Adam G, Rampášek L, Safikhani Z et al. Machine learning approaches to drug response prediction: Challenges and recent progress. NPJ Precision Oncology 2020; 4: 19.
Arya AK, El-Fert A, Devling T, et al. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. British Journal of Cancer 2010; 103(2) : 186-195.
Bartholomeusz C, Yamasaki F, Saso H, et al. Gemcitabine overcomes erlotinib resistance in EGFR-overexpressing cancer cells through downregulation of Akt. Journal of Cancer 2011; 2: 435.
Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discovery 2021; 11(4):900–915.
Cao Y, Kitanovski S, Küppers R, Hoffmann D. UMI or not UMI, that is the question for scRNA-seq zero-inflation. Nature Biotechnology 2021; 39(2): 158-159.
Castro LNG, Tirosh I, Suvà ML. Decoding cancer biology one cell at a time. Cancer Discovery 2021; 11(4): 960-970.
Cheng C, Zhao Y, Schaafsma, et al. An EGFR signature predicts cell line and patient sensitivity to multiple tyrosine kinase inhibitors. International Journal of Cancer 2020; 147(9):2621-2633.
Cohen YC, Zada M, Wang SY, et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nature Medicine 2021; 27(3): 491-503.
Corsello SM, Nagari RT, Spangler RD, et al. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer 2020; 1(2); 235-248.
de Witte CJ, Valle-Inclan JE, Hami N, et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter-and intrapatient drug responses. Cell Reports 2020; 31(11):107762.
Dinstag G, Shulman ED, Elis E, et al. "Clinically oriented prediction of patient response to targeted and immunotherapies from the tumor transcriptome." bioRxiv (2022). https://www.biorxiv.org/content/10.1101/2022.02.27.481627v1
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 2010; 33(1), 1.
Fustero-Torre C, Jiménez-Santos MJ, García-Martín S, et al. Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data. Genome Medicine 2021; 13:187.
Garnett MJ, Edelman EJ, Heidorn SJ, et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483(7391): 570-575.
Ghandi M, Huang FW, Jané-Valbuena J, et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019; 569(7757): 503-508.
Griffiths JI, Chen J, Cosgrove PA, et al. Serial single-cell genomics reveals convergent subclonal evolution of resistance as patients with early-stage breast cancer progress on endocrine plus CDK4/6 therapy. Nature Cancer 2021; 2(6): 658-671.
Hao Y, Hao S, Andersen-Nissen, et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184(13):3573-3587.
Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nature Reviews. Genetics 2019; 20(2):71–88.
Huang K, Xiao C, Glass LM, Critchlow CM,. Machine learning applications for therapeutic tasks with genomics data. Patterns 2021; 2(10):100328.
Ianevski A, Lahtela J, Javarappa KK, et al. Patient-tailored design for selective co-inhibition of leukemic cell subpopulations. Sci Adv. 2021; 7(8):eab4038.
Kim KT, Lee HW, Lee HO, et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biology 2016; 17:80.
Kinker GS, Greenwald AC, Tal R et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nature Genetics 2020 52(11);1208-1218.
Ledergor G, Weiner A, Zada M, et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nature Medicine 2018; 24(12): 1867-1876.
Ling A, Huang RS. Computationally predicting clinical drug combination efficacy with cancer cell line screens and independent drug action. Nature Communications 2020; 11(1): 5848.
Luo J, Makhnin A, Tobi Y, Ahn L, et al. Erlotinib and trametinib in patients with EGFR-mutant lung adenocarcinoma and acquired resistance to a prior tyrosine kinase inhibitor. JCO Precision Oncology 2021; 5: 55-64.
Mariotto AB, Yabroff KR, Shao Y, et al. Projections of the cost of cancer care in the United States: 2010-2020. Journal of the National Cancer Institute 2011;103(2):117–28.
Maynard A, McCoach CE, Rotow JK, et al. Therapy-induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell 2020; 182(5):1232-1251.
Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology 2007; 25(15): 1960-1966.
Nair NU, Greninger P, Friedman A, et al. A landscape of synergistic drug combinations in non-small-cell lung cancer. bioRxiv. 2021 [cited 2022 Jan 6]. p. 2021.06.03.447011. Available from: https://www.biorxiv.org/content/10.1101/2021.06.03.447011v1.abstract
Pluchino KM, Hall MD, Goldsborough AS, et al. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resistance Updates 2012; 15(1-2): 98-105.
Shalek AK, Benson M. Single-cell analyses to tailor treatments. Science Translational Medicine 2017; 9(408): eaan4730.
Shin S, Park CM, Kwon H, Lee K-H. Erlotinib plus gemcitabine versus gemcitabine for pancreatic cancer: real-world analysis of Korean national database. BMC Cancer 2016; 16: 443.
Sade-Feldman M, Yizhak K, Bjorgaard SL, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2018; 175(4): 998-1013.
Sawabata N. Circulating tumor cells: From the laboratory to the cancer clinic. Cancers 2020; 12(10):3065.
Senft D, Leiserson MDM, Ruppin E, Ronai Z. Precision oncology: The road ahead. Trends in Molecular Medicine 2017; 23(10):874–898.
Singla N, Singla S. Harnessing big data with machine learning in precision oncology. Kidney Cancer Journal 2020; 18(3):83–84.
Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nature Reviews Clinical Oncology 2017; 14(9):531–548.
Song Q, Hawkins GA, Wudel L, et al. Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq. Cancer Medicine 2019; 8(6):3072-3085.
Suphavilai C, Chia S, Sharma A, et al. Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures. 2020; bioRxiv https://www.biorxiv.org/content/10.1101/2020.11.23.389676v1?rss=1
Svensson V. Droplet scRNA-seq is not zero-inflated. Nature Biotechnology 2020 38(2): 147-150.
Tsherniak A, Vazquez F, Montgomery PG, et al. Defining a cancer dependency map. Cell 2017; 170(3): 564-576.
Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treatment Reviews 2020a; 86:102019.
Tsimberidou AM, Fountzilas E, Bleris L, Kurzrock R. Transcriptomics and solid tumors: The next frontier in precision cancer medicine. Seminars in Cancer Biology, 2020b, in press, doi:10.1016/j.semcancer.2020.09.007.
Wensink, GE, Elias SG, Mullenders J, et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precision Oncology 2021; 5:30.
Yao Y, Xu X, Yang L, et al. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 2020 26(1): 17-26.
Zhu S, Qing T, Zheng Y, et al. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget 2017; 8(32):53763-53779.
Beaubier, Nike, et al. "Integrated genomic profiling expands clinical options for patients with cancer." Nature biotechnology 37.11 (2019): 1351-1360.
Hayashi, Akimasa, et al. "A unifying paradigm for transcriptional heterogeneity and squamous features in pancreatic ductal adenocarcinoma." Nature Cancer 1.1 (2020): 59-74.
Rodon, Jordi, et al. "Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial." Nature medicine 25.5 (2019): 751-758.
Tanioka, Maki, et al. "Integrated analysis of RNA and DNA from the phase III trial CALGB 40601 identifies predictors of response to trastuzumab-based neoadjuvant chemotherapy in HER2-positive breast cancer." Clinical Cancer Research 24.21 (2018): 5292-5304.
Vaske, Olena M., et al. "Comparative tumor RNA sequencing analysis for difficult-to-treat pediatric and young adult patients with cancer." JAMA network open 2.10 (2019): e1913968-e1913968.
Wong, Marie, et al. "Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer." Nature medicine 26.11 (2020): 1742-1753.
Lee, Joo Sang, et al. "Synthetic lethality-mediated precision oncology via the tumor transcriptome." Cell 184.9 (2021): 2487-2502.