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Abstract In this paper is presented a new technique to design

trajectories with finite time convergence properties for preci-

sion tracking maneuvers in unmanned vehicles. This technique

allows the finite time positioning on sequentially distributed

points, the properties for the trajectory guarantee to start in

an initial point with velocity and acceleration zero, and posi-

tion itself on the subsequent point with finite time convergence,

again with velocity and acceleration zero. Such trajectory de-

pends exclusively of the time and of the initial and last posi-

tion. In addition, this technique could be used to design open

loop controllers to be implemented in mobile robotics applica-

tions that require long accuracy. To show the controllers feasi-

bility we considering the kinematic car model with finite time

properties, obtaining an open loop control for the car’s velocity

and steering the vehicle to desired trajectory, where simulation

results present the control performance and effectiveness.
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1 Introduction

Navigation systems allow to guide in position and orientation

a mobile robot from a starting point to a goal point in an in-

door or outdoor environment. There are different proposals re-

garding the navigation of a mobile robot, most of them share a

set of components, among which the location of the robot and

generation of trajectories play a key role. In navigation sys-

tems, Global Positioning System (GPS) is used as position sen-

sor, however, when GPS is not available, various methods are

used to estimate the position of a vehicle. For example, in [2]

presents complementary system navigation based on a method

terrain aided navigation, which consists of estimating the speed

of the vehicle referenced to the fixed body frame or the posi-

tion to inertial frame using the existing digital terrain maps,

that is, using exteropceptive sensors, terrain observations are

obtained correlated with the known map a priori to calculate

the pose of the robot. Instead, in [15] propose to estimate the

position of a ground vehicle by data fusion through odometry

and vision algorithm based on consensus-based tracking with

a coincidence algorithm (CMT). Nevertheless, the most used

technique to obtain the location of a vehicle is Dead Reck-

oning (DR) [6, 13, 14]; because a priori knowledge of the en-

vironment is not necessary. This technique is used when po-

sition sensors not yet available, and there are measurement

sensors such as: encoder, IMU, AHRS, cameras, etc. The use

of odometry by means of measurement sensors provides good

precision in short periods and allows very high sampling rates;

however, an accurate starting position quickly becomes uncer-

tain through variations in vehicle movement, and position er-

rors grow unlimitedly over time by accumulation of gyroscope

and accelerometer error, as well as oscillatory speed errors that

increase proportionally with the distance traveled by a mobile

robot. Several works, have proposed the use of robust sensors
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or the data fusion through Kalman filters to reduce accumu-

lated errors. In [23], the authors present a method to correct

navigation errors based on magnetic positioning to locate an

automated guided vehicle (AGV), the magnetic sensor detects

some properties of the magnetic field which are fused with

the measurement of the sensors (encoder, IMU) to calculate

and adjust the relative position of the AGV. Meanwhile in [3],

is shown that through experimental results, the static and dy-

namic localization accuracy of the AGV can be improved us-

ing a laser positioning system and a matching algorithm based

on Dead Reckoning. Other authors, propose use an AHRS and

odometer to implement the Dead Reckoning technique, and for

estimating the inclination of the orientation sensor, the authors

add an extended Kalman filter (EKF) that helps to reduce the

drift in the navigation system, obtaining a better precision even

in the face of external disturbances, see [16].

Nowadays, there are proposals in the literature that only

use crude measurements from an IMU to estimate the 3D

pose of the vehicle using Dead Reckoning and implement-

ing neural networks to adapt the covariance of an extended

Kalman filter on the movements of the vehicle [1]. Other

method to calibrate the model parameters, present in [19] pro-

pose a Dead reckoning calculation model through the fusion

of complementary data and redundant sensors; furthermore,

a Rauch-Tung-Striebel smoothing scheme is implemented to

obtain smoothed estimates to calibrate the model parameters.

Experimental tests demonstrate a system with reduced drift

that provides a more accurate resulting model. In [4] a new

traffic flow model called the forward-backward velocity dif-

ference (FBVD) model is presented, the model belongs to the

family of microscopic models that consider spatiotemporally

continuous formulations, through nonlinear analysis, a kink-

antikink solution is derived from the modified Korteweg-de

Vries equation to explain traffic congestion of the model. The

dynamic performance of traffic flow using a modified optimal

velocity car-following model was studied in [22], here a vehi-

cle must adjust the following distance in real time, the results

show that the proposed model improve the traffic stability and

suppress traffic congestion. A new car-following (CF) model

incorporating the effects of lateral gap and roadside device

communication was proposed in [9], in this work the model

stability is analyzed using perturbation method. An improved

optimal velocity model, which considers the velocity differ-

ence of two adjacent lanes, is presented in [20], the nonlinear

stability of the model is investigated and the solution of the

modified Korteweg-de Vries equation near the critical points

is obtained to characterize the unstable region. The process

in the work [21] is to analyze the impacts of the green sig-

nal countdown device on car-following behaviors at signalized

intersections and to propose an improved car-following model.

The numerical results indicate that the improved car-following

model can qualitatively describe the impacts of the green sig-

nal countdown device on car-following behaviors of the arrival

traffic flow.

On the other hand, the trajectory generation presented by some

authors, uses reference points, periodic orbits, geometric ap-

proaches, etc. For example, in [10, 18] the navigation method

is presented by generating trajectory by waypoints to path

planning future movements of the robot, the method in ques-

tion, does not require prior knowledge of the environment and

quickly generates adequate paths. However, there exist several

ways to create dynamics, for instance, in [11] used periodic or-

bits in the form of regular polygons to carry out patrolling tasks

in robots that drive in a straight line and use rebound angles.

The main contribution of this work is the development of

a navigation technique where errors do not accumulate as

time passes, thus, it is not necessary to adjust the drift.

To introduce this technique we will take ideas from the

papers [7, 8] where the authors propose a transient polynomial

dynamic ϕ (t) whose purpose is to prescribe to high-order

sliding-modes in finite time and avoid the chartering effect into

the designed controller capable to control the output of any

smooth uncertain SISO system with known permanent relative

degree [5, 12, 17]. The main idea is to modify the transient

polynomial dynamics, which will be defined as K1(t) with

the propose of designing a line lP0P1
(t) that achieves the finite

time positioning over a point P1 starting from P0, to continue,

a second modified transient polynomial dynamic is introduced

K2(t) to design a line lP1P2
(t) that guarantees the finite time

positioning over a point P2 starting from P1. Therefore, for

n+ 1 points P0, P1, . . . , Pn the general objective is to design

recursively n modified transient polynomial dynamics K1(t),

K2(t), . . . , Kn(t) with the propose of designing n lines lP0P1
(t),

lP1P2
(t), . . . , lPn�1Pn(t). Then, a switching technique will be

introduced in order to do that each line lPi�1Pi
(t) occurs at

its exact moment of appearance. Finally, a set of numerical

simulations was performed to demonstrate the performance of

the proposed method.

The remainder of the document is organized as follows:

Section 2 describe the problem statement. Section 3 and 4,

presents the main contributions of this paper, trajectory design

with finite time convergence and trajectory with multiple fi-

nite time positioning. Then, Section 5 describe an educational

example of consecutive trajectories by a simulation result. Sec-

tion 6 provides a set of simulations to validate the open loop

control of a ground vehicle using a trajectory with multiple

finite time positioning, the main graphs illustrate the perfor-

mance of the open-loop system. Finally, Section 7 presents a

conclusions and future work.
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2 Problem statement

In several applications using robots, it is necessary controllers

that provides small errors for the mission. For some tasks the

control accuracy is also related with the trajectory tracking,

that in several cases is only given by a set of set points without

any conditions in the robots.

For example, the line equation passing through two points

P0 and P1 is represented in Fig. 1.

Fig. 1 Line representation between P0 and P1

where l 2 R
n with n = 2,3.

Thus, several works use way points for a robot mission

without imposing initial or final conditions for the robots

that could degrade the robot’s performances or damage it.

In some cases, the previous can be solved tuning the control

gains to improve the performance of the robot. Other solutions

include the generation and tracking trajectory imposing some

conditions in the robot for improving its behavior during the

mission.

Our solution, presented in this paper, includes a new tech-

nique to design trajectories with multiple finite time position-

ing on sequential points P0, P1,. . . , Pn with the goal to use

these trajectories in aerial or ground drones as path planning

and as a manner to design open loop controllers to be imple-

mented in precision agriculture missions.

Consequently, given n + 1 points P0, P1, . . . , Pn with

i = 1, . . . ,n, we will design individual lines lPi�1Pi
(t) that pass

through the points Pi�1 and Pi where the finite time position-

ing on each one will be established, after that, a line lr(t) will

be the union of the previous lines, guaranteeing the following

main properties.

2.1 Main properties

1. The convergence to the sequential points P1, P2, . . . , Pn

will be reached in finite time.

2. The time Ti in going from Pi�1 to Pi will be established

as we desire. However for our purposes this time will be

proposed as Ti = µ kPi �Pi�1k where µ is a proportion-

ality constant and kPi �Pi�1k is the distance between the

points Pi�1 and Pi.

3. We can propose a stop time ε over each sequential point,

implying to stay on each point during a time ε before mov-

ing to the next point.

4. The velocity as well as the acceleration at the time t0 = 0

seconds on P0 always are zero, and over the subsequent

points P1, P2, . . . , Pn the velocity and the acceleration will

be maintained on zero during a lapse of time given by ε .

In fact, in real time experiments, where applications of

high precision is required, the first and second property can

guarantee finite time positioning on each point as well as to

establish a finite time Ti in going from Pi�1 to Pi although

mathematically the finite time Ti can be chosen as small as

we desire by the choice of a small parameter µ , it is im-

portant to clarify that in real time applications this time de-

pends exclusively on the electronic and mechanical configu-

ration of the motors of a robotic mobile vehicle. This means

that for a mobile robotic application a minimal finite time

min(Ti) can be found by tuning the parameter µ , implying

that min(Ti) = min(µ)kPi �Pi�1k obtaining the fastest con-

vergence at the point Pi, then if we desired a smooth and slow

finite time convergence Ti to go from Pi�1 to Pi all the ad-

missible parameters µ must satisfy min(µ)  µ . By another

hand the third property guarantees the permanence on a point

Pi during a lapse of time ε seconds, this means that a robot

will remain static on Pi during a lapse of time ε , being able to

perform some specific task.

3 Trajectory design with finite time convergence

3.1 Trajectory between two points

For some robot applications, trajectory tracking in fine time,

with precision position control, is necessary for achieving the

mission. Therefore, we are interested in designing a trajectory

lP0P1
(t) starting at time t0 = 0 on the initial position P0 and

steers until touching the point P1 in a desired finite time T1. In

addition, the trajectory must remain static on P1 during a stop

time ε . In Fig. 2, the trajectory is graphically shown for 3D.

The trajectory lP0P1
(t) and their derivatives l̇P0P1

(t),
l̈P0P1

(t) are described as

lP0P1
(t) = P0 +K1 (t)∆p1

with K1 (t)2 [0,1] (1a)

l̇P0P1
(t) = K̇1(t)∆p1

(1b)

l̈P0P1
(t) = K̈1(t)∆p1

(1c)
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Fig. 2 Trajectory lP0P1
(t) with points P0,P1 2 R

3

where ∆p1
= P1�P0 and K1(t), K̇1(t), K̈1(t) are time functions

given by

K1(t) =

(

1+(t � (t0 +T1))
3ψ1(t)

1

�

�

�

�

�

t 2 [t0, t0 +T1)

t 2 [t0 +T1, t0 +T1 + ε)

K̇1(t) =

8

>

<

>

:
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2ψ1(t)

+(t � (t0 +T1))
3ψ̇1(t)
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t 2 [t0, t0 +T1)
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K̈1 (t) =

8

>

>

>

>

<

>

>

>

>

:

6(t � (t0 +T1))ψ1(t)

+6(t � (t0 +T1))
2ψ̇1

+(t � (t0 +T1))
3 ψ̈1(t)

0

�

�

�

�

�

�

�

�

�

�

t 2 [t0, t0 +T1)

t 2 [t0 +T1, t0 +T1 + ε)

where T1 is the time in going from P0 to P1, the scalar ε is the

stop time on P1 and ψ1, ψ̇1, ψ̈1 are represented as

ψ1(t) = a1 +b1(t � t0)+ c1(t � t0)
2
,

ψ̇1(t) = b1 +2c1(t � t0),

ψ̈1(t) = 2c1,

with t0 = 0, as the initial time.

and the coefficients a1, b1, c1 must be selected in order to fulfill

the following lemma.

Lemma 1 Define a1, b1, c1 in K1(t), K̇1(t), K̈1(t) as

a1 =
1

T 3
1

; b1 =
3a1

T1
; c1 =

3(b1T1 � a1)

T 2
1

(2)

then, the following properties are satisfied

Property 1: K1(t0) = 0; K1(t1) = 1.

Property 2: K̇1(t0) = 0: K̇1(t1) = 0.

Property 3: K̈1(t0) = 0; K̈1(t1) = 0.

with t1 = t0 +T1  t < t0 +T1 + ε; guarantying that

lP0P1
(t0) = P0; lP0P1

(t1) = P1 (3a)

l̇P0P1
(t0) = 0; l̇P0P1

(t1) = 0 (3b)

l̈P0P1
(t0) = 0; l̈P0P1

(t1) = 0 (3c)

Proof The proof consists in choosing T1 and computes firstly

the value of a1, secondly b1, and at the end c1 as in (2). At

the end, observe that the above three properties are satisfied,

implying that (3a), (3b) and (3c) are true.⌅

Example: trajectory in 2D

Let consider P0, P1 2 R
2 where P0 = (x0,y0), P1 = (xd1

,yd1
)

and define lP0P1
(t) = (x1r(t),y1r(t)). Therefore, (1a), (1b) and

(1c) can be represented as

(x1r(t),y1r(t)) = (x0,y0)+K1 (t)
�

xd1
� x0,yd1

� y0

�

; (4a)

(ẋ1r(t), ẏ1r(t)) = K̇1 (t)
�

xd1
� x0,yd1

� y0

�

; (4b)

(ẍ1r(t), ÿ1r(t)) = K̈1(t)
�

xd1
� x0,yd1

� y0

�

; (4c)

or by components

x1r(t) = x0 +K1(t)(xd1
� x0);

y1r(t) = y0 +K1(t)(yd1
� y0);

(5a)

ẋ1r(t) = K̇1(t)(xd1
� x0);

ẏ1r(t) = K̇1(t)(yd1
� y0);

(5b)

ẍ1r(t) = K̈1(t)(xd1
� x0);

ÿ1r(t) = K̈1(t)(yd1
� y0);

(5c)

Similarly, the expressions (3a), (3b) and (3c) become

x1r(t0) = x0; x1r(t1) = xd1

y1r(t0) = y0; y1r(t1) = yd1

(6a)

ẋ1r(t0) = 0; ẋ1r(t1) = 0

ẏ1r(t0) = 0; ẏ1r(t1) = 0
(6b)

ẍ1r(t0) = 0; ẍ1r(t1) = 0

ÿ1r(t0) = 0; ÿ1r(t1) = 0
(6c)

3.2 Trajectory in three set-points

Let define ε as a bounded scalar, therefore a second trajectory,

lP1P2
(t), can be introduced starting at time T1 + ε on the point

P1 and steers until touching a third point P2 in a desired finite

time T1 + ε +T2, where T2 is the necessary time to go from P1

to P2.
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Rewriting the trajectory lP1P2
(t) and their derivatives

l̇P1P2
(t), l̈P1P2

(t) as in (1a)–(1c), it follows that

lP1P2
(t) = P1 +K2 (t)∆p2

with K2 (t)2 [0,1] (7a)

l̇P1P2
(t) = K̇2(t)∆p2

(7b)

l̈P1P2
(t) = K̈2(t)∆p2

(7c)

with ∆p2
= (P2 �P1) and K2(t), K̇2(t), K̈2(t) are defined as

K2(t) =

(

1+(t � (t f1 +T2))
3ψ2(t)

1

�

�

�

�

�

t 2
⇥

t f1 , t f1 +T2

�

t 2
⇥

t f1 +T2, t f1 +T2 + ε
�

K̇2(t) =

8

>

<

>

:

3(t � (t f1 +T2))
2ψ2(t)

+(t � (t f1 +T2))
3ψ̇2(t)

0

�

�

�

�

�

�

�

t 2 [t f1 , t f1 +T2)

t 2
⇥

t f1 +T2, t f1 +T2 + ε
�

K̈2 (t) =

8

>

>

>

>

<

>

>

>

>

:

6(t � (t f1 +T2))ψ2(t)

+6(t � (t f1 +T2))
2ψ̇2(t)

+(t � (t f1 +T2))
3ψ̈2(t)

0

�

�

�

�

�

�

�

�

�

�

t 2 [t f1 , t f1 +T2)

t 2
⇥

t f1 +T2, t f1 +T2 + ε
�

where T2 is the time in going from P1 to P2, and ε is the stop

time on P2 and ψ2, ψ̇2, ψ̈2 are represented as

ψ2(t) = a2 +b2(t � t f1)+ c2(t � t f1)
2
,

ψ̇2(t) = b2 +2c2(t � t f1),

ψ̈2(t) = 2c2,

with t f1 = T1 + ε.

In addition, Lemma 1 can be rewritten for a2, b2, c2 as

a2 =
1

T 3
2

; b2 =
3a2

T2
; c2 =

3(b2T2 � a2)

T 2
2

(8)

and the three properties can be obtained as

(Prop 1). K2(t f1) = 0; K2(t2) = 1.

(Prop 2). K̇2(t f1) = 0; K̇2(t2) = 0.

(Prop 3). K̈2(t f1) = 0; K̈2(t2) = 0.

with t2 = t f1 +T2  t < t f1 +T2 + ε .

The above properties guarantee that

lP1P2
(t f1) = P1 and lP1P2

(t2) = P2 (9a)

l̇P1P2
(t f1) = 0 and l̇P1P2

(t2) = 0 (9b)

l̈P1P2
(t f1) = 0 and l̈P1P2

(t2) = 0 (9c)

Example: trajectory in 2D

Let consider P2 = (xd2
,yd2

) and lP1P2
(t) = (x1r(t),y1r(t)) val-

idated from t f1 to t f1 +T2 + ε , then (7a)–(7c) can be rewritten

as

(x1r(t),y1r(t)) = (xd1
,yd1

)+K2 (t)
�

xd2
� xd1

,yd2
� yd1

�

(10a)

(ẋ1r(t), ẏ1r(t)) = K̇2 (t)
�

xd2
� xd1

,yd2
� yd1

�

(10b)

(ẍ1r(t), ÿ1r(t)) = K̈2(t)
�

xd2
� xd1

,yd2
� yd1

�

(10c)

with

x1r(t f1) = xd1
; x1r(t2) = xd2

y1r(t f1) = yd1
; y1r(t2) = yd2

(11a)

ẋ1r(t f1) = 0; ẋ1r(t2) = 0

ẏ1r(t f1) = 0; ẏ1r(t2) = 0
(11b)

ẍ1r(t f1) = 0; ẍ1r(t2) = 0

ÿ1r(t f1) = 0; ÿ1r(t2) = 0
(11c)

3.3 Trajectory with n+1 set-points

Let consider n+1 points; P0, P1, P2, . . . , Pn�1, Pn, therefore,

it is possible to design n lines given by lP0P1
(t), lP1P2

(t), . . .
, lPn�1Pn(t), where each one is validated into their respective

interval of time. Table 1 summarizes the interval of time for

each trajectory lPi�1Pi
(t) with i = 1,2,3, . . . ,n.

Table 1 Interval of time, terminal time t fi and convergence time Ti pa-

rameters in each trajectory.

lPi�1Pi
(t)

Interval of

time
Terminal time t fi Ti = µ kPi �Pi�1k

lP0P1
(t)

lP1P2
(t)

lP2P3
(t)

lP3P4
(t)

.

.

.

lPn�1Pn (t)

0  t < t f1

t f1  t < t f2

t f2  t < t f3

t f3  t < t f4
.
.
.

t fn�1
 t < t fn

t f1 = T1 + ε
t f2 = t f1 +T2 + ε
t f3 = t f2 +T3 + ε
t f4 = t f3 +T4 + ε

.

.

.

t fn = t fn�1
+Tn + ε

T1 = µ kP1 �P0k
T2 = µ kP2 �P1k
T3 = µ kP3 �P2k
T4 = µ kP4 �P3k

.

.

.

Tn = µ kPn �Pn�1k

For describing the general trajectory, the following defini-

tions are necessary.

Definition 1 (Interval of time) This interval of time corre-

sponds at the time where the line lPi�1Pi
(t) is validated.

Definition 2 (Terminal time t fi ) It is the last time where the

line lPi�1Pi
(t) is validated, and is calculated as t fi =

i

∑
j=1

Tj + i⇥

ε .

Definition 3 (Stop time ε) The lapse of time when the line

lPi�1Pi
(t) remains motionless on the point Pi.
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Definition 4 (Convergence time Ti) Ti is defined as the

necessary time to go from Pi�1 to Pi. It can be proposed by

the user as desired. Nevertheless, for robot applications, a con-

venient manner is to suppose that Ti is directly proportional to

the distance between Pi�1 and Pi. Therefore, it can computed

as Ti = µ kPi �Pi�1k, where µ is a proportionality constant,

see right column in Table 1.

Note that the following algorithm is valid if at least two

points P0 and P1 are defined. Therefore, for the trajectories i =
1,2,3, . . . ,n, each line lPi�1Pi

(t) and their derivatives l̇Pi�1Pi
(t),

l̈Pi�1Pi
(t) can be denoted as

lPi�1Pi
(t) = Pi�1 +Ki (t)∆pi

with Ki (t)2 [0,1] (12a)

l̇Pi�1Pi
(t) = K̇i(t)∆pi

(12b)

l̈Pi�1Pi
(t) = K̈i(t)∆pi

(12c)

with ∆pi
= (Pi �Pi�1) and

Ki(t) =

(

1+(t � (t fi�1
+Ti))

3ψi(t)

1

�

�

�

�

�

t 2
⇥

t fi�1
, t fi�1

+Ti

�

t 2
⇥

t fi�1
+Ti, t fi�1

+Ti + ε
�

K̇i(t) =

8

>

<

>

:

3(t � (t fi�1
+Ti))

2ψi(t)

+(t � (t fi�1
+Ti))

3ψ̇i(t)

0

�

�

�

�

�

�

�

t 2 [t fi�1
, t fi�1

+Ti)

t 2
⇥

t fi�1
+Ti, t fi�1

+Ti + ε
�

K̈i (t) =

8

>

>

>

>

<

>

>

>

>

:

6(t � (t fi�1
+Ti))ψi(t)

+6(t � (t fi�1
+Ti))

2ψ̇i(t)

+(t � (t fi�1
+Ti))

3ψ̈i(t)

0

�

�

�

�

�

�

�

�

�

�

t 2 [t fi�1
, t fi�1

+Ti)

t 2
⇥

t fi�1
+Ti, t fi�1

+Ti + ε
�

where Ti is the time in going from Pi�1 to Pi, and ε is the stop

time on Pi and ψi, ψ̇i, ψ̈i are represented as

ψi(t) = ai +bi(t � t fi�1
)+ ci(t � t fi�1

)2
,

ψ̇i(t) = bi +2ci(t � t fi�1
),

ψ̈i(t) = 2ci

t fi�1
=

i�1

∑
j=1

Tj +(i�1)⇥ ε, validated from i = 2 to n.

only for the case i = 1, we will have t f0 = t0 = 0. In addition,

if the coefficients ai, bi, ci are selected as

ai =
1

T 3
i

; bi =
3ai

Ti

; ci =
3(biTi � ai)

T 2
i

(13)

then the following properties are guaranteed

(a).- Ki(t fi�1
) = 0 Ki(ti) = 1.

(b).- K̇i(t fi�1
) = 0 K̇i(ti) = 0.

(c).- K̈i(t fi�1
) = 0 K̈i(ti) = 0.

with ti = t fi�1
+Ti  t < t fi�1

+Ti + ε . The above implies that

lPi�1Pi
(t fi�1

) = Pi�1 lPi�1Pi
(ti) = Pi (14a)

l̇Pi�1Pi
(t fi�1

) = 0 l̇Pi�1Pi
(ti) = 0 (14b)

l̈Pi�1Pi
(t fi�1

) = 0 l̈Pi�1Pi
(ti) = 0 (14c)

Similarly, lPi�1Pi
(t) = (x1r(t),y1r(t)), validated only for the

time interval t fi�1
 t < t fi , can be also represented as

(x1r(t),y1r(t)) = (xdi�1
,ydi�1

)+Ki (t)
�

xdi
� xdi�1

,ydi
� ydi�1

�

(ẋ1r(t), ẏ1r(t)) = K̇i (t)
�

xdi
� xdi�1

,ydi
� ydi�1

�

(ẍ1r(t), ÿ1r(t)) = K̈i(t)
�

xdi
� xdi�1

,ydi
� ydi�1

�

or defined in the components of position, velocity and acceler-

ation are described as

x1r(t) = xdi�1
+Ki(t)(xdi

� xdi�1
)

y1r(t) = ydi�1
+Ki(t)(ydi

� ydi�1
)

(15a)

ẋ1r(t) = K̇i(t)(xdi
� xdi�1

)

ẏ1r(t) = K̇i(t)(ydi
� ydi�1

)
(15b)

ẍ1r(t) = K̈i(t)(xdi
� xdi�1

)

ÿ1r(t) = K̈i(t)(ydi
� ydi�1

)
(15c)

Remark 1 Observe that Ki(t), K̇i(t), K̈i(t) satisfy the proper-

ties (a), (b) and (c) respectively, these variables can be seen as

control variables with temporal dependency.

For example, Ki(t) is the open loop control position, accom-

plishing that (15a) satisfies (14a). Similarly, K̇i(t) is the open

loop control velocity, making (15b) satisfies (14b). In addi-

tion, K̈i(t) is the open loop control acceleration, doing (15c)

satisfies (14c).

4 General trajectory with multiple finite time position

Each sequential trajectory lPi�1Pi
(t), composes a general tra-

jectory lr(t) validated from t0 = 0 to t fn and defined as

lr(t) = g1(t)lP0P1
(t)+ f1(t)g2(t)lP1P2

(t)+ f2(t)g3(t)lP2P3
(t)

+ . . .+ fn�1(t)gn(t)lPn�1Pn(t)

or

lr(t) = g1(t)lP0P1
(t)+

n

∑
i=2

fi�1(t)gi(t)lPi�1Pi
(t) (16)
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where g1(t), g2(t), g3(t), . . . , gn�1(t), gn(t) and f1(t), f2(t),

f3(t), . . . , fn�1(t) are given as

g1(t) =

⇢

1

0

for

for

0  t < t f1

t f1  t

�

�

�

�

f1(t) =

⇢

0

1

for

for

0  t < t f1

t f1  t

g2(t) =

⇢

1

0

for

for

0  t < t f2

t f2  t

�

�

�

�

f2(t) =

⇢

0

1

for

for

0  t < t f2

t f2  t

g3(t) =

⇢

1

0

for

for

0  t < t f3

t f3  t

�

�

�

�

f3(t) =

⇢

0

1

for

for

0  t < t f3

t f3  t

.

.

.
.
.
.

gn�1(t) =

⇢

1

0

for

for

0  t < t fn�1

t fn�1
 t

�

�

�

�

fn�1(t) =

⇢

0

1

for

for

0  t < t fn�1

t fn�1
 t

gn(t) =

⇢

1

0

for

for

0  t < t fn

t fn  t

From Table 1, it follows that t f1 < t f2 < t f3 < .. . < t fn�1
< t fn ,

implying that f1(t)g2(t), f2(t)g3(t), . . . , fn�1(t)gn(t) are given

as

f1(t)g2(t) =

8

<

:

0

1

0

for

for

for

0  t < t f1

t f1  t < t f2

t f2  t

f2(t)g3(t) =

8

<

:

0

1

0

for

for

for

0  t < t f2

t f2  t < t f3

t f3  t

.

.

.

fn�1(t)gn(t) =

8

<

:

0

1

0

for

for

for

0  t < t fn�1

t fn�1
 t < t fn

t fn  t.

Observe that g1(t), f1(t)g2(t), f2(t)g3(t),. . ., fn�1(t)gn(t) ac-

tivate the trajectories lPi�1Pi
(t) in their respective time-interval

t fi�1
 t < t fi , i.e.,

lr(t) = lP0P1
(t) f or 0  t < t f1

lr(t) = lP1P2
(t) f or t f1  t < t f2

lr(t) = lP2P3
(t) f or t f2  t < t f3

.

.

.

lr(t) = lPn�1Pn(t) f or t fn�1
 t < t fn

Therefore we are obligated to introduce the following defini-

tion.

Definition 5 . The time functions g1(t), f1(t)g2(t), f2(t)g3(t),
. . ., fn�1(t)gn(t) responsible to activate the trajectories

lPi�1Pi
(t) in their respective time-interval t fi�1

 t < t fi will be

named the ”temporal activation functions”.

From (16), it follows that

l̇r(t) = g1(t)l̇P0P1
(t)+

n

∑
i=2

fi�1(t)gi(t)l̇Pi�1Pi
(t) (17a)

l̈r(t) = g1(t)l̈P0P1
(t)+

n

∑
i=2

fi�1(t)gi(t)l̈Pi�1Pi
(t) (17b)

Defining lr(t) = (x1r(t),y1r(t)), l̇r(t) = (ẋ1r(t), ẏ1r(t)) and

l̈r(t) = (ẍ1r(t), ÿ1r(t)) and considering (16), (17a) and (17b), it

follows that

x1r(t) =(x0 +K1(t)(xd1
� x0))g1(t)

+
n

∑
i=2

fi�1(t)gi(t)(xdi�1
+Ki(t)(xdi

� xdi�1
)) (18a)

y1r(t) =(y0 +K1(t)(yd1
� y0))g1(t)

+
n

∑
i=2

fi�1(t)gi(t)(ydi�1
+Ki(t)(ydi

� ydi�1
)) (18b)

ẋ1r(t) =K̇1(t)(xd1
� x0)g1(t)+

+
n

∑
i=2

fi�1(t)gi(t)K̇i(t)(xdi
� xdi�1

) (18c)

ẏ1r(t) =K̇1(t)(yd1
� y0)g1(t)

+
n

∑
i=2

fi�1(t)gi(t)K̇i(t)(ydi
� ydi�1

) (18d)

ẍ1r(t) =K̈1(t)(xd1
� x0)g1(t)

+
n

∑
i=2

fi�1(t)gi(t)K̈i(t)(xdi
� xdi�1

) (18e)

ÿ1r(t) =K̈1(t)(yd1
� y0)g1(t)

+
n

∑
i=2

fi�1(t)gi(t)K̈i(t)(ydi
� ydi�1

) (18f)

4.1 Example: 2D Trajectory with five points

Let consider a trajectory composed by five points defined

as P0 = (x0,y0) = (1,1); P1 = (xd1
,yd1

) = (2,2.5); P2 =

(xd2
,yd2

) = (4.5,1.2); P3 = (xd3
,yd3

) = (5.5,2); and P4 =

(xd4
,yd4

) = (6,3.5) in meters. P0 defines the initial position.

To obtain the trajectory lr(t), the first step is to design the

four consecutive trajectories lP0P1
(t), lP1P2

(t), lP2P3
(t), lP3P4

(t)

validated into the respective time interval t fi�1
 t < t fi for

i = 1,2,3,4. Moreover, from Table 1, and proposing a propor-

tionality constant µ = 1.5, Ti can be computed as

T1 = µ kP1 �P0k= 1.5⇥ (1.8028) = 2.7042 sec

T2 = µ kP2 �P1k= 1.5⇥ (2.8178) = 4.2267 sec

T3 = µ kP3 �P2k= 1.5⇥ (1.2806) = 1.9209 sec

T4 = µ kP4 �P3k= 1.5⇥ (1.5811) = 2.3717 sec
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The stop time is proposed as ε = 1 second. Therefore, each

terminal-time t fi =
i

∑
j=1

Tj + i⇥ ε is given by

t f1 = T1 + ε = 3.7042 sec

t f2 = T1 +T2 +2ε = 8.9309 sec

t f3 = T1 +T2 +T3 +3ε = 11.8518 sec

t f4 = T1 +T2 +T3 +T4 +4ε = 15.2235 sec

For performing Ki(t), K̇i(t), K̈i(t), it is necessary to compute

ai, bi, ci as in (13), then it yields

a1 = 0.05060; b1 = 0.0561; c1 = 0.0415 (19a)

a2 = 0.00132; b2 = 0.0094; c2 = 0.0044 (19b)

a3 = 0.14110; b3 = 0.2203; c3 = 0.2294 (19c)

a4 = 0.07500; b4 = 0.0948; c4 = 0.0800 (19d)

Notice that with t fi , the activation functions can be computed,

implying that (16), (17a) and (17a) can be performed with

n = 4. In Fig. 3, the trajectory lr(t) starting on P0 and steering

through the points P1, P2, P3, P4 stooping on each one during

a lapse of time ε = 1 second is depicted, by another hand

the dynamical behavior of lr(t) is observed in the following

link: https://youtu.be/li_jhjh75DE. Even if, a

naked eye, the trajectory can be appreciated as ’classical’

one, the finite-time positioning properties is inner in it. These

properties can be noted in Fig. 4, where their components

x1r(t) and y1r(t) are presented converging in finite time to

the references xd1
, xd2

, xd3
, xd4

and yd1
, yd2

, yd3
, yd4

respec-

tively. Note also that during a period time of ε = 1 second, the

dynamics x1r(t) and y1r(t) hold over the mentioned references.

Therefore with the times Ti and t fi and with the previous coef-

ficients ai, bi, ci, the open loop controls Ki(t), K̇i(t), K̈i(t) are

designed and also lPi�1Pi
(t), l̇Pi�1Pi

(t) and l̈Pi�1Pi
(t) are even-

tually established. Now we can obtain the activation function

g1(t), f1(t)g2(t), f2(t)g3(t), f3(t)g4(t) and therefore obtain

lr(t), l̇r(t) and l̈r(t) as

lr(t) = g1(t)lP0P1
(t)+

4

∑
i=2

fi�1(t)gi(t)lPi�1Pi
(t) (20a)

l̇r(t) = g1(t)l̇P0P1
(t)+

4

∑
i=2

fi�1(t)gi(t)l̇Pi�1Pi
(t) (20b)

l̈r(t) = g1(t)l̈P0P1
(t)+

4

∑
i=2

fi�1(t)gi(t)l̈Pi�1Pi
(t) (20c)

Fig. 3 Trajectory lr(t) = (x1r(t),y1r(t)) obtained from the five set-points

Fig. 4 Position x1r and y1r responses when the trajectory (16) is com-

puted.

One of the main characteristics of the trajectory is to have

zero velocity and acceleration at the beginning and ending of

each part of the trajectory. These performances can be ob-

served in Fig. 5 and Fig. 6. Note also that during the lapse

of time of ε = 1 second these dynamics are holding on zero.

https://youtu.be/li_jhjh75DE
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Fig. 5 Velocity dynamics ẋ1r and ẏ1r obtained when validating (17a)

Fig. 6 Acceleration responses (ẍ1r , ÿ1r) of the trajectory composed by five

points.

5 Simulation results

5.1 Control strategy for precision maneuvers: the cart

example

The proposed trajectory with multiple finite time positioning

can be used to conceive a control strategy for a robot that will

let us to perform precision positioning maneuvers.

L

Fig. 7 Schematic representation of the cart.

In our case, the goal is to track with high precision trajecto-

ries using a ground robot. Therefore, firstly using Fig. 7, define

its kinematic model as follows
8

>

>

<

>

>

:

ẋ = υ cos(δ )cos(θ)

ẏ = υ cos(δ )sin(θ)

θ̇ =
υ sin(δ )

L

(21)

where the car position is represented by the components x and

y, the variable θ represents the orientation angle, and the con-

trol variables can be considered as

δ = u1 : Steering angle control

υ = u2 : Linear velocity control

Suppose that the ground vehicle in Figure 7 must be con-

trolled to perform precision positioning maneuvers, passing for

four sequential points P0, P1, P2, P3 that are distributed and

aligned over the same straight line as can be seen in Fig. 8.

These points (all in meters) are proposed as

P0 = (x0,y0) = (1,1.5) : The initial position

P1 = (xd1
,yd1

) = (1.32,1.98)

P2 = (xd2
,yd2

) = (2.244,3.366)

P3 = (xd3
,yd3

) = (2.6928,4.0392)
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Fig. 8 Car in multiple finite time positioning.

Observed that for aligned points the orientation angle

θ is constant, this means that θ(t) = θ(0). This angle can

be computed as θ = arctan

✓

yd1
� y0

xd1
� x0

◆

= 0.9828 radians =

56.3099 degrees.

Being as, the orientation angle θ will remain invariant,

obviously the steering control angle (δ = u1) must be equal to

zero once the angle is reached. Therefore, the linear velocity

control (υ = u2) is the only variable to control and accomplish

that the car with initial position P0 moves autonomously over

the sequential points P1, P2, P3. Likewise the car position

(x,y) must be static over the above points during a lapse of

time ε = 0.5 seconds.

From the above considerations (21) can be rewritten as

8

>

<

>

:

ẋ = υ cos(θ(0)) = ẋ1r x(0) = x0

ẏ = υ sin(θ(0)) = ẏ1r y(0) = y0

θ̇ = 0 θ(0) = 0.9828 rad

(22)

Observe that ẋ and ẏ can be matched with ẋ1r and ẏ1r for

computing υ . Therefore ẋ2 + ẏ2 = ẋ2
1r + ẏ2

1r = υ2, then

υ =
q

�

ẋ2
1r + ẏ2

1r

�

(23)

where ẋ1r and ẏ1r are given by

ẋ1r = K̇1(t)
�

xd1
� x0

�

g1 (t)+
3

∑
i=2

fi�1(t)gi(t)K̇i(t)
�

xdi
� xdi�1

�

ẏ1r = K̇1(t)
�

yd1
� y0

�

g1 (t)+
3

∑
i=2

fi�1(t)gi(t)K̇i(t)
�

ydi
� ydi�1

�

Therefore (23) becomes

υ = K̇1(t)kP1 �P0kg1(t)+
3

∑
i=2

fi�1(t)gi(t)K̇i(t)kPi �Pi�1k

Therefore the open loop velocity controls K̇1(t), K̇2(t), K̇3(t)

and the activation functions g1(t), f1(t)g2(t), f2(t)g3(t) are

required to design ẋ1r, ẏ1r and υ .

Firstly, the terminal times t fi and the convergence time Ti

need to be computed as defined in Definitions 2 and 4.

For the convergence time Ti, a proportionality constant µ =

2.5 is proposed, and according the right side from Table 1, it

follows that

T1 = µ kP1 �P0k= 2.5⇥ (0.5769) = 1.4422 seconds

T2 = µ kP2 �P1k= 2.5⇥ (1.6658) = 4.1644 seconds

T3 = µ kP3 �P2k= 2.5⇥ (0.8091) = 2.0227 seconds

Then, the accumulative time t fi is determined by t fi =
i

∑
j=1

Tj + i⇥ ε , thus,

t f1 = T1 + ε = 1.9422 seconds

t f2 = T1 +T2 +2ε = 6.6066 seconds

t f3 = T1 +T2 +T3 +3ε = 9.1293 seconds

From the previous, the activation time functions g1(t),

f1(t)g2(t) and f2(t)g3(t) can be obtained. And from (13) ai,

bi, ci are given as

a1 = 0.3334; b1 = 0.6934; c1 = 0.9616 (24a)

a2 = 0.0138; b2 = 0.0100; c2 = 0.0048 (24b)

a3 = 0.1208; b3 = 0.1792; c3 = 0.1772 (24c)

Fig. 9 shows the linear control velocity υ converging to

zero in distinct finite times and during a lapse of time ε = 0.5

seconds the control velocity υ = 0, corresponding when the

vehicle is static.

In Fig. 10 the travelled distance represented by the vari-

able S is illustrated. It is calculated as S =
R t f3

0 υdt =
R t f3

0

q

ẋ2
1r + ẏ2

1rdt.
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Fig. 9 Linear velocity control υ .

Fig. 10 Distance S versus the time t.

The distances S1, S2 and S3 are all those that remain

constants, corresponding when the car is not in motion during

a lapse of time ε = 0.5 seconds, and S3 is the total travelled

distance.

In Fig. 11 the x and y states converge in finite time to the

desired references xdi
and ydi

, respectively, and during the

epsilon time ε = 0.5 seconds, the car is maintained static.

In a video animation, the car from the Fig. 8 moves over the

points P0, P1, P2 and P3. The video can be viewed in the fol-

lowing link: https://www.youtube.com/watch?v=

5K37bXSNS5Q.

5.2 Discussion results

In summary, the main advantage when applying the previous

strategy is that the linear velocity υ is an open loop control

guaranteeing the finite time convergence and therefore a state

feedback control is not required. The previous implies that in

Fig. 11 Position dynamics x and y versus the time t.

real-time experiments the controllability can be achieved with-

out measure the position in each moment.

6 Conclusions and future work

The proposed trajectory lr(t) can be useful in route planning

for mobile robots in applications that require higher precision.

The control strategy was generated to design an open loop con-

trol of velocity υ for the kinematic car motion that allowed the

finite time positioning over the statics points. In addition, the

proposed theory can be useful in developing control strategies

that guarantee the finite time convergence for a great diversity

of aerial or ground mobile robots. Moreover, the above theory

can be advantageous because we will not have the necessity to

measure the position between the points Pi�1 and Pi. As conse-

quence the sensors of position are not needed, implying a low

cost if a real time implementation were required.
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