Abugable, A.A., Morris, J.L.M., Palminha, N.M., Zaksauskaite, R., Ray, S. and El-Khamisy, S.F. (2019) DNA repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms. DNA Repair (Amst). 81:102669.
Bai, S.W., Herrera-Abreu, M.T., et al.,. (2011) Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration BMC Biology, 9, 54.
Blasius M, Forment JV, Thakkar N, Wagner SA, Choudhary C, Jackson SP. A phospho-proteomicscreen identifies substrates of the checkpoint kinase Chk1. Genome Biol. 2011; 12:R78.
Brenner, D., Muller, K., Wieland, T., Weydt, P., Bohm, S., Lule, D., Hubers, A., Neuwirth, C.,Weber, M., Borck, G., et al. (2016). NEK1 mutations in familial amyotrophic lateral sclerosis. Brain. 139, e28.
Brown, R.H., and Al-Chalabi, A. (2017). Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 377, 162–172.
Chia, R., Chio, A., and Traynor, B.J. (2018). Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurol. 17, 94–102.
Chen, Y., Chen, P.L., Chen, C.F., Jiang, X., and Riley, D.J. (2008). Never-in-mitosis related kinase1 functions in DNA damage response and checkpoint control. Cell Cycle 7, 3194–3201.
Chen Y, Poon RY. The multiple checkpoint functions of CHK1 and CHK2 in maintenance ofgenome stability. Front Biosci. 2008; 13:5016–5029.
Chiò A, Logroscino G, Traynor BJ, et al. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology. 2013;41:118-130
Choi, B.K.A., D’Onofrio, P.M., Shabanzadeh, A.P., and Koeberle, P.D. (2019). Stabilization of primary cilia reduces abortive cell cycle re-entry to protect injured adult CNS neurons from apoptosis. PLOS ONE 14, e0220056.
Cirulli, E.T., Lasseigne, B.N., Petrovski, S., Sapp, P.C., Dion, P.A., Leblond, C.S., Couthouis, J., Lu,Y.F., Wang, Q., Krueger, B.J., et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441.
Dai Y, Grant S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res. 2010; 16:376–383.
Fang, X., Lin, H., Wang, X., Zuo, Q., Qin, J., and Zhang, P. (2015). The NEK1 interactor, C21ORF2, is required for efficient DNA damage repair. Acta Biochim. Biophys. Sin. 47, 834–841.
Fliegauf, M., Benzing, T., and Omran, H. (2007). When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893.
Fry, A.M., O’Regan, L., Sabir, S.R., and Bayliss, R. (2012). Cell cycle regulation by the NEK family of protein kinases. J. Cell Sci. 125, 4423–4433.
Gratten, J., Zhao, Q., Benyamin, B., Garton, F., He, J., Leo, P.J., Mangelsdorf, M., Anderson, L.,Zhang, Z.H., Chen, L., et al. (2017). Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese. Genome Med. 9, 97.
Haan, C. and Behrmann, I. (2007) A Cost Effective Non-Commercial ECL-Solution for Western Blot Detections Yielding Strong Signals and Low Background. Journal of Immunological Methods, 318, 11-19.
Harper, J. W. and Elledge, S.J. The DNA damage response: ten years after. Mol Cell. 2007; 28:739–745.
Hu, Y., Li, J., Lou, B., Wu, R., Wang, G., Lu, C., Wang, H., Pi, J., and Xu, Y. (2020). The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 10.
Haider, S.R., Reid, H. J., Sharp, B. L. (2012) Tricine-SDS-PAGE. Methods Mol Biol. 869:81-91
Hardiman, O., Ammar Al-Chalabi, Adriano Chio et al. (2017). Nature Reviews Disease Primers. 3, 17071.
Higelin, J., Catanese, A., Semelink-Sedlacek, L.L., Oeztuerk, S., Lutz, A.K., Bausinger, J., Barbi, G., Speit, G., Andersen, P.M., Ludolph, A.C., et al.(2018). NEK1 loss-of-function mutation induces DNA damage accumulation in ALS patient derived motoneurons. Stem Cell Res. 30, 150–162.
Huang, S., Liu, Y., Liu, W.-Q., Neubauer, P., and Li, J. (2021). The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms 9.
Ishii, S., Sasaki, T., Mohammad, S., Hwang, H., Tomy, E., Somaa, F., Ishibashi, N., Okano, H., Rakic, P., Hashimoto-Torii, K., et al. (2020). Primary cilia safeguard cortical neurons in neonatal mouse forebrain from environmental stress-induced dendritic degeneration. Proc. Natl. Acad. Sci. 118.
Iyer S, Acharya, K. R,, Subramanian, V. (2019) Prediction of structural consequences for disease causing variants in C21orf2 protein using computational approaches. J Biomol Struct Dyn. 37:465-480
Jänicke, R.U., Sprengart, M.L., Wati, M.R., and Porter, A.G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357–9360.
Kaliszewski, M., Knott, A.B., and Bossy-Wetzel, E. (2015). Primary cilia and autophagic dysfunction in Huntington’s disease. Cell Death Differ. 22, 1413–1424.
Kenna, K.P., van Doormaal, P.T., Dekker, A.M., Ticozzi, N., Kenna, B.J., Diekstra, F.P., van Rheenen, W., van Eijk, K.R., Jones, A.R., Keagle, P., et al. (2016). Nat. Genet. 48, 1037–1042.
Khan, A.O., Eisenberger, T., Nagel-Wolfrum, K., Wolfrum, U., and Bolz, H.J. (2015). C21orf2 is mutated in recessive early-onset retinal dystrophy with macular staphyloma and encodes a protein that localises to the photoreceptor primary cilium. Br. J. Ophthalmol. 99, 1725–1731.
Kramer, A., Mailand, N., Lukas, C., Syljuasen, R.G, Wilkinson, C.J., Nigg, E. A., Bartek, J., and Lukas, J. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat. Cell. Biol. 2004; 6:884–891.
Ling, S.C., Polymenidou, M., and Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD:disrupted RNA and protein homeostasis. Neuron79, 416–438.
Lai, C.K. et al. Functional characterization of putative cilia genes by high-content analysis. Mol. Biol. Cell 22, 1104–1119 (2011).
Li, Y., Ling, K., and Hu, J. (2012). The emerging role of Arf/Arl Small GTPases in Cilia and Ciliopathies. J. Cell. Biochem. 113, 2201–2207.
Lim, K.H., Huang, H., Pralle, A., and Park, S. (2013). Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection. Biotechnol. Bioeng. 110, 57–67.
Lu, C., Fu, W., Zhao, D., and Mattson, M.P. (2002). The DNA damaging agent etoposide activates a cell survival pathway involving alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors and mitogen-activated protein kinases in hippocampal neurons. J. Neurosci. Res. 70, 671–679.
Mah, L.-J., El-Osta, A., and Karagiannis, T.C. (2010). γH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686.
Ma, X., Peterson, R., and Turnbull, J. (2011). Adenylyl cyclase type 3, a marker of primary cilia, is reduced in primary cell culture and in lumbar spinal cord in situ in G93A SOD1 mice. BMCNeurosci. 12, 71.
Mashal R. D., Koontz J., Sklar J. (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat. Genet. 9: 177–183.
Melo-Hanchuk, T. D., Slepicka, P. F., Meirelles, G. V., Basei, F. L., Lovato, D. V., et al. (2017) NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep. 7:5445
Mejzini, R., Flynn, L. L, Pitout, I.L., Fletcher, S., Wilton, S.D. and P. Akkari, P. A. (2019) ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front Neurosci. 13: 1310.
Pelegrini, A.L. et al. Nek1 silencing slows down DNA repair and blocks DNA damage-induced cell cycle arrest. Mutagenesis 25, 447–454 (2010).
Peng, T., Thorn, K., Schroeder, T., Wang, L., et al. (2017). A BaSiC tool for background and shading correction of optical microscopy images. Nat. Comm. 8, 14836.
Pessina F, Gioia U, Brandi O, Farina S, Ceccon M, Francia S, d'Adda di Fagagna F. (2021) DNA Damage Triggers a New Phase in Neurodegeneration. Trends Genet. 37:337-354
Pusch, O., Bernaschek, G., Eilers, M.et al. (1997) Activation of c-Myc uncouples DNA replication from activation of G1-cyclin-dependent kinases. Oncogene 15, 649–656 (1997)
Sakuma, T., Nishikawa, A., Kume, S., Chayama, K., & Yamamoto, T. (2014). Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Scientific reports, 4, 5400.
Sanchez, Y, Wong, C., Thoma R. S., Richman, R, Wu, Z., Piwnica-worms, H. and Elledge, S. J. Conservationof the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science. 1997; 277:1497–1501
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675.
Scott, H.S., Kyriakou, D.S., Peterson, P., Heino, M., Tahtinen, M., Krohn, K., Chen, H., Rossier, C.,Lalioti, M.D., and Antonarakis, S.E. (1998). Characterization of a novel gene, C21orf2, on human chromosome 21q22.3 and its exclusion as the APECED gene by mutation analysis. Genomics 47, 64–70.
Semple, J.I., Smits, V. a. J., Fernaud, J.-R., Mamely, I., and Freire, R. (2007). Cleavage and degradation of Claspin during apoptosis by caspases and the proteasome. Cell Death Differ. 14, 1433–1442.
Schmidts, M., Arts, H. H., Bongers, E. M., Yap, Z., Oud, M. M.,et al. (2013) Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J. Med. Genet. 50: 309.
Schägger, H. (2006) Tricine-SDS-PAGE. Nature Protocols, 1, 16-22.
Shalom, O., Shalva, N., Altschuler, Y. & Motro, B. The mammalian Nek1 kinase is involved in primary cilium formation. FEBS Lett. 582, 1465–1470 (2008).
Suk, T.R., and Rousseaux, M.W.C. (2020). The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol. Neurodegener. 15, 45.
Suga, A., Mizota, A., Kato, M., Kuniyoshi, K., Yoshitake, K., Sultan, W., Yamazaki, M., Shimomura, Y., Ikeo, K., Tsunoda, K., Iwata, T. (2016) Identification of novel mutations in the LRR-cap domain of C21orf2 in Japanese patients with retinitis pigmentosa and cone-rod dystrophy. Invest. Ophthal. Vis. Sci. 57: 4255-4263.
Tammaro, M., Barr, P., Ricci, B., and Yan, H. (2013). Replication-Dependent and Transcription-Dependent Mechanisms of DNA Double-Strand Break Induction by the Topoisomerase 2-Targeting Drug Etoposide. PLOS ONE 8, e79202.
Thiel, C., Kessler, K., Giessl, A., Dimmler, A.,Shalev, S.A., von der Haar, S., Zenker, M.,Zahnleiter, D., Stoss, H., Beinder, E., et al. (2011). NEK1 mutations cause short-rib polydactylysyndrome type majewski. Am. J. Hum. Genet. 88, 106–114.
Thiyagarajan, N., Ferguson, R., Subramanian, V., and Acharya, K.R. (2012). Structural and molecular insights into the mechanism of action of human angiogenin-ALS variants in neurons. Nat. Commun. 3, 1121.
Trichas, G., Begbie, J., and Srinivas, S. (2008). Use of the viral 2A peptide for bicistronic expression in transgenic mice. BMC Biol. 6, 40.
Vouillot, L., Thélie, A., and Pollet, N. (2015). Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 Bethesda Md 5, 407–415.
van Rheenen, W., Shatunov, A., Dekker, A.M., McLaughlin, R.L., et al (2016) Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics 48, 1043–1048.
Van Rheenen, W, Van der Spek, R.A.A. Bakker, M.K et al (2021). Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics. 53, 1636–1648.
Wang, Z., Horemuzova, E., Iida, A., Guo, L., Liu, Y., Matsumoto, N., Nishimura, G., Nordgren, A., Miyake, N., Tham, E., et al. (2017). Axial spondylometaphyseal dysplasia is also caused by NEK1 mutations. J. Hum. Genet. 62, 503–506.
Wang, Z., Iida, A., Miyake, N., Nishiguchi, K.M.,Fujita, K., Nakazawa, T., Alswaid, A., Albalwi,M.A., Kim, O.H., Cho, T.J., et al. (2016). Axial spondylometaphyseal dysplasia is caused by C21orf2 mutations. PLoS One 11, e0150555.
Watanabe, Y., Nakagawa, T., Akiyama, T., Nakagawa, M., Suzuki, N., Warita, H., Aoki, M., and Nakayama, K. (2020). An Amyotrophic Lateral Sclerosis-Associated Mutant of C21ORF2 Is Stabilized by NEK1-Mediated Hyperphosphorylation and the Inability to Bind FBXO3. IScience 23, 101491.
Wheway, G., Schmidts, M., Mans, D.A., Szymanska, K., Nguyen, T.-M.T., Racher, H., Phelps, I.G., Toedt, G., Kennedy, J., Wunderlich, K.A., et al. (2015a). An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 17, 1074–1087.
Wheway, G., Schmidts, M., Mans, D.A., Szymanska, K., Nguyen, T.-M.T., Racher, H., Phelps, I.G., Toedt, G., Kennedy, J., Wunderlich, K.A., et al. (2015b). An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 17, 1074–1087.
K Yusa, R Rad, J Takeda, A Bradley (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6, 363–369.
Zhang, S., Cooper Knock, J., Wemer, A., Shi, M. et al. (2022) Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 110, 992–1008.