1 Bornscheuer, U. T., Huisman, G. W., Kazlauskas, R. J., Lutz, S., Moore, J. C. & Robins, K. Engineering the third wave of biocatalysis. Nature 485, 185-194, (2012).
2 Devine, P. N., Howard, R. M., Kumar, R., Thompson, M. P., Truppo, M. D. & Turner, N. J. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409-421, (2018).
3 Slagman, S. & Fessner, W. D. Biocatalytic routes to anti-viral agents and their synthetic intermediates. Chem Soc Rev 50, 1968-2009, (2021).
4 Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands, J., Devine, P. N., Huisman, G. W. & Hughes, G. J. Biocatalytic Asymmetric Synthesis of Chiral Amines from Ketones Applied to Sitagliptin Manufacture. Science 329, 305-309, (2010).
5 Huffman, M. A., Fryszkowska, A., Alvizo, O., Borra-Garske, M., Campos, K. R., Canada, K. A., Devine, P. N., Duan, D., Forstater, J. H., Grosser, S. T., Halsey, H. M., Hughes, G. J., Jo, J., Joyce, L. A., Kolev, J. N., Liang, J., Maloney, K. M., Mann, B. F., Marshall, N. M., McLaughlin, M., Moore, J. C., Murphy, G. S., Nawrat, C. C., Nazor, J., Novick, S., Patel, N. R., Rodriguez-Granillo, A., Robaire, S. A., Sherer, E. C., Truppo, M. D., Whittaker, A. M., Verma, D., Xiao, L., Xu, Y. & Yang, H. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255-1259, (2019).
6 McIntosh, J. A., Benkovics, T., Silverman, S. M., Huffman, M. A., Kong, J., Maligres, P. E., Itoh, T., Yang, H., Verma, D., Pan, W. L., Ho, H. I., Vroom, J., Knight, A. M., Hurtak, J. A., Klapars, A., Fryszkowska, A., Morris, W. J., Strotman, N. A., Murphy, G. S., Maloney, K. M. & Fier, P. S. Engineered Ribosyl-1-Kinase Enables Concise Synthesis of Molnupiravir, an Antiviral for COVID-19. ACS Centr. Sci. 7, 1980-1985, (2021).
7 Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering hemoproteins for abiological carbene and nitrene transfer reactions. Curr. Opin. Biotech. 47, 102-111, (2017).
8 Schwizer, F., Okamoto, Y., Heinisch, T., Gu, Y. F., Pellizzoni, M. M., Lebrun, V., Reuter, R., Kohler, V., Lewis, J. C. & Ward, T. R. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem. Rev. 118, 142-231, (2018).
9 Ren, X. & Fasan, R. Engineered and Artificial Metalloenzymes for Selective C-H Functionalization. Curr. Opin. Green Sustain. Chem. 31, (2021).
10 Liu, Z. & Arnold, F. H. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Curr. Opin. Biotech. 69, 43-51, (2021).
11 Ramsden, J. I., Cosgrove, S. C. & Turner, N. J. Is it time for biocatalysis in fragment-based drug discovery? Chem. Sci. 11, 11104-11112, (2020).
12 Erlanson, D. A., Fesik, S. W., Hubbard, R. E., Jahnke, W. & Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov. 15, 605-619, (2016).
13 Erlanson, D. A., Davis, B. J. & Jahnke, W. Fragment-Based Drug Discovery: Advancing Fragments in the Absence of Crystal Structures. Cell Chem. Biol. 26, 9-15, (2019).
14 Jhoti, H., Williams, G., Rees, D. C. & Murray, C. W. The 'rule of three' for fragment-based drug discovery: where are we now? Nat. Rev. Drug Discov. 12, 644-+, (2013).
15 Murray, C. W. & Rees, D. C. Opportunity Knocks: Organic Chemistry for Fragment-Based Drug Discovery (FBDD). Angew. Chem. Int. Ed. 55, 488-492, (2016).
16 Morley, A. D., Pugliese, A., Birchall, K., Bower, J., Brennan, P., Brown, N., Chapman, T., Drysdale, M., Gilbert, I. H., Hoelder, S., Jordan, A., Ley, S. V., Merritt, A., Miller, D., Swarbrick, M. E. & Wyatt, P. G. Fragment-based hit identification: thinking in 3D. Drug Discov Today 18, 1221-1227, (2013).
17 Over, B., Wetzel, S., Grutter, C., Nakai, Y., Renner, S., Rauh, D. & Waldmann, H. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem. 5, 21-28, (2013).
18 Yu, B., Zheng, Y. C., Shi, X. J., Qi, P. P. & Liu, H. M. Natural Product-Derived Spirooxindole Fragments Serve as Privileged Substructures for Discovery of New Anticancer Agents. Anti-Cancer Agent Me 16, 1315-1324, (2016).
19 Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin Cyclopropanation via Carbene Transfer Catalyzed by Engineered Cytochrome P450 Enzymes. Science 339, 307-310, (2013).
20 Bordeaux, M., Tyagi, V. & Fasan, R. Highly Diastereoselective and Enantioselective Olefin Cyclopropanation Using Engineered Myoglobin-Based Catalysts. Angew. Chem. Int. Ed. 54, 1744–1748, (2015).
21 Tinoco, A., Steck, V., Tyagi, V. & Fasan, R. Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene. J Am Chem Soc 139, 5293-5296, (2017).
22 Key, H. M., Dydio, P., Liu, Z. N., Rha, J. Y. E., Nazarenko, A., Seyedkazemi, V., Cark, D. S. & Hartwig, J. F. Beyond Iron: Iridium-Containing P450 Enzymes for Selective Cyclopropanations of Structurally Diverse Alkenes. ACS Centr. Sci. 3, 302-308, (2017).
23 Chandgude, A. L. & Fasan, R. Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis. Angew. Chem. Int. Ed. 57, 15852-15856, (2018).
24 Knight, A. M., Kan, S. B. J., Lewis, R. D., Brandenberg, O. F., Chen, K. & Arnold, F. H. Diverse Engineered Heme Proteins Enable Stereodivergent Cyclopropanation of Unactivated Alkenes. ACS Central Sci. 4, 372-377, (2018).
25 Wittmann, B. J., Knight, A. M., Hofstra, J. L., Reisman, S. E., Kan, S. B. J. & Arnold, F. H. Diversity-Oriented Enzymatic Synthesis of Cyclopropane Building Blocks. ACS Catal. 10, 7112-7116, (2020).
26 Nam, D., Steck, V., Potenzino, R. J. & Fasan, R. A Diverse Library of Chiral Cyclopropane Scaffolds via Chemoenzymatic Assembly and Diversification of Cyclopropyl Ketones. J Am Chem Soc 143, 2221-2231, (2021).
27 Srivastava, P., Yang, H., Ellis-Guardiola, K. & Lewis, J. C. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun. 6, 7789, (2015).
28 Sreenilayam, G., Moore, E. J., Steck, V. & Fasan, R. Metal substitution modulates the reactivity and extends the reaction scope of myoglobin carbene transfer catalysts. Adv. Synth. Cat. 359, 2076–2089, (2017).
29 Dydio, P., Key, H. M., Nazarenko, A., Rha, J. Y., Seyedkazemi, V., Clark, D. S. & Hartwig, J. F. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102-106, (2016).
30 Ohora, K., Meichin, H., Zhao, L. M., Wolf, M. W., Nakayama, A., Hasegawa, J., Lehnert, N. & Hayashi, T. Catalytic Cyclopropanation by Myoglobin Reconstituted with Iron Porphycene: Acceleration of Catalysis due to Rapid Formation of the Carbene Species. J Am Chem Soc 139, 17265-17268, (2017).
31 Villarino, L., Splan, K. E., Reddem, E., Alonso-Cotchico, L., de Souza, C. G., Lledos, A., Marechal, J. D., Thunnissen, A. M. W. H. & Roelfes, G. An Artificial Heme Enzyme for Cyclopropanation Reactions. Angew. Chem. Int. Ed. 57, 7785-7789, (2018).
32 Zhao, J. M., Bachmann, D. G., Lenz, M., Gillingham, D. G. & Ward, T. R. An artificial metalloenzyme for carbene transfer based on a biotinylated dirhodium anchored within streptavidin. Catal. Sci. Technol. 8, 2294-2298, (2018).
33 Carminati, D. M. & Fasan, R. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. ACS Catal. 9, 9683-9697, (2019).
34 Stenner, R., Steventon, J. W., Seddon, A. & Anderson, J. L. R. A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase. Proc. Natl. Acad. Sci. USA 117, 1419-1428, (2020).
35 Chandgude, A. L., Ren, X. & Fasan, R. Stereodivergent Intramolecular Cyclopropanation Enabled by Engineered Carbene Transferases. J Am Chem Soc 141, 9145-9150, (2019).
36 Ren, X. K., Liu, N. Y., Chandgude, A. L. & Fasan, R. An Enzymatic Platform for the Highly Enantioselective and Stereodivergent Construction of Cyclopropyl-delta-lactones. Angew. Chem. Int. Ed. 59, 21634-21639, (2020).
37 Yong, K., Salim, M. & Capretta, A. Intramolecular carbenoid insertions: Reactions of alpha-diazo ketones derived from furanyl-, thienyl-, (benzofuranyl)-, and (benzothienyl)acetic acids with rhodium(II) acetate. J. Org. Chem. 63, 9828-9833, (1998).
38 Padwa, A., Wisnieff, T. J. & Walsh, E. J. Synthesis of Cycloalkenones Via the Intramolecular Cyclopropanation of Furanyl Diazo Ketones. J. Org. Chem. 51, 5036-5038, (1986).
39 Ryan, J., Siauciulis, M., Gomm, A., Macia, B., O'Reilly, E. & Caprio, V. Transaminase Triggered Aza-Michael Approach for the Enantioselective Synthesis of Piperidine Scaffolds. J Am Chem Soc 138, 15798-15800, (2016).
40 Zawodny, W., Montgomery, S. L., Marshall, J. R., Finnigan, J. D., Turner, N. J. & Clayden, J. Chemoenzymatic Synthesis of Substituted Azepanes by Sequential Biocatalytic Reduction and Organolithium-Mediated Rearrangement. J Am Chem Soc 140, 17872-17877, (2018).
41 Zhang, R. K., Chen, K., Huang, X., Wohlschlager, L., Renata, H. & Arnold, F. H. Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp(3) C-H functionalization. Nature 565, 67-72, (2019).
42 Wei, Y., Tinoco, A., Steck, V., Fasan, R. & Zhang, Y. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution. J Am Chem Soc 140, 1649-1662, (2018).
43 de Visser, S. P., Ogliaro, F., Harris, N. & Shaik, S. Multi-state epoxidation of ethene by cytochrome P450: A quantum chemical study. J Am Chem Soc 123, 3037-3047, (2001).
44 Kondrashov, D. A., Zhang, W., Aranda, R. t., Stec, B. & Phillips, G. N., Jr. Sampling of the native conformational ensemble of myoglobin via structures in different crystalline environments. Proteins 70, 353-362, (2008).
45 Blomberg, M. R. A., Borowski, T., Himo, F., Liao, R. Z. & Siegbahn, P. E. M. Quantum Chemical Studies of Mechanisms for Metalloenzymes. Chem. Rev. 114, 3601-3658, (2014).
46 Himo, F. Recent Trends in Quantum Chemical Modeling of Enzymatic Reactions. J Am Chem Soc 139, 6780-6786, (2017).
47 Lind, M. E. S. & Himo, F. Quantum Chemistry as a Tool in Asymmetric Biocatalysis: Limonene Epoxide Hydrolase Test Case. Angew. Chem. Int. Ed. 52, 4563-4567, (2013).
48 Liao, R. Z. & Thiel, W. On the Effect of Varying Constraints in the Quantum Mechanics Only Modeling of Enzymatic Reactions: The Case of Acetylene Hydratase. J. Phys. Chem. B 117, 3954-3961, (2013).