Adejumo, S. A., Owolabi, M. O. & Odesola, I. F. 2016. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. African Journal of Agricultural Research 11(8): 661-673. https://doi.org/10.5897/AJAR2015.9895.
Akbar, F. M., Zafar, M., Hamid, A., Ahmed, M., Khaliq, A., Khan, M. R. & ur Rehman, Z. 2013. Interactive effect of cobalt and nitrogen on growth, nodulation, yield and protein content of field grown pea. Horticulture, Environment Biotechnology 54: 465–474. https://doi.org/10.1007/s13580-013-0001-6.
Ali, N., Farooq, M., Hassan, M. A., Arshad, M. S., Saleem, M. K. & Faran, M. 2018. Micronutrient seed priming improves stand establishment, grain yield and biofortification of bread wheat. Crop and Pasture Science 69(5): 479-487. https://doi.org/10.1071/CP18042.
Aziz, M. Z., Yaseen, M., Abbas, T., Naveed, M., Mustafa, A., Hamid, Y. & Ming-gang, X. U. 2019. Foliar application of micronutrients enhances crop stand, yield and the biofortification essential for human health of different wheat cultivars. Journal of Integrative Agriculture 18(6): 1369-1378. https://doi.org/10.1016/S2095-3119(18)62095-7.
Becker, M. & Asch F. 2005. Iron toxicity in rice—Conditions and management concepts. Journal of Plant Nutrition and Soil Science 168(4): 558–573. https://doi.org/10.1002/jpln.200520504.
Black, J. D., Forsyth, F. R., Fensom, D. S. & Ross, R. B. 1971. Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Canadian Journal of Botany 49(10): 1809-1815. https://doi.org/10.1139/b71-255
Bratton, B. O. & Henry, E. W. 1977. Electrical stimulation and its effects on indoleacetic acid and peroxidase levels in tomato plants (Lycopersicon esculentum). Journal of Experimental Botany 28(2): 338-344. https://doi.org/10.1093/jxb/28.2.338.
Breazeale, E.L., Mc George, W.T. & Breazeale, J.F. 1951. Nutrition of plants considered as an electrical phenomenon – a new approach. Soil Science 71: 371-375. https://doi.org/10.1097/00010694-195105000-00006.
Breazeale, E.L. & Mc George, W.T. 1953. Cation uptake by plants as affected by an applied potential. Soil Science 75: 443-448. https://doi.org/10.1097/00010694-195306000-00004.
Brown, P. H., Welch, R. M. & Cary, E. E. 1987. Nickel: A micronutrient essential for higher plants. Plant Physiology 85(3): 801-803. https://doi.org/10.1104/pp.85.3.801
Costanzo, E. 2008. The influence of an electric field on the growth of soy seedlings. Journal of Electrostatics 66(7-8): 417-420. https://doi.org/10.1016/j.elstat.2008.04.002
Dannehl, D., Huyskens-Keil, S., Eichholz, I., Ulrichs, C. & Schmidt, U. 2009. Effects of intermittent-direct-electric-current (IDC) on polyphenols and antioxidant activity in radish (Raphanus sativus L.) during growth. Journal of Applied Botany and Food Quality 83(1): 54-59.
Das, S. & Green, A. 2016. Zinc in crops and human health. In Biofortification of food crops, 31-40. New Delhi: Springer.
Escobar, R. F., Benlloch, M., Herrera, E. & Novelo, J. M. G. 2004. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Scientia Horticulturae 101: 39–49. https://doi.org/10.1016/j.scienta.2003.09.008.
Gogo, E. O., Huyskens-Keil, S., Krimlowski, A., Ulrichs, C., Schmidt, U., Opiyo, A. & Dannehl, D. 2016. Impact of direct-electric-current on growth and bioactive compounds of African nightshade (Solanum scabrum Mill.) plants. Journal of Applied Botany and Food Quality 89: 60-67. https://doi.org/10.5073/JABFQ.2016.089.007.
Grusak, M.A. 2001. Plant macro- and micronutrient minerals. In: Encyclopedia of Life Sciences. London: Nature Publishing Group.
Hajiboland, R. 2012. Effect of micronutrient deficiencies on plants stress responses. In: Abiotic Stress Responses in Plants, ed. A. Parvaiz and M. N. V. Prasad, 283–329. New York: Springer.
Hänsch, R. & Mendel, R. R. 2009. Physiological functions of mineral micronutrients (cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current opinion in Plant Biology 12(3): 259-266. https://doi.org/10.1016/j.pbi.2009.05.006.
Hirschi, K. D. 2009. Nutrient biofortification of food crops. Annual Revie of Nutrition 29: 401–429. https://doi.org/10.1146/annurev-nutr-080508-141143.
Kobayashi, T., Itai, R. N. & Nishizawa, N.K. 2014. Iron Deficiency Responses in Rice Roots. Rice 7: 27–38. https://doi.org/10.1186/s12284-014-0027-0.
Manivasagaperumal, R., Vijayarengan, P., Balamurugan, S. & Thiyagarajan, G. 2011. Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology 3(3): 53-62. http://updatepublishing.com/journal/index.php/jp/article/view/2227.
Olaleye, A.O., Tabi, A.O. Ogunkunle, A.O.,Singh, B.N. & Sahrawat, K.L. 2001. Effect of toxic iron concentrations on the growth of lowland rice. Journal of Plant Nutrition 24: 441–457. https://doi.org/10.1081/PLN-100104971.
Olsen, S., Cole, C., Watanabe, F. & Dean, L., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular Nr 939, US Gov. Print. Office, Washington, D.C. https://agris.fao.org/agris-search/search.do?recordID=US201300436954.
Osiname, O. A., Schulte, E. E. & Corey, R. B. 1973. Soil tests for available copper and zinc in soils of Western Nigeria. Journal of the Science of Food and Agriculture 24(11): 1341-1349. https://doi.org/10.1002/jsfa.2740241105.
Page, V. & Feller, U. 2015. Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy 5(3): 447-463. https://doi.org/10.3390/agronomy5030447
Plank, O.C. (1992). Plant Analysis Reference. Procedure. For Southern. US (SCSB # 368). Page 5. http://www.cropsoil.uga.edu/~oplank/sera368.pdf. (Accessed 10 August, 2020)
Ponnamperuma, F.N.; Bradfield, R. & Peech, M. 1955. Physiological disease of rice attributable to iron toxicity. Nature 175: 265. https://doi.org/10.1038/175265a0.
Portch, S. & Hunter, A. 2002. A systematic approach to soil fertility evaluation and improvement, Special publication No. 5, Hong Kong: Canpotex limited.
Rascio, N., Dalla Vecchia, F., La Rocca, N., Barbato, R., Pagliano, C., Raviolo, M. & Gabbrielli, R. 2008. Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environmental and Experimental Botany 62(3): 267-278. https://doi.org/10.1016/j.envexpbot.2007.09.002.
Stieger, P. A. & Feller, U. 1994. Nutrient accumulation and translocation in maturing wheat plants grown on waterlogged soil. Plant and Soil 160(1): 87-95. https://doi.org/10.1007/BF00150349.
Schmidt, W., Buckhout, T. J. & Thomine, S. 2019. Iron Nutrition and Interactions in Plants. Frontiers in Plant Science 10: 1670. https://doi.org/10.3389/fpls.2019.01670.
Trenkel, M. E. 1997. Improving fertilizer use efficiency-controlled release and stabilized fertilizer in agriculture (13 pp). IFA:Paris International Fertilizer Insdustry Association http://www.wnkgroup.com/Controlled-Release%20fertilizer%20in%20Agriculture.pdf. (Accessed 12 April, 2020)
Thor, K. 2019. Calcium—nutrient and messenger. Frontiers in plant science 10: 440. https://doi.org/10.3389/fpls.2019.00440.
Vose P.B. 1982. Iron nutrition in plants: A world overview. Journal of Plant Nutrition 5: 233-249. https://doi.org/10.1080/01904168209362954.
Walkley, A. & Black, I.A. 1934. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38. https://doi:10.1097/00010694-193401000-00003.
White, P.J. & Broadley, M.R. 2009. Biofortification of crops with seven mineral elements often lacking in human diets — iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182: 49-84. https://doi.org/10.1111/j.1469-8137.2008.02738.x.
WHO-Micronutrient deficiencies (2020). https://www.who.int/nutrition/topics/ida/en/. (Accessed 05 July, 2020)