[1] B. Granados-Romero, Juan José, Valderrama-Treviño, Alan Isaac, Contreras-Flores, Ericka Hazzel, Barrera-Mera, M. Herrera Enríquez, K. Uriarte-Ruíz, and G. Ceballos-Villalba, Jesús Carlos, Estrada-Mata, Aranza Guadalupe, Alvarado Rodríguez, Cristopher Arauz-Peña, “Colorectal cancer: a review,” Int. J. Res. Med. Sci., vol. 5, no. 11, p. 4667, 2017.
[2] N. Afrang et al., “A critical role for miR-184 in the fate determination of oligodendrocytes,” Stem Cell Res. Ther., vol. 10, no. 1, p. 112, Dec. 2019.
[3] B. A. Orang AV1, “MicroRNAs in colorectal cancer: from diagnosis to targeted therapy. - PubMed - NCBI,” Asian Pac J Cancer Prev. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/25227782. [Accessed: 04-May-2019].
[4] S. Pakizehkar, N. Ranji, A. Naderi Sohi, and M. Sadeghizadeh, “Curcumin loaded PEG 400 -OA nanoparticles: A suitable system to increase apoptosis, decrease migration, and deregulate miR-125b/miR182 in MDA-MB-231 human breast cancer cells,” Polym. Adv. Technol., Mar. 2020.
[5] T. Tsunoda, Y. Takashima, Y. Yoshida, and K. Doi, “Oncogenic KRAS regulates miR-200c and miR-221/222 in a 3D-specific manner in colorectal cancer cells.,” Anticancer Res., vol. 31, no. 7, pp. 2453–9, Jul. 2011.
[6] C. Y. Chu and T. M. Rana, “Small RNAs: Regulators and guardians of the genome,” Journal of Cellular Physiology, vol. 213, no. 2. John Wiley & Sons, Ltd, pp. 412–419, 01-Nov-2007.
[7] S. H. Sahlberg, D. Spiegelberg, B. Glimelius, B. Stenerlöw, and M. Nestor, “Evaluation of Cancer Stem Cell Markers CD133, CD44, CD24: Association with AKT Isoforms and Radiation Resistance in Colon Cancer Cells,” PLoS One, vol. 9, no. 4, p. e94621, Apr. 2014.
[8] E. N. Garza-Treviño, S. L. Said-Fernández, and H. G. Martínez-Rodríguez, “Understanding the colon cancer stem cells and perspectives on treatment,” Cancer Cell Int., vol. 15, no. 1, p. 2, 2015.
[9] A. Jaggupilli and E. Elkord, “Significance of CD44 and CD24 as Cancer Stem Cell Markers: An Enduring Ambiguity,” Clin. Dev. Immunol., vol. 2012, pp. 1–11, May 2012.
[10] S. Shaheen, M. Ahmed, F. Lorenzi, and A. S. Nateri, “Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer.,” Stem Cell Rev., vol. 12, no. 4, pp. 492–9, 2016.
[11] S. R. Fatemi et al., “Recurrence and Five Year Survival in Colorectal Cancer Patients After Surgery,” Iran. J. Cancer Prev., vol. 8, no. 4, Aug. 2015.
[12] N. T. Saleh, A. N. Sohi, E. Esmaeili, S. Karami, F. Soleimanifar, and N. Nasoohi, “Immobilized Laminin-derived Peptide Can Enhance Expression of Stemness Markers in Mesenchymal Stem Cells,” Biotechnol. Bioprocess Eng., vol. 24, no. 6, pp. 876–884, Nov. 2019.
[13] B. A. Chabner and T. G. Roberts, “Chemotherapy and the war on cancer,” Nat. Rev. Cancer, vol. 5, no. 1, pp. 65–72, 2005.
[14] M. J. Munro, S. K. Wickremesekera, L. Peng, S. T. Tan, and T. Itinteang, “Cancer stem cells in colorectal cancer: A review,” J. Clin. Pathol., vol. 71, no. 2, pp. 110–116, 2018.
[15] L. P. M, B. P. K, and V. S. Kotakadi, “Herbal and Medicinal Plants Molecules Towards Treatment of Cancer : A Mini Review,” vol. 2, no. 2, 2015.
[16] S.-Y. Yin, W.-C. Wei, F.-Y. Jian, and N.-S. Yang, “Therapeutic applications of herbal medicines for cancer patients.,” Evid. Based. Complement. Alternat. Med., vol. 2013, p. 302426, 2013.
[17] A. G. Desai et al., “Medicinal plants and cancer chemoprevention.,” Curr. Drug Metab., vol. 9, no. 7, pp. 581–91, Sep. 2008.
[18] H. Chang et al., “Silibinin Inhibits the Invasion and Migration of Renal Carcinoma 786-O Cells In Vitro , Inhibits the Growth of Xenografts In Vivo and Enhances Chemosensitivity to 5-Fluorouracil and Paclitaxel,” vol. 823, no. January, pp. 812–823, 2011.
[19] R. Lim, C. J. Morwood, G. Barker, M. Lappas, and P. Proost, “Effect of Silibinin in Reducing Inflammatory Pathways in In Vitro and In Vivo Models of Infection-Induced Preterm Birth,” PLoS One., vol. 9, p. e92505, 2014.
[20] P. Kidd and K. Head, “A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos),” Altern. Med. Rev., vol. 10, no. 3, pp. 193–203, 2005.
[21] P. P. Deshpande, S. Biswas, and V. P. Torchilin, “Current trends in the use of liposomes for tumor targeting.,” Nanomedicine (Lond)., vol. 8, no. 9, pp. 1509–28, Sep. 2013.
[22] J. R. Baker, “Dendrimer-based nanoparticles for cancer therapy,” Hematology, vol. 2009, no. 1, pp. 708–719, Jan. 2009.
[23] D. Keskin and A. Tezcaner, “Micelles As Delivery System for Cancer Treatment,” Curr. Pharm. Des., vol. 23, no. 35, pp. 5230–5241, Jan. 2018.
[24] M. Amiji and S. Tiwari, “Nanoemulsion Formulations for Tumor-Targeted Delivery,” in Nanotechnology for Cancer Therapy, CRC Press, 2006, pp. 723–739.
[25] X. Zhang and P. Zhang, “Polymersomes in Nanomedicine - A Review,” Curr. Nanosci., vol. 13, no. 2, pp. 124–129, Feb. 2017.
[26] D. E. Discher et al., “Polymer vesicles.,” Science, vol. 297, no. 5583, pp. 967–73, 2002.
[27] M. Ghavami-Lahiji, F. Shafiei, F. Najafi, and M. Erfan, “Drug-loaded polymeric films as a promising tool for the treatment of periodontitis,” J. Drug Deliv. Sci. Technol., vol. 52, pp. 122–129, Aug. 2019.
[28] S. Pakizehkar, N. Ranji, A. N. Sohi, and M. Sadeghizadeh, “Polymersome‐assisted delivery of curcumin: A suitable approach to decrease cancer stemness markers and regulate miRNAs expression in HT29 colorectal cancer cells,” Polym. Adv. Technol., p. pat.4759, Nov. 2019.
[29] S. Hossainzadeh, N. Ranji, A. Naderi Sohi, and F. Najafi, “Silibinin encapsulation in polymersome: A promising anticancer nanoparticle for inducing apoptosis and decreasing the expression level of miR‐125b/miR‐182 in human breast cancer cells,” J. Cell. Physiol., p. jcp.28795, May 2019.
[30] L. Weiswald, D. Bellet, and V. Dangles-marie, “Spherical Cancer Models in Tumor,” NEO, vol. 17, no. 1, pp. 1–15, 2015.
[31] M. M. Zadeh, N. Motamed, N. Ranji, M. Majidi, and F. Falahi, “Silibinin-Induced Apoptosis and Downregulation of MicroRNA-21 and MicroRNA-155 in MCF-7 Human Breast Cancer Cells,” J. Breast Cancer, vol. 19, no. 1, pp. 45–52, Mar. 2016.
[32] P. Vega, F. Valentín, and J. Cubiella, “Colorectal cancer diagnosis: Pitfalls and opportunities,” World J. Gastrointest. Oncol., vol. 7, no. 12, p. 422, 2015.
[33] Y. Zhou, L. Xia, H. Wang, L. Oyang, M. Su, and Q. Liu, “Cancer stem cells in progression of colorectal cancer.,” Oncotarget, vol. 9, no. 70, pp. 33403–33415, Sep. 2018.
[34] S. Kumar, K. Raina, C. Agarwal, and R. Agarwal, “Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals.,” Oncotarget, vol. 5, no. 13, pp. 4972–89, Jul. 2014.
[35] C. Agarwal, R. P. Singh, S. Dhanalakshmi, and D. de Leeuw, “Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells,” Oncogene, vol. 22, no. 51, pp. 8271–8282, Nov. 2003.
[36] H. Kauntz, “Cellular and Molecular Targets of Silibinin , a Natural Flavonoid , in Colorectal Cancer Prevention and Therapy,” Human health and pathology. Université de Strasbourg, Strasbourg, 2012.
[37] S. Patel, B. Waghela, and K. Shah, “Silibinin, A Natural Blend In Polytherapy Formulation For Targeting Cd44v6 Expressing Colon Cancer Stem Cells,” Sci. Rep., vol. 8, no. 1, p. 16985, Dec. 2018.
[38] C. Agarwal, R. P. Singh, and S. Dhanalakshmi, “Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells,” Oncogene, vol. 22, no. 51, pp. 8271–8282, Nov. 2003.
[39] Yi-Xin Wang1, * H. C., Gang Jiang1, Tian-Bao Zhou2, and Hai Wu, “Silibinin inhibits proliferation, induces apoptosis and causes cell cycle arrest in human gastric cancer MGC803 cells via STAT3 pathway inhibition,” Asian Pacific J. Cancer Prev. J Cancer Prev, vol. 15, no. 1516, pp. 6791–6798, 2014.
[40] R. Agarwal and C. Agarwal, “Abstract B32: Translational potential of a small-molecule silibinin in colorectal cancer: Targeting cancer stem cells and their inflammatory niche,” in Precision Medicine/Targeted and Combination Therapies/Drug Resistance, 2018, vol. 24, no. 1 Supplement, pp. B32–B32.
[41] Y.-C. Chang, C.-I. Jan, P. Chih-Yu, Lai Yu-Chi, H. Fang-Wei, and C. C. Yu, “Activation of microRNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable prognostic value in head and neck squamous cell carcinomas,” Oncotarget, vol. 6, no. 27, pp. 24002–16, Sep. 2015.
[42] R. M, V. R, R. N, S. MH, M. M, and S. SM, “The Effect of Over-Expression of miR-20a on Cell Proliferation of Human T Cell Leukemia Cell Line,” Clin. Lab., vol. 64, no. 10/2018, pp. 1641–1647, 2018.
[43] R. Rupaimoole and F. J. Slack, “A role for miR-34 in colon cancer stem cell homeostasis,” Stem Cell Investig., vol. 3, no. December 2012, pp. 42–42, 2016.
[44] Y. Ma et al., “MicroRNA-34a Mediates the Autocrine Signaling of PAR2-Activating Proteinase and Its Role in Colonic Cancer Cell Proliferation,” PLoS One, vol. 8, no. 8, p. e72383, Aug. 2013.
[45] C. LI et al., “miR-34a inhibits colon cancer proliferation and metastasis by inhibiting platelet-derived growth factor receptor α,” Mol. Med. Rep., vol. 12, no. 5, pp. 7072–7078, Nov. 2015.
[46] S. Liu, X. Sun, M. Wang, and Y. Hou, “A microRNA 221– and 222–Mediated Feedback Loop Maintains Constitutive Activation of NFκB and STAT3 in Colorectal Cancer Cells,” Gastroenterology, vol. 147, no. 4, pp. 847-859.e11, Oct. 2014.
[47] S. Kumar, K. Raina, C. Agarwal, and R. Agarwal, “Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals.,” Oncotarget, vol. 5, no. 13, pp. 4972–89, Jul. 2014.
[48] C. Fanali et al., “Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives.,” World J. Gastroenterol., vol. 20, no. 4, pp. 923–42, Jan. 2014.
[49] F. Navarro and J. Lieberman, “miR-34 and p53: New Insights into a Complex Functional Relationship,” PLoS One, vol. 10, no. 7, p. e0132767, Jul. 2015.
[50] N. Fan and J. Wang, “MicroRNA 34a contributes to virus-mediated apoptosis through binding to its target gene Bax in influenza A virus infection,” Biomed. Pharmacother., vol. 83, pp. 1464–1470, Oct. 2016.
[51] R. A. Yacoub, I. O. Fawzy, and R. A. Assal, “miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.,” J. Clin. Transl. Hepatol., vol. 4, no. 4, pp. 300–305, Dec. 2016.