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Abstract
Most gene expression studies aim to discover genes associated with speci�c diseases. The standard approaches based
on machine learning utilize several feature selection techniques to identify signi�cant genes that can serve as biomarkers
for a given disease. In recent times, the integration of prior knowledge-based approaches for biomarker identi�cation has
shown much promise in discovering several biomarkers, thus allowing scope for an increase in translational applications.
In this study, we developed a novel approach GediNET that integrates prior biological knowledge about genes associated
with diseases like cancer to group genes into groups. The novelty of GediNet is that it discovers disease-disease gene
associations within groups rather than disease-gene associations.

These groups are later subject to a Scoring component for performing group selections rather than single feature
selection. The top-ranked groups are used to train the machine learning model. The process of Grouping and Scoring
using the (G-S-M) model is then applied to discover groups of disease genes or biomarkers for a speci�c disease. One of
the outputs of the suggested tool GediNET is a list of signi�cant groups of diseases that combine their associated genes
can contribute to developing biomarkers and drugs.

GediNET identi�es the relationships between diseases, Disease–disease association (DDA) based machine learning,
which explores novel associations of diseases that enhance knowledge of disease relationships, which could further
improve approaches to disease diagnosis, prognosis, and treatment.

The GediNET Knime work�ow can be downloaded from: https://github.com/malikyousef/GediNET.git or

https://kni.me/w/3kH1SQV_mMUsMTS- .

Introduction
Complex diseases like diabetes, Alzheimer's, and cancer are in�uenced by genetics, lifestyle, and environmental factors.
They do not follow any inheritance patterns. A great effort in research is to target such diseases to reveal their genetic
disorders and corresponding disease genes. Understanding disease genetic causes can lead to early diagnosis, prognosis,
and an effective drug design [1]. With the advances in bioinformatics, researchers have made a tremendous effort to
identify disease-related genes effectively. Biomarker identi�cation and sample classi�cation, based on gene expression
data, have become an attractive research area in the �eld of bioinformatics [2–5].

The increased availability of high-throughput molecular pro�ling data with reduced costs has triggered researchers to
deeply analyze the emerging biological knowledge. Over the last decade, the large availability of datasets has contributed
to forming a rich resource cohort. Many resources of biological knowledge and repositories are available, such as
miRTarBase [6] for microRNA, Gene Ontology (GO) [7], Gene Expression Omnibus (GEO), which provides access to
microarray measurements [8], TCGA - a database for gene expression RNA-seq [9], and KEGG - a knowledge-base of
pathways [10]. Another widely used biological resource is DisGeNET, a knowledge-base platform for gene-disease–variant
associations [11]. Researchers can leverage these resources for in-silico validation and train statistical machine learning
models for classi�cation and biomarker discovery.

Hallmarks of human diseases follow the same rule: the critical perturbation in the gene(s)/protein(s) will have
implications in molecular pathways and produce implicated or lethal phenotypes. This is based on the principle of guilt-
by-association, which suggests that associated genes share functions such as genetic or physical interactions [12]. In
other words, genes responsible for similar diseases are alike. This �nding has motivated to shift from the traditional pure
data-oriented approaches to knowledge-based integrative approaches to handle the considerable resources. Insights can
be better attained when advanced tools exploit biological knowledge for deep analysis rather than the traditional
clustering and machine learning approaches [13, 14].
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Different studies have invested in identifying genes associated with human diseases. They also shed light on the
importance of using computational tools to diagnose diseases and design novel drugs. Although too many publications
on computational tools exist in the literature, they differ in their approach and use of resources. Many integrated various
biological information about disease genes into machine learning[15, 16]. One sort of integrative approach is by
aggregating multiple datasets to increase the statistical power in effectively identifying a small subset of genes to predict
disease types [17]. One such method is BioGraph, presented by Liekens et al. [18]. The authors developed a data-mining
platform for disease gene prioritization and identi�cation. They integrated 21 curated biomedical databases to rank
disease-gene relations. Results exposed disease genes and identi�ed potential susceptibility genes.

Other approaches such as GeP-HMRF integrated Genome-wide association studies (GWAS), expression quantitative trait
loci (eQTL), and protein-protein interaction (PPI) data [19]. GeP-HMRF is a uni�ed statistical model to predict disease-
related genes. Authors described that their approach outperforms Sherlock [20], COLOC[21], and NetWAS [22] tools. The
work of Peng et al. [23] proposed a new network-based disease gene prediction method called SLN-SRW (Simpli�ed
Laplacian Normalization-Supervised Random Walk) to generate edge weights of a new biomedical network by integrating
heterogeneous sources of biomedical data.

The study by [16] has demonstrated that machine learning classi�ers trained on functional gene similarities, using Gene
Ontology (GO), can improve the identi�cation of genes involved in complex diseases. The GO annotations were used to
compute similarities between genes. The approach was tested on autism spectrum disorder (ASD) candidate genes. Luo
et al. [24] proposed EdgCSN, an ensemble learning algorithm that uses protein-protein interaction networks extracted from
clinical sample-based networks to predict disease-associated genes.

Many studies that integrate biological knowledge about genes associated with diseases have been examined in the
literature. However, a critical component of such research is integrating a profound knowledge base for genes and
associated diseases. Such knowledge exists in the DisGeNET database [25]. For example, Hamzeh and Rueda propose a
new machine learning method that incorporates the DisGeNET database to detect biomarkers in prostate cancer. A
wrapper-based feature-selection approach was used to group genes-related diseases based on their classi�cation
accuracy. Results for each iteration were saved for further validation by researchers based on the best AUC or the highest
number of detected genes in each group [25].

Yousef et. al. has developed the Grouping-Scoring-Modeling (G-S-M) approach for integrated biological knowledge
through different computation tools such as SVM-RCE-R [27, 28] maTE [29], CogNet [30],mirCorrnet [31],miRModuleNet
[32], and PriPath [33]. For a review paper on G-S-M approaches, we refer to [34].

SVM-RCE-R [27, 28] tools were the �rst study by Yousef et al. that considered groups of genes rather than individuals.
SVM-RCE (Support Vector Machines -Recursive Cluster Elimination) groups genes based on their gene expression values
and scores each cluster of genes by a machine learning algorithm. Moreover, a recent study by Yousef et al. [34] used the
G-S-M model to integrate Gene Ontology for grouping the genes. Similarly, SVM-RNE [35] detects gene networks to serve
as clusters for ranking and scoring by adopting the G-S-M model. Even though different studies have used mRNA
expression data and knowledge bases such as DisGeNet, our pioneer approach is not similar to any of the tools presented
before. Using the G-S-M approach, the main objective is to group genes best related to a speci�c disease. Our novel
machine learning approach with two-class classi�cation does not need other data annotation. With Monte Carlo cross-
validation (MCCV), fractions of the samples are randomly selected as training data, and the rest is assigned for the test
data. The most accurate disease-genes groups are then identi�ed in each iteration, and later accumulative top-ranked
groups are combined to train the model. We further examined the results with similar approaches that follow the same
merit, such as maTE [29], CogNet [30], mirCorrnet[31], miRModuleNet[32], and PriPath[33] ; GediNET has shown its
superiority against previous state-of-the-art methods. However, the aim of the GediNET is not to compete with other tools
in terms of performance; the aim is to discover a novel Disease-Disease association-based machine learning.
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Materials And Methods
Datasets

We downloaded 10 human gene expression datasets for different types of complex diseases from GEO [8]. For each
dataset, the name of the disease and the number of samples were de�ned. Moreover, positive and negative samples were
available. Table 1 describes the 10 datasets in more detail.

Table 1. Description of the 10 datasets used in the study. Each entry has the GEO accession, the name of the disease, the
number of samples, and the data classes.
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GEO accession Title Disease #Samples Classes

GDS1962 Glioma-derived stem cell factor effect on
angiogenesis in the brain

Glioma 180 negative
= 23

positive
= 157

GDS2545 Metastatic prostate cancer (HG-U95A) Prostate cancer 171 negative
= 81

positive
= 90

GDS2771 Large airway epithelial cells from cigarette smokers
with suspect lung cancer

Lung cancer 192 negative
= 90

positive
= 102

GDS3257 Cigarette smoking effect on lung adenocarcinoma Lung
adenocarcinoma

107 negative
= 49

positive
= 58

GDS4206 Pediatric acute leukemia patients with early relapse:
white blood cells

Leukemia 197 negative
= 157

positive
= 40

GDS5499 Pulmonary hypertension: PBMCs Pulmonary
hypertension

140 negative
= 41

positive
= 99

GDS3837 Non-small cell lung carcinoma in female
nonsmokers

Lung cancer 120 negative
= 60

positive
= 60

GDS4516_4718 Colorectal cancer: laser microdissected tumor
tissues

Colorectal
cancer

148 negative
= 44

positive
= 104

GDS2547 Metastatic prostate cancer (HG-U95C) Prostate cancer 164 negative
= 75

positive
= 89

GDS3268 Colon epithelial biopsies of ulcerative colitis patients Colitis 202 negative
= 73

positive
= 129

DisGeNET disease-gene association dataset

The dataset containing genes and associated diseases was downloaded from DisGeNET version 7.0 [25]. The dataset
contains 30,170 diseases and 21,666 genes that form 3,241,576 gene-disease connections. Given the massive dataset
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size, two �lters were set to reduce the number of associations in terms of practicality and to reduce the computational
complexity. The �lters were set on the columns diseaseType and diseaseSemanticType in the DisGeNET dataset. The
diseaseType column divided the data into three categories - disease, phenotype, and group - and we only chose disease
concerning our study. On the column diseaseSemanticType, we only chose those rows categorized as Neoplastic Process
and Disease. This was done to increase compatibility and better understand the work�ow results. After �ltering, only
15991 genes and 3929 diseases related to diseases remained for further analysis, which accounted for 329936 gene-
disease associations. Figure 1 illustrates a part of the disease distribution over the number of genes for each disease.

The merit of our GediNET as Disease-Disease Associations

Let's assume that given a gene expression dataset D, which was designed to study a speci�c disease R (for example,
Lung Cancer or Breast cancer) to detect the signi�cant genes or the biomarker of this disease-based gene expression. The
traditional approach of the classi�cation model suggests a list of k genes that can serve as a biomarker for predicting the
patients with the disease R. In other words, Identifying disease-gene associations. One solution could be a linear function
F(X) as :

F(X) = w1g1+w2g2+...+wkgk, where wi are the weights (scores) while the gi are the gene expression values. The weights
could serve as the importance of each gene expression in this equation. For instance, a value weight close to zero
indicates that the associated genes contribute less to the equation model. In other words, F(X) describes the biological
interaction between those k genes to form biomarkers.

Our new approach GediNet is different from those traditional approaches by suggesting the following model equation
that Identi�es disease-disease gene associations:

F*(X) = w1*grp_disease1 + w2*grp_disease2+...+wp*grp_diseasep, where the model consists of p groups that were highly
scored by the component S of GediNET(See section The main work�ow of GediNET). The group grp_diseasei (i=1,2,..p) is
a set of genes associated with one disease. F*(x) represents the model by a linear function of groups, also it could be
represented as a decision tree, as illustrated in Figure 2 (Right panel). The left panel of Figure 2 illustrates the decision tree
model of the signi�cant genes selected by the traditional approach. One needs to take this list and proceed with other
functional enrichment processes to discover more biological relationships. On the other hand, the right panel of Figure 2
shows that the decision tree model consists of genes that are associated with the top three GeDiNET ranked diseases.
This model contains information about biological knowledge of the diseases showing the disease-disease associations.

For example, considering the datasets GDS1962 that studies the Glioma disease, GediNet might suggest a model of top
three signi�cant groups/diseases:

Grp_disease_1 =PAPILLARY RENAL CELL CARCINOMA,

Grp_disease_2= PLASMA CELL,

Grp_disease_3 = NEOPLASM, and ADULT GLIOBLASTOMA.

Where is the following are the sets of genes associated with each disease:

Grp_disease_1 = {SLC16A1, TAGLN2, TIMP3, IGFBP7, TOP2A, TP53, RRM2,..},

Grp_disease_2 = {CD99, TP53, LPL, CD40, CD38, NCAM1, MYC, CSF3, CDKN2A, FGFR3, CCND1},

Grp_disease_3= {EDNRA, CSPG4, MELK, ENPEP, …}.
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Applying GediNet will compute F*(x) that describes the association between the genes, associated with different diseases
to the current disease under study and also will describe the relationship between the top detect signi�cant
diseases(groups).This might lead to new discoveries that have not been observed before by the traditional approaches.
Additionally, the model that GediNET discovers could be combined with the top-ranked group of gene diseases (See the M
Component in section number 4), which might be used to explore the relationship between those diseases. One can use
those genes in enrichment analysis to discover the different pathways and their roles in each disease and the current
disease.

The main work�ow of GediNET

The main inspiration for developing our novel tool GeDiNET is the generic approach named G-S-M, which was adopted by
different tools such as SVM-RCE [36], SVM-RCE-R [25],SVM-RCE-R-OPT[37], SVM-RNE[35], maTE [27], CogNet [28],
miRcorrNet [31], Integrating Gene Ontology Based Grouping and Ranking [34], miRModuleNet [32], PriPath[33] and recently
reviewed in Yousef et al. [38]. The main work�ow of GeDiNET is illustrated in Figure 3, where the G-S-M approach is
presented in the three main sections labeled with the orange section (G), the yellow section (S), and the green section (M),
which represent:

1. The G Component (Grouping): where the genes of each disease are grouped.

2. The S Component (Scoring): where the groups are scored and ranked.

3. The M Component (Machine Learning model): where the model is created by training a classi�er (Random Forest).

The input for the work�ow is gene expression data. The data consist of two classes of samples, classes are control
(negative) and disease (positive). The data is split into training and testing. The training data is used to build the �nal
model, while the testing data is used to evaluate the model's performance. The whole work�ow is repeated 100 iterations
using the cross-validation loop, where the input is randomly split into 90% training and 10% testing in each iteration. A
one-way ANOVA test is performed on the training set to �lter out the top genes. The top 2000 differentially expressed
genes with a P-value less than 0.05 are selected. The selected genes are then used to �lter the test dataset to contain the
same genes.

The main contribution of the generic approach and the description of each component's functions are explained in detail
in the following sections.

Grouping Genes based on Disease (The G component)

The �rst main component in our tool is the grouping component G ( the orange section in Figure 3), which groups genes
into groups. The G component can be any algorithm that groups genes. For example, Yousef et al. previously used the
maTE algorithm to group the gene expression by the miRNAs that can target them according to the miRTarBase database
[29]. In this tool, the G components group genes based on their disease associations extracted from the biological
knowledge of the DisGeNET v7 database [39]. The main idea is to group the genes into disease groups. Each group is one
of the known diseases where its group members are the genes associated with this disease. Table 2 is an example of
such groups where it includes the disease name (group name), the set of genes associated with this disease and the last
column is the number of genes that represent the size of the group.

Table 2. An example of groups of diseases with their associated genes. The last column represents the number of genes
in each group (group size)



Page 8/25

Group Name Genes #Genes

Small Cell Carcinoma Of Lung VPS13B, SLC16A1, ANXA1, CD99, SMARCC1, PCNA… 41

Leukemia, B-Cell TP53, LAMA4, STK11, CSPG4, CD40, TNFRSF1A… 43

Stage Iii Breast Cancer Ajcc V6 TP53, BRCA2 2

Head And Neck Carcinoma PRMT5, ANXA1, LGALS1, TIMP3, IGFBP7, PCNA, TNC, TP53… 149

Secondary Malignant Neoplasm Of
Bone

ADAM9, SLC16A1, CD99, NME1-NME2, DPYSL3, TNC, TP53,
NRAS…

145

Malignant Glioma TK1, NPAS3, CD63, HMGB1, TAGLN2, TXNIP… 162

Adenocarcinoma, Tubular PCNA, TP53, EFEMP1, APOE, STK11, PRKD1… 31

Childhood Brain Neoplasm TP53, NRAS, SOX9, MYC, TNFRSF11B 5

Adult Myelodysplastic Syndrome CSNK1A1, CTNNA1, HMGB1, PCNA, TOP2A, TP53… 58

Non-Small Cell Lung Cancer Stage I TP53, PRRX1, IGFBP3, VEGFA, S100A6, GSTK1… 22

Creating Sub-data

Further, a sub-data set needs to be generated for each disease group. This is achieved by extracting the genes belonging
to the speci�c disease and their original class label from the original gene expression training part of the data. Let f=1,..m
be the number of groups generated by the G component. This stage we will extract or create m sub_data named
grp_disease_genes_subdata1, grp_disease_genes_subdata2, …, grp_disease_genes_subdatam, that will be serving for the S
(Scoring) component. Figure 4 is an example of creating sub_data for four different diseases (groups). For example, the
Well Differentiated Pancreatic Endocrine Tumor disease group is a group with �ve genes associated with this speci�c
disease. The genes are RBMS3, TFE3, SSTR2, NTRK1, and PAX8. Moreover, the X-Linked Lymphoproliferative Disorder
disease is another group with only two genes which are SERPINA4 and NR0B2. The sample class is also extracted and
speci�ed for each sample, where pos is for the positive class and neg for the negative class. Each disease group with its
sub-data is the input to the following S component (yellow section in Figure 3)    to be scored and sorted.

Scoring the groups of diseases associated with their genes

Consider the gene expression dataset as D, which contains two classes of s covariate samples (patients and control) and
n genes. After applying the grouping component G for each disease, the diseases that are now represented by a sub_data,
are scored according to their ability to best differentiate between the two classes after training on the associated
sub_data using a Random Forest (RF) classi�er. The sub_data is divided into a conventional 80:20 training and testing
split. We repeat this procedure r=5 times recording different performance metrics while we use the mean of the accuracy
as the assigned score for the speci�c disease. However, one might use a different combination of those metrics to assign
the �nal score. For more information on such an option, we refer to [37].

Table 3 is an example output of the Scoring component for the GDS2525 dataset.

Table 3: An example of the output of the Scoring S component. The �rst column is the name of the disease name, the
Accuracy column is the score given by the S component, and the Rank is the Rank of the group based on the value of the
score.
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Disease Score as Accuracy Rank

PAPILLARY RENAL CELL CARCINOMA 0.98 1

PLASMA CELL NEOPLASM 0.98 1

ADULT GLIOBLASTOMA 0.97 2

INTESTINAL CANCER 0.97 2

MALIGNANT NEOPLASM OF COLON STAGE IV 0.97 2

DERMATOFIBROSARCOMA 0.95 3

Implementation of GeDiNET

We have implemented the GeDiNET tool using the free and open-source platform KNIME [41] due to its simple and
intuitive graphical user interface. KNIME is a highly integrative platform that has enabled the scope to utilize scripts in
both python and R in tandem to implement our tool as a KNIME work�ow.

The work�ow created on KNIME comprises several nodes with their separate functions. Meta-nodes are created as a
collection of nodes that perform speci�c tasks.

The KNIME work�ow for GeDiNET is presented in Figure 5. It starts by uploading a list of the names of the dataset via the
"List Files/Folders" node. Then a loop over those datasets is run to read each dataset by the node "Table Reader," which is
then processed by the meta-node "FilterMissingValues" to remove and or �lter out rows with missing values. It then sends
the �ltered data as input to the GeDiNET meta-node. While the "Integer Input" node allows modifying the number of
iterations, the tool should be used while training the model.

The �owchart for the GeDiNET tool is presented in Figure 3, while in Figure 5, the implementation of the GeDiNET as a
KNIME work�ow along with its meta-nodes and components are shown. The left outport (input ports) brings 3 inputs into
the GeDiNET node (Top: Variable Flow port, which contains path/location of datasets and output �les, Middle: Input
dataset with missing values removed, and Bottom: Number of iterations). The input dataset is passed to the
"GroupTargetsByDisease" node, which acts as the biological grouping function by grouping all genes concerning their
corresponding diseases. The dataset is then normalized and passed onto the "Classi�cationBasedDiseaseRanks"
component for ranking via a "Partitioning" node that segments the input dataset into training and a testing set.

The "Classi�cationBasedDiseaseRanks" node is expanded in Figure 6, which shows the two further meta-nodes, "Genes
�lter ttest" which performs a one-way ANOVA test to �lter out top genes which are further used in the "Rank and Classify."

Finally, the "SaveResults" node collects all the results after each iteration of the "Loop End" node to process and save the
results.

The GediNET Knime work�ow could be downloaded from: https://github.com/malikyousef/GediNET.git or
https://kni.me/w/3kH1SQV_mMUsMTS-

Model Performance Evaluation

We used the Random Forest Classi�er while splitting the data into 80% training and 20% testing. Since the datasets are
imbalanced, meaning the dataset's target class has an uneven distribution of observations, we employed the under-
sampling method. Such a method deals with the imbalanced datasets by pertaining all of the data in the minority class
while decreasing the size of the majority class. Besides, for model training, we applied 10-fold Monte Carlo cross-
validation (MCCV) [42]. With Monte Carlo cross-validation (MCCV), fractions of the samples are randomly selected as
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training data, and the rest is assigned for the test data. The performance measures are computed as the average of 100-
fold MCCV.

To evaluate the performance of RF model, several quantitative metrics were calculated, such as Accuracy, Sensitivity,
Speci�city, and Precision [43], using the following formulations:

Sensitivity (SE, Recall) = TP/(TP + FN)

Speci�city (SP) = TN/(TN + FP)

Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN

Where TP: true positive; FP: false positive, TN: true negative; and FN: false negative. Moreover, the Area Under the Curve
(AUC) measures the ability of a classi�er to distinguish between classes and is used as a summary of the ROC curve [44].
We used the AUC to evaluate the performance results.

In each iteration, our approach generates lists of diseases groups and their associated genes that are slightly different.
Hence, there is a need to apply a prioritization approach on those lists. As utilized in miRcorrNet, we have used rank
aggregation methods. In this respect, we have embedded the RobustRankAggreg R package[40], developed by (Kolde et
al., 2012) into GediNET work�ow. The RobustRankAggreg assigns a p-Value to each element in the aggregated list, which
describes how good each element/entity was ranked compared to the expected value.

Results
Performance Evaluation of GediNET

Table 4 presents an example of the average 100-fold MCCV performance table of GeDiNET for aggregated top-ranked 10
groups for the GDS1962 dataset. The last row presents the performance of the top-ranked group (#Groups=1). The AUC
obtained is 97% using 21.61 genes on average. The row of #Groups=2 presents the performance metrics obtained for the
top 2 groups, where the genes of the �rst top-ranked group and the second-highest scoring group are aggregated together.
That is to say that GeDiNET reports the performance results for the top 10 groups cumulatively.

Table 4. An example average of 100 MCCV performance table of GeDiNET for top-ranked 10 groups for GDS1962 dataset
cumulatively.
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#Groups #Genes Accuracy Sensitivity Speci�city AUC

10 136.74 0.928 0.93 0.92 0.98

9 127.68 0.93 0.93 0.92 0.98

8 116.02 0.93 0.94 0.92 0.98

7 111.16 0.93 0.93 0.91 0.98

6 102.02 0.93 0.9 0.92 0.98

5 92.88 0.93 0.93 0.93 0.98

4 78.37 0.93 0.93 0.92 0.98

3 62.47 0.93 0.94 0.92 0.98

2 45.57 0.93 0.93 0.93 0.97

1 21.61 0.92 0.93 0.92 0.97

Table 5. Performance Results of GeDiNET over the top-ranked group. ACC stands for Accuracy, SEN stands for Sensitivity,
SPE stands for Speci�city, FM stands for F-Measure, and AUC stands for Area Under the ROC Curve.

GEO Accession #Genes ACC SEN SPE AUC

GDS1962 45.57 0.93 0.93 0.93 0.97

GDS2545 113.76 0.73 0.72 0.74 0.81

GDS2771 97.83 0.64 0.69 0.59 0.70

GDS3257 74.81 0.97 0.99 0.94 0.99

GDS3837 21 0.92 0.83 1 0.92

GDS4206 83 0.66 0.3 0.82 0.58

GDS4516_4718 40.72 0.99 0.99 0.99 1

GDS2574 102.49 0.76 0.77 0.76 0.83

GDS3268 115.7 0.67 0.7 0.63 0.73

GDS5499 80.23 0.9 0.96 0.77 0.95

Table 5 shows the GediNET performance over 10 datasets for the top 2 groups. All values are the results of an average of
100-MCCV while considering the AUC for presenting the performance. The complete performance results are attached in
the supplementary. The table shows the GEO accession in the �rst column, the number of genes in column #Genes while
ACC is the accuracy, SEN is the sensitivity, SPE is the speci�city, and the AUC is the area under the curve. We see only one
unsuccessful result for the dataset GDS4206. However, a similar observation was made when applying other tools to this
speci�c dataset, as illustrated in Figure 7.

The average number of genes associated with the top 2 groups is slightly high because the distribution of genes over the
disease is slightly high compared, for example, to other biological knowledge such as microRNA target or KEGG
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pathways. Moreover, this number of genes could be reduced by removing the least contributed genes by processing each
group. This step will be considered in the future version of the algorithm. Also, one can use additional biological
knowledge to �lter out more genes from the group by, for example, leaving the most associated genes with the disease.
The last suggestion requires other biological resources to be embedded into the GeDiNET.

Comparative Evaluation with other biological G-S-M

For comparison, we have considered similar tools that apply the G-S-M approach by integrating biological knowledge for
grouping the genes and performing the scoring on the group, such as CogNet, maTE, and PriPath. We have recorded the
AUC values for the top 1-10 groups ranked by the scoring component for each tool by applying 100-MCCV. More
speci�cally, we considered the top two groups for comparison purposes.

Figure 7 illustrates the mean AUC values of the four tools for the 10 datasets. Meanwhile, Figure 8 plots the mean number
of genes for the four tools. As apparent in Figure 7, the AUC values of GeDiNET, CogNet, maTE, and PriPath for 10
different datasets for the top two clusters are nearly similar. Thus the performance of those tools is comparable. This
close performance indicates that the developed tool GediNET is consistent and robust. However, the outcome of each tool
is different as each one of those tools has its merit and its aim of detecting signi�cant groups related to speci�c pre-
biological knowledge. Interestingly it is to develop a tool that integrates the outcome of all those tools to shed light on a
new discovery.

Figure 8 implies that, on average, GediNET uses a 10-fold higher number of genes than other tools. This is due to the fact
that the groups of genes associated with the diseases are much higher than others.

One of the tool's outputs is a list of ranked disease groups that were assigned a p-value by the robust rank aggregation
package [40]. Table 6 is an example of this tool for the GDS1962 dataset.

Table 6. An output of the RobustRankAggreg tool for the GDS1962

GDS1962

Disease Name p-value #Genes List of genes

PAPILLARY RENAL CELL CARCINOMA 0.00052 22 SLC16A1, TAGLN2, TIMP3,
IGFBP7,...

PLASMA CELL NEOPLASM 0.0010 11 CD99, TP53, LPL, CD40,...

COMMON ACUTE LYMPHOBLASTIC LEUKEMIA 0.001772 3 KNG1, MME, BCL2

DUCTAL BREAST CARCINOMA 0.002363 13 TCF21, AFAP1L2, PLG,...

GASTRIC MUCOSA-ASSOCIATED LYMPHOID TISSUE
LYMPHOMA

0.002953 2 BCL2, EPCAM

INTRAHEPATIC CHOLANGIOCARCINOMA 0.003544 27 SHBG, BAX, TYMS, GPC3,...

LYMPHOMA, NON-HODGKIN 0.004135 44 BAX, SLC23A1, MME, TYMS, …

MALIGNANT NEOPLASM OF COLON STAGE IV 0.004725 7 TYMS, MYCN, KLK6, NDRG1, …

NEUROECTODERMAL TUMOR, PRIMITIVE 0.005316 14 SFRP1, PCSK2, MYCN, CAPS,...

PAPILLARY THYROID CARCINOMA 0.005907 75 BAX, PKHD1L1, MME, GPC3, …

This is a novel output of feature selection techniques that our tools provide. This table will be used to analyze the
relationship between the diseases further. For example, Table 6 raises a biological question about the association



Page 13/25

between the top-ranked disease (PAPILLARY RENAL CELL CARCINOMA, PLASMA CELL NEOPLASM, ..) and the target
disease of the study (data set GDS1962 with target disease Glioma ). Additionally, GediNET provides a list of signi�cant
genes that also was aggregated by the RobyutRankAgreg tool. While scoring each group, the gene associated with the
group is scored with the same score as the group. This list with its scores is aggregated at the end to compile and report a
list of signi�cant genes as described in Table 7.

Table 7. Top 10 signi�cant genes that were aggregated by the RobustRankAggreg tool for the GDS1962 dataset.

Gene p-value

GALNT13 0.0449

C1R 0.1448

NUP35 0.1482

KDELR2 0.1504

MCUB 0.1664

PHYHIPL 0.1673

GNAI3 0.1758

OXCT1 0.1774

ANXA2P2 0.1821

TUBB6 0.1824

The user can consider the list of signi�cant genes for functional and enrichment analysis as was done in similar studies
such as PriPath and miRmodulnet using different tools such as David [45], EnrichR [46], and GeneMANIA [47].

Biological Interpretations

One of the outputs of GediNet is a list of signi�cant diseases which had been scored by the S component, as illustrated in
Table 6. This list is ranked by p-value (ranked by RobustRankAggreg).

For all the 10 GEO datasets, the top 2 diseases and their set of genes were considered to perform pathway enrichment
analysis. Their total number of distinct genes is 1184.

The web tool, EnrichR [46] was used to perform the pathway enrichment. The tool was run to collect the top enriched
pathways for each disease-gene group per dataset, and the top pathways (with the least p-value) were selected.
WikiPathway database [48] version 2021 for human genes was used to select our results. The top cell signaling
pathways' names for the 10 GEO datasets, p-values, adjusted p-value, and associated genes are illustrated in Table 8.
Evidence from literature was then gathered for the dataset cancer and the top-performing disease, along with the enriched
genes and pathways found from the enrichment analysis.

Table 8: The top cell signaling pathways' names for the 10 GEO datasets. The first column is the name of
the cell signaling pathway, the second column is the p-values, the third column is the adjusted p-value, the
Genes column represents an example of the associated genes, and finally, the last column is the total
number of associated genes.
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Cell signaling pathways term P-
value

Adjusted P-
value

List of Genes #Genes

Head and Neck Squamous Cell
Carcinoma WP4674

2.24E-
13

6.31E-11 CCND1;CDKN2A; AKT1… 9

DNA damage response (only ATM
dependent) WP710

2.95E-
16

1.08E-13 GSK3B;SMAD4;CDKN1A,... 14

VEGFA-VEGFR2 Signaling
Pathway WP3888

1.66E-
10

6.37E-08 LRRC59;NRP2;PRKAA2;... 27

VEGFA-VEGFR2 Signaling
Pathway WP3888

1.05E-
11

2.59E-09 HSP90AA1;ANXA1;... 18

Lung �brosis WP3624 6.32E-
09

1.73E-06 GREM1;CSF3;IL6;PLAU;EGF;MUC5B;MMP9 7

IL-18 signaling pathway WP4754 2.33E-
17

1.05E-14 GSK3B;CEBPB;CXCL8;... 29

Effects of nitric oxide WP1995 2.93E-
05

0.00310457 NOS1;XDH 2

TP53 network WP1742 2.14E-
13

9.13E-11 CDKN1A;CDKN2A;MYC;... 9

Apoptosis WP254 1.88E-
06

4.25E-04 CASP10;MYC;PMAIP1;... 6

Hepatitis C and Hepatocellular
Carcinoma WP3646

5.41E-
12

2.07E-09 CDKN1A;IL6;CXCL8;... 10

Next, we used the Cytoscape tool [49] to visualize the correlation network between the cell signaling pathways with the
overlapping genes for all the top enriched pathways from the previous step. In total, we took the most 10 signi�cant
pathways that were enriched among the 20 disease-gene group pairs to visualize. Figure 11 represents the signaling
pathway networks with overlapping genes across different GEO datasets.

As we have stated, we examine 10 different GEO gene expression datasets, studying mostly different diseases. Figure 11
illustrates the most signi�cant pathways related to all given datasets, indicating that disease genes are correlated and
associated even when studying different diseases. The network in Figure 11 shows that GediNet discovers important
biological information related to various diseases. Moreover, We have studied the signi�cance of GediNet on the data
GDS3257 by considering the top 2 signi�cant diseases having 12 distinct genes. Figure 12 illustrates the network of the
most signi�cant pathways and their related genes.

Disease-Disease Associations
We assume that disease is represented by a set of genes. The simple approach for �nding a disease-disease association
is by applying different association indices that consider the number of shared genes between the two diseases. For
example, one might use the Jaccard Simpson, Geometric, Cosine, and even Pearson correlation coe�cient (PCC) [34,35].

Recently, different efforts toward Disease-Disease associations (DDA) are gaining attention for their importance in
exploring novel associations of diseases and enhancing knowledge of disease relationships, which could further improve
approaches to disease diagnosis, prognosis, and treatment. Yet, shared genes offer only limited information about the
relationship between two diseases.
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The number of known DDA and reliable associations is very small. Thus it suggests that more efforts are required for
DDA detections.

Disease-disease relationships through the incomplete human interactome [50] are computational approaches that derive
mathematical conditions for the identi�ability of disease modules and show that the network-based location of each
disease module determines its pathobiological relationship to other diseases.

Suratanee A, Plaimas K. [51] have developed a novel network-based scoring algorithm called DDA to identify the
relationships between diseases in a large-scale study. Their method is developed based on a random walk prioritization in
a protein-protein interaction network.

DisGeNET provides through its API disease-disease associations that have been obtained by computing the number of
shared genes and shared variants between pairs of diseases by source. DisGeNet uses two metrics to compute the DDA.

The �rst one is the Jaccard Index (JI)  , G1 is the set of genes associated with Disease 1, and G2 is the set
of genes related to Disease 2.

The second one is Jaccard variance , V1 is the set of variants associated with Disease 1, and V2 is the set
of variants associated with Disease 2.

In order to compute for each dataset the standard DDA in GediNET, we have computed the fraction of the number of
shared genes for each pair of the top-scored disease group for 4 datasets, as illustrated in Figure 13.

The suggested tool GediNET is different from the tools mentioned above in that it is based on machine learning for
detecting the relationships between diseases, Disease–disease association (DDA), which detects novel and not known
associations of diseases that might enhance knowledge of disease relationships, which could further improve
approaches to disease diagnosis, prognosis, and treatment. We have conducted a further analysis to explore if GediNet
suggests new unknown relationships between diseases using DisGeNET API.

Table 9 illustrates for each data set its three top detected diseases by DisGeNET API and the top 3 ranked diseases by
GeDiNET. For each detected disease by DisGeNet, we have looked up the disease in the list of ranked diseases by
GeDiNET to examine the two tools.

Table 9. illustrates the three top detected diseases by DisGeNET API and the top 3 ranked diseases by GeDiNET for each
GEO dataset. For each detected disease by DisGeNet, we have looked up the disease in the list of robust ranked
aggregated disease results by GeDiNET. The values in parenthesis for the rows of DisGeNET are the position of the
disease and the p-value assigned by GediNET.
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GEO Data Set/

Target Disease

The Data
Disease

Top 1 Disease name Top 2 Disease name Top 3 Disease name

GDS1962/

BrainStem
Glioblastoma

DisGeNET Recurrent Endometrial
Cancer

(#193, pv=0.16)

Adult Astrocytic Tumor

(#253, pv=0.22)

ALPHA-
THALASSEMIA/MENTAL
RETARDATION
SYNDROME,
NONDELETION TYPE, X-
LINKED

GediNET PAPILLARY RENAL CELL
CARCINOMA

PLASMA CELL
NEOPLASM

ADULT GLIOBLASTOMA

GDS2545/

Metastatic
prostate cancer

DisGeNET Metastasis from
malignant tumor of
prostate

(#25, pv=0.01)

Hormone refractory
prostate cancer

(#274, pv=0.34)

Secondary malignant
neoplasm of bone

(#62, pv=0.04)

GediNET CHILDHOOD
RHABDOMYOSARCOMA

RHABDOMYOSARCOMA SECONDARY
MALIGNANT
NEOPLASM OF LIVER

GDS2771/

Lung Cancer

DisGeNET Primary malignant
neoplasm of lung

(#50, pv=0.03)

Carcinoma of lung

(#97, pv=0.08)

Non-Small Cell Lung
Carcinoma

(#141, pv=0.14)

GediNET MANTLE CELL
LYMPHOMA

GASTROINTESTINAL
CARCINOID TUMOR

MUCINOUS
ADENOCARCINOMA

GDS3257/

Lung
Adenocarcinoma

DisGeNET Non-small cell lung
cancer recurrent

(#116, pv=0.11)

Adenosquamous cell lung
cancer

(#137, pv=0.15)

Adenocarcinoma,
metastatic

(#200, 0.22)

GediNET ACOUSTIC NEUROMA ADENOCARCINOMA OF
COLON

ADENOCARCINOMA OF
ESOPHAGUS

GDS4206/

Pediatric acute
leukemia
patients with
early relapse:
white blood cells

DisGeNET Childhood Leukemia

(#96, pv=0.13)

Melanoma

(#29, pv=0.03)

Glioblastoma
Multiforme

(#115, pv=0.18)

GediNET ACUTE LEUKEMIA ADULT DIFFUSE LARGE B-
CELL LYMPHOMA

ESOPHAGEAL
CARCINOMA

GDS5499/

Pulmonary
hypertension

DisGeNET Idiopathic pulmonary
hypertension

Vascular Diseases Endothelial dysfunction

GediNET CHOLANGIOCARCINOMA HEPATOCARCINOGENESIS PAPILLOMA

GDS3837/

Non-small cell
lung carcinoma
in female
nonsmokers

DisGeNET Primary malignant
neoplasm of lung

Carcinoma of lung

(#10, pv=0.009)

Neoplasm Metastasis

GediNET EARLY-STAGE BREAST
CARCINOMA

MENINGIOMA, BENIGN,
NO ICD-O SUBTYPE

COLORECTAL
CARCINOMA



Page 17/25

GDS4516_4718/

Colorectal
Carcinoma

DisGeNET Malignant neoplasm of
colon and/or rectum

(#3, pv=0.002)

Carcinogenesis Neoplasm Metastasis

GediNET ACUTE LEUKEMIA ACUTE LYMPHOCYTIC
LEUKEMIA

Malignant neoplasm of
colon and/or rectum

GDS2547/

Metastatic
prostate cancer

DisGeNET Metastasis from
malignant tumor of
prostate (#27, pv=0.02)

Hormone refractory
prostate cancer

(#91, pv=0.1)

Secondary malignant
neoplasm of bone

(#123, pv=0.18)

GediNET MALIGNANT NEOPLASM
OF LUNG

CARCINOMA OF BLADDER PROSTATE CARCINOMA

GDS3268/

Ulcerative Colitis

DisGeNET Crohn Disease In�ammatory Bowel
Diseases

Colitis

GediNET MALIGNANT NEOPLASM
OF THYROID

ADENOMATOUS
POLYPOSIS COLI

LEUKEMIA,
MYELOCYTIC, ACUTE

In Table 9, we have included additional information, the values in parenthesis for the rows of DisGeNET are the position of
the disease and the p-value assigned by GediNET. Interestingly, excluding just one disease, all the top three signi�cant
diseases detected by GediNET are novel. This suggests that the tool detects a new biological knowledge that the biology
researcher should consider.

Discussion And Conclusion
In this study, we have developed a novel approach for discovering disease-disease associations and detecting biomarkers
of genes associated with the disease.

The approach is based on grouping the genes by their disease association and then scoring those groups in terms of
classi�cation signi�cance to train the machine learning model. For example, if the given data is about a speci�c disease,
let's say lung cancer, then the model created from genes that are associated with groups of genes that are related to
different diseases will open a biological question about the relationship between those diseases. The traditional approach
of searching for genes that could be used as a biomarker in most cases yields a list of signi�cant genes that solve the
computational problem and does not take into account any prior knowledge about those genes, as such, their association
with diseases or even with other biological knowledge such as microRNA target (see maTE tool [29] ), or Pathways(See
CogNet tool [30] ), GeneOntology (See tool [34]).

Our tool is different in that the search for the signi�cant genes or biomarkers is among groups representing the genes
associated with the disease. The �nal list of genes is the disease-disease associations as presented in Fig. 2, right panel.
The knowledge of our tool is more speci�c and more direct to the relationship between different disease genes and the
target disease that is under study.

GediNET identi�es the relationships between diseases, Disease–disease association (DDA) based machine learning,
which explores novel associations of diseases that enhance knowledge of disease relationships, which could further
improve approaches to disease diagnosis, prognosis, and treatment. As we had shown before, GediNET discovered a new
unknown relationship between diseases based on the model G-S-M.
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Figure 1

Histogram frequency plot shows the number of genes associated with each disease, where the X-axis is the disease
name, and Y-axis is the number of genes.

Figure 2

The left panel illustrates the traditional approach that detects gene-disease associations, while the right panel illustrates
the disease-disease association as the output of GeDiNET.
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Figure 3

GeDiNET work�ow. The main work�ow for integrating biological information for grouping genes based on Disease-Gene
association is derived from the DisGeNET v7 database.
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Figure 4

An example of creating sub-data extracted according to disease-group names. These sub-datasets will be subject to the S
component for scoring.

Figure 5

GeDiNET Work�ow in KNIME

Figure 6

Expanded work�ow (meta-nodes) for GeDiNET.

Figure 7

The mean AUC values of GeDiNET, CogNet, maTE, and PriPath for 10 different datasets for the top two clusters.
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Figure 8

The mean number of genes of GeDiNET, CogNet, maTE, and PriPath tools for 10 different datasets for the top two
clusters.

Figure 9

Figure 11. Network visualization of the Gene interaction for the cell signaling pathway with overlapping genes for the 10
GEO datasets.

Figure 10

Figure 12. Network visualization of the cell signaling pathway with overlapping genes for the GDS3257 dataset.

Figure 11

Figure 13. An example of the DDA for 4 datasets in Gedinet where the number of shared genes for the top-scored disease
group is represented. The upper panel shows the DDA for GDS1962, GDS3257, GDS2771, and GDS5499 datasets. The
lower panel shows the annotations used in the DDA illustration formation.
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