMB group showed a worse prognosis than the low-TMB group; (D) The H-PR group showed a
higher TMB than the L-PR group.

Figure 9

Gene set enrichment analysis (GSEA) of PRs in PTC. (A) KEGG pathways enriched in the H-PR group; (B)
KEGG pathways enriched in the L-PR group.

Figure 10

Verification of the immune value of the PR. (A-E) ssGSEA of the 29 immune signatures; (F, J, N,Rand V)
Differences in the stromal scores; (G, K, 0, S, and W) immune scores; (H, |, B T, and X) ESTIMATE scores,
and (I, M, Q, U, and Y) tumor purity between the L-PR and H-PR groups were assessed. Validation cohorts
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were from the GSE5364 (A, F, G, H,and I), GSE27155 (B, J, K, |, and M), GSE33630 (C, N, O, P and Q),
GSE58545 (D, R, S, T, and U), and GSE60542 (E, V, W, X, and Y) datasets.

Figure 11

Model diagram. PTC patients divided into two groups based on PR had different immune
microenvironment characteristics and prognoses.
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