Abu-Salih, B., Bremie, B., Wongthongtham, P., Duan, K., Issa, T., & Chan, K. Y. (2019a). Social Credibility Incorporating Semantic Analysis and Machine Learning: A Survey of the State-of-the-Art and Future Research Directions. Advances in Intelligent Systems and Computing, 927, 887–896. https://doi.org/10.1007/978-3-030-15035-8_87
Abu-Salih, B., Chan, K. Y., Al-Kadi, O., Al-Tawil, M., Wongthongtham, P., Issa, T., … Albahlal, A. (2020). Time-aware domain-based social influence prediction. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-0283-3
Abu-Salih, B., Wongthongtham, P., Chan, K. Y., & Zhu, D. (2019b). CredSaT: Credibility ranking of users in big social data incorporating semantic analysis and temporal factor. Journal of Information Science, 45(2), 259–280. https://doi.org/10.1177/0165551518790424
Abu-Salih, B., Wongthongtham, P., & Yan Kit, C. (2018). Twitter mining for ontology-based domain discovery incorporating machine learning. Journal of Knowledge Management, 22(5), 949–981. https://doi.org/10.1108/JKM-11-2016-0489
Ahmadvand, H., & Goudarzi, M. (2017). Using data variety for efficient progressive big data processing in warehouse-scale computers. IEEE Computer Architecture Letters, 16(2), 166–169. https://doi.org/10.1109/LCA.2016.2636293
Ahmadvand, H., Goudarzi, M., & Foroutan, F. (2019). Gapprox: using Gallup approach for approximation in Big Data processing. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-0185-4
Auletta, V., Ferraioli, D., & Savarese, V. (2020). Manipulating an election in social networks through link addition. Journal of Ambient Intelligence and Humanized Computing, 495–510. https://doi.org/10.1007/s12652-019-01669-5
Avnit, A. (2009). The Million Followers Fallacy. Internet Draft, Pravda Media. Retrieved from http://tinyurl.com/nshcjg
Awais, M., Hassan, S. U., & Ahmed, A. (2019). Leveraging big data for politics: predicting general election of Pakistan using a novel rigged model. Journal of Ambient Intelligence and Humanized Computing, (0123456789). https://doi.org/10.1007/s12652-019-01378-z
Bansal, B., & Srivastava, S. (2019). Lexicon-based Twitter sentiment analysis for vote share prediction using emoji and N-gram features. International Journal of Web Based Communities, 15(1), 85–99. https://doi.org/10.1504/IJWBC.2019.098693
Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new challenges. Information Fusion, 28, 45–59. https://doi.org/10.1016/j.inffus.2015.08.005
Bode, L., & Dalrymple, K. E. (2016). Politics in 140 Characters or Less: Campaign Communication, Network Interaction, and Political Participation on Twitter. Journal of Political Marketing, 15(4), 311–332. https://doi.org/10.1080/15377857.2014.959686
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and Regression Trees. Wadsworth and Brooks.
Buccoliero, L., Bellio, E., Crestini, G., & Arkoudas, A. (2020). Twitter and politics: Evidence from the US presidential elections 2016. Journal of Marketing Communications, 26(1), 88–114. https://doi.org/10.1080/13527266.2018.1504228
Budiharto, W., & Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1), 1–10. https://doi.org/10.1186/s40537-018-0164-1
Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms. ACM International Conference Proceeding Series, 148, 161–168. https://doi.org/10.1145/1143844.1143865
Cerón-Guzmán, J. A., & León-Guzmán, E. (2016). A sentiment analysis system of Spanish tweets and its application in Colombia 2014 presidential election. Proceedings - 2016 IEEE International Conferences on Big Data and Cloud Computing, BDCloud 2016, Social Computing and Networking, SocialCom 2016 and Sustainable Computing and Communications, SustainCom 2016, 250–257. https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.47
Cha, M., & Gummadi, K. P. (2010). Measuring user influence in Twitter: The million follower fallacy. Retrieved from http://en.scientificcommons.org/58470236
Cury, R. M. (2019). Oscillation of tweet sentiments in the election of João Doria Jr. for Mayor. Journal of Big Data, 6(1), 1–15. https://doi.org/10.1186/s40537-019-0208-1
Dietrich, B. J., & Juelich, C. L. (2018). When presidential candidates voice party issues, does Twitter listen? Journal of Elections, Public Opinion and Parties, 28(2), 208–224. https://doi.org/10.1080/17457289.2018.1441847
Gayo-Avello, D. (2012). No, you cannot predict elections with twitter. IEEE Internet Computing, 16(6), 91–94. https://doi.org/10.1109/MIC.2012.137
Gayo-Avello, D. (2013). A Meta-Analysis of State-of-the-Art Electoral Prediction From Twitter Data. Social Science Computer Review (Vol. 31). https://doi.org/10.1177/0894439313493979
Grimaldi, D. (2019). Can we analyse political discourse using Twitter ? Evidence from Spanish 2019 presidential election. Social Network Analysis and Mining, 1–9. https://doi.org/10.1007/s13278-019-0594-6
Heredia, B., Prusa, J. D., & Khoshgoftaar, T. M. (2018). Social media for polling and predicting United States election outcome. Social Network Analysis and Mining, 8(1), 0. https://doi.org/10.1007/s13278-018-0525-y
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression.
Huberty, M. (2015). Can we vote with our tweet? On the perennial difficulty of election forecasting with social media. International Journal of Forecasting, 31(3), 992–1007. https://doi.org/10.1016/j.ijforecast.2014.08.005
Jaidka, K., Ahmed, S., Skoric, M., & Hilbert, M. (2019). Predicting elections from social media: a three-country, three-method comparative study. Asian Journal of Communication, 29(3), 252–273. https://doi.org/10.1080/01292986.2018.1453849
Jungherr, A. (2016). Twitter use in election campaigns: A systematic literature review. Journal of Information Technology and Politics, 13(1), 72–91. https://doi.org/10.1080/19331681.2015.1132401
Jungherr, A., Jürgens, P., & Schoen, H. (2012). Why the pirate party won the german election of 2009 or the trouble with predictions: A response to tumasjan, A., sprenger, T. O., sander, P. G., & welpe, I. M. “predicting elections with twitter: What 140 characters reveal about political sentiment.” Social Science Computer Review, 30(2), 229–234. https://doi.org/10.1177/0894439311404119
Le, H. T., Boynton, G. R., Mejova, Y., Shafiq, Z., & Srinivasan, P. (2017). Revisiting The American Voter on Twitter, 4507–4519. https://doi.org/10.1145/3025453.3025543
Letsche, T. A., & Berry, M. W. (1997). Large-scale information retrieval with latent semantic indexing. Information Sciences, 100(1–4), 105–137. https://doi.org/10.1016/S0020-0255(97)00044-3
Manning, C. D., Schütze, H., & Weikurn, G. (2002). Foundations of Statistical Natural Language Processing. SIGMOD Record, 31(3), 37–38. https://doi.org/10.1145/601858.601867
Manning, C., & Raghavan, P. . (2009). Introduction to Information Retrieval. Computational Linguistics (Vol. 35). https://doi.org/10.1162/coli.2009.35.2.307
Marozzo, F., & Bessi, A. (2018). Analyzing polarization of social media users and news sites during political campaigns. Social Network Analysis and Mining, 8(1). https://doi.org/10.1007/s13278-017-0479-5
McCarey, F., Cinnéide, M. Ó., & Kushmerick, N. (2006). Recommending library methods: An evaluation of the Vector Space Model (VSM) and Latent Semantic Indexing (LSI). Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4039 LNCS, 217–230. https://doi.org/10.1007/11763864_16
McGregor, S. C., Mourão, R. R., & Molyneux, L. (2017). Twitter as a tool for and object of political and electoral activity: Considering electoral context and variance among actors. Journal of Information Technology and Politics, 14(2), 154–167. https://doi.org/10.1080/19331681.2017.1308289
Mehta, R. P., Sanghvi, M. A., Shah, D. K., & Singh, A. (2020). Sentiment analysis of tweets using supervised learning algorithms. Advances in Intelligent Systems and Computing, 1045, 323–338. https://doi.org/10.1007/978-981-15-0029-9_26
Miura, Y., Sakaki, S., Hattori, K., & Ohkuma, T. (2015). TeamX: A Sentiment Analyzer with Enhanced Lexicon Mapping and Weighting Scheme for Unbalanced Data, (SemEval), 628–632. https://doi.org/10.3115/v1/s14-2111
Molina-González, M. D., Martínez-Cámara, E., Martín-Valdivia, M. T., & Perea-Ortega, J. M. (2013). Semantic orientation for polarity classification in Spanish reviews. Expert Systems with Applications, 40(18), 7250–7257. https://doi.org/10.1016/j.eswa.2013.06.076
Morris, D. S. (2018). Twitter Versus the Traditional Media: A Survey Experiment Comparing Public Perceptions of Campaign Messages in the 2016 U.S. Presidential Election. Social Science Computer Review, 36(4), 456–468. https://doi.org/10.1177/0894439317721441
O’Connor, B., Balasubramanyan, Routledge, B. R., & Smith, N. A. (2010). From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series. Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media.
Patel, N. V., & Chhinkaniwala, H. (2019). Investigating machine learning techniques for user sentiment analysis. International Journal of Decision Support System Technology, 11(3), 1–12. https://doi.org/10.4018/IJDSST.2019070101
Perlich, C., & Simonoff, J. S. (2003). <Perlich_03a.pdf>, 4, 211–255. https://doi.org/10.1162/153244304322972694
Rathor, A. S., Agarwal, A., & Dimri, P. (2018). Comparative Study of Machine Learning Approaches for Amazon Reviews. Procedia Computer Science, 132, 1552–1561. https://doi.org/10.1016/j.procs.2018.05.119
Shin, J., Jian, L., Driscoll, K., & Bar, F. (2017). Political rumoring on Twitter during the 2012 US presidential election: Rumor diffusion and correction. New Media and Society, 19(8), 1214–1235. https://doi.org/10.1177/1461444816634054
Shmargad, Y., & Sanchez, L. (2020). Social Media Influence and Electoral Competition. Social Science Computer Review, 1–20. https://doi.org/10.1177/0894439320906803
Silva, G., Costa, M., Drummond, A., & Weigang, L. (2020). Predictive Model for Brazilian Presidential Election Based on Analysis of Social Media. Advances in Intelligent Systems and Computing, 1075, 46–53. https://doi.org/10.1007/978-3-030-32591-6_5
Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. Social Science Computer Review, 29(4), 402–418. https://doi.org/10.1177/0894439310386557
Vapnik, V. N. (1995). The nature of statistical learning theory. Springer-Verlag New York, Inc.
Verma, P., Khanday, A. M. U. D., Rabani, S. T., Mir, M. H., & Jamwal, S. (2019). Twitter sentiment analysis on Indian government project using R. International Journal of Recent Technology and Engineering, 8(3), 8338–8341. https://doi.org/10.35940/ijrte.C6612.098319
Villena, J., García, J., Martínez, E., & Jiménez, S. (2015). TASS 2014 - The challenge of aspect-based sentiment analysis. Procesamiento de Lenguaje Natural, 54, 61–68.
Volkova, S., Bachrach, Y., Armstrong, M., & Sharma, V. (2015). Inferring Latent User Properties from Texts Published in Social Media. Proceedings of the Twenty-Ninth Conference on Artificial Intelligence (AAAI), 4296–4297.
Wang, W., & Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324(1). https://doi.org/10.1088/1757-899X/324/1/012049
Welling, M. (2007). Fisher Linear Discriminant Analysis Max. 2007 9th International Symposium on Signal Processing and Its Applications, ISSPA 2007, Proceedings, (2). Retrieved from https://www.ics.uci.edu/~welling/teaching/273ASpring09/Fisher-LDA.pdf
Wongthongtham, P., & Salih, B. A. (2018). Ontology-based approach for identifying the credibility domain in social Big Data. Journal of Organizational Computing and Electronic Commerce, 28(4), 354–377. https://doi.org/10.1080/10919392.2018.1517481