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Abstract 

Contaminant source identification and hydraulic conductivity estimation are of great significance 

for contaminant transport model in the subsurface media, but their actual values are difficult to obtain 

and can usually be inversely identified and estimated by sparse observations. In order to reduce 

computational cost in the process of estimating groundwater model parameters, the surrogate model was 

often used. This study addresses this challenge by proposing a modified self-organizing map (SOM) 

based surrogate model, named ILUES-SOM, which combing a modified iterative ensemble smoother 

method (SGSIM-ILUES) and SOM algorithm, to simultaneously identify contaminant source parameters 

and hydraulic conductivity field. Considering the characteristics of the proposed method (ILUES-SOM), 

the comparison of parameter estimation accuracy and computational efficiency is performed with 

original SOM and SGSIM-ILUES inversion model. Moreover, the robustness of ILUES-SOM model for 

inversion was illustrated by proposing varying degrees of observation errors and missing early 

observation data. The results indicated that ILUES-SOM model can successfully retrieve unknown 

contaminant source simultaneously with heterogeneity hydraulic conductivity field in groundwater 

system. 
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1. Introduction 

Identifying the source of groundwater pollution is of great significance to groundwater remediation 

and management(He et al. 2021). However, the occurrence of groundwater pollution has the 

characteristics of concealment and discovery lag, and the number of groundwater monitoring wells is 

small, so it is often difficult to directly obtain pollution sources information and hydrogeological 

parameters(Prakash and Datta 2013). For this situation, the contaminant source information can be 

identified by groundwater inverse problem using sparse observations and site prior information, thus to 

restore the migration and transformation process of pollutants in groundwater (Atmadja and Ba Gtzoglou 

2001). In the inversion method for solving the groundwater inverse problem, data assimilation methods 

can combine dynamic data such as hydraulic head and site pollutant concentration in the groundwater 
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flow and pollutant transport model to reduce the uncertainty of aquifer parameters, and the updated 

parameters can improve prediction accuracy of groundwater numerical model (Bao et al. 2020). 

Among data assimilation algorithms, the ensemble Kalman filter (EnKF) (Evensen 1994) is widely 

used in the field of hydrogeological research due to its excellent performance (Kang et al. 2021; Li et al. 

2012; Schöniger et al. 2012). van Leeuwen and Evensen (van Leeuwen and Evensen 1996) proposed a 

variant of EnKF: ensemble smoother (ES). It has been shown that ES can obtain similar results to EnKF 

but with a much lower computational cost (Li et al. 2018)，and widely used in hydrogeology and reservoir 

research(Bailey and Baù 2010; Bailey et al. 2012; Lima et al. 2020). But when the system is highly 

nonlinear, iterative application of ES (IES) are needed (Chen and Oliver 2012). Ju et al. (Ju et al. 2018) 

improved the standard IES and proposed an iterative ensemble smoother algorithm based on Gaussian 

process, which further improved the computational efficiency；Cao et al. (Cao et al. 2018) coupled IES 

with multi-point geostatistical method to assimilate dynamic data into non-Gaussian aquifer. To improve 

the applicability and efficiency of IES for strongly nonlinear problems, Zhang et al. (Zhang et al. 2018) 

proposed a simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), 

to extend IES to inverse problems with multimodal distributions. Some studies have demonstrated that 

ILUES can significantly reduce the uncertainty of model parameters (Yang et al. 2020; Liu et al. 2021; 

Zhang et al. 2020).  

For high-dimensional problems, a large ensemble size and iteration number are required to 

guarantee reliable estimation of unknown parameters in ILUES, leading to a huge computational burden 

(Zhang et al. 2018). A effective method to improve computational efficiency is to use surrogate models 

(Asher et al. 2015). 

In recent years, with the enhancement of computer performance, the method of constructing 

surrogate models using machine learning (ML) has become increasingly popular (Chan and Elsheikh 

2020; Tang et al. 2020, 2021; Zhong et al. 2019). Among them, Hazrati et al. (Hazrati and Datta 2017a,b) 

used self-organizing map(SOM) to construct surrogate model and identify the intensity of pollution 

sources where the location of pollution sources were known and slight to mild heterogeneity of the 

aquifer was considered；On the basis of Hazrati et al. 's research, Xia et al. (Xia et al. 2019)further 

explored the effect and robustness of SOM-based surrogate model and identify pollution source 

parameters (location and release history) in more realistic case, the pollution source parameters were 

unknown and the heterogeneity was much stronger；Jiang et al. (Jiang et al. 2021) combined the 

dimensionality reduction idea of pilot points method and applied SOM algorithm to construct surrogate 

models for simultaneous identification of pollution sources and hydraulic conductivity field. 

As a data mining technology, SOM algorithm highlights the nonlinear relationship of data by 

transforming the original data (Penn 2005). The algorithm converts high-dimensional data into low-

dimensional by calculating the main features and correlation between the input data, which effectively 

improves the data processing ability and further improves the computational efficiency (Simula et al. 

1998). The surrogate model of contaminant transport constructed by the SOM algorithm, not merely 

replaced the complex original numerical model (groundwater flow and solute transport simulation 

model), but also had the ability to identify unknown model parameters, which meant that other 

aforementioned inverse solution methods such as data assimilation methods were no longer needed and 

a large computational cost was subsequently reduced (Jiang et al. 2021).  

Among the related researches on the above-mentioned SOM algorithm used for groundwater model 

parameter inversion, there are few researches on simultaneous inversion of pollution source parameters 

and hydraulic conductivity field. Furthermore, as a machine learning method, the quality of the training 



data is one of the important factors to determine the goodness of SOM-based surrogate model. In view 

of the fact that the data assimilation method can effectively integrate the physical model and observation 

data, thus generating sample data considering the observed data and complying with the pollutant 

transport model, does the SOM model based on this posteriori samples have better performance? This 

study tackled the above challenges via a modified SOM, constructed using posterior samples from 

ILUES algorithm. 

The remainder of this paper is organized as follows. Section 2 presents the detailed description of 

groundwater flow and the contaminant transport model. Section 3 outlines the framework of the proposed 

methodology. In Section 4, results obtained from numerical experiments are discussed. Section 5 

discusses different scenarios and analyzes the results. Some conclusions are given in Section 6. 

2. Problem Formulation 

The transport of contaminant in saturated aquifer may involve diffusion, advection, dispersion, 

absorption. In this study, advection and dispersion are dominated processes in a two-dimensional 

contaminant transport system under steady-state groundwater flow conditions.  

The governing equation for the steady-state groundwater flow can be written as follows: 

 
∂∂x
�𝐾𝐾 ∂h∂x

� = 0 (1) 

and the flow velocity v [LT−1] can be obtained by Darcy's law: 

 𝑣𝑣 = −𝐾𝐾θ 𝜕𝜕ℎ𝜕𝜕𝜕𝜕 (2) 

where h [L] is the hydraulic head; K [LT-1] represents the hydraulic conductivity; θ is effective 

porosity (dimensionless); The flow governing equation is solved by numerical simulator MODFLOW 

(Harbaugh et al. 2000). Then, the resulting velocity v is used as input for the advection-dispersion 

equation to calculate the contaminant concentration by MT3DMS (Zheng and Wang 1999). The 

advection-dispersion equation for a 2D saturated aquifer is: 

 

 ∂(𝑏𝑏𝑏𝑏)∂𝑡𝑡 =
∂∂𝜕𝜕 �𝑏𝑏𝑏𝑏 ∂𝑏𝑏∂𝜕𝜕� − ∂∂𝜕𝜕 (𝑏𝑏𝑣𝑣𝑏𝑏) +

𝑏𝑏𝑠𝑠𝑊𝑊θ  
(3) 

where t [T] is time; b [L] is the saturated thickness of aquifer; C [ML-3] is the concentration of the 

dissolved chemical species; Cs[ML-3] is the concentration of source or sink; W[LT-1] is the volumetric 

flux per unit area; D[L2T-1] is the hydrodynamic dispersion coefficient, determined by v, and longitudinal 

and transverse dispersivities (𝛼𝛼L and 𝛼𝛼T) [L]. 

3. Methodology 

The self-organizing maps (SOM) is a clustering algorithm proposed by Kohonen (Kohonen 1982), 

which consists of an input layer and an output layer representing the grid topology. Each neuron in the 

input layer is connected to the neuron in the output layer by a weight vector. The principle of SOM 

algorithm is as follows(Chaudhary et al. 2015)： 

Firstly, initialize the weight vector of each neuron in the output layer in a random or linear manner, 

and set the learning rate and the type of the neighborhood function, the neighborhood function is used 

for quantitatively describe the relationship between any neuron and surrounding neurons. Secondly, 

Euclidean distance (in Equation (4)) between the input training data and each weight vector is calculated. 

Neuron with the smallest Euclidean distance (the winner neuron) is activated together with neurons in 

the topological neighborhood (in Equation (5)), and their corresponding weight vector are adjusted to 

make them move to the training data. Repeat the above steps until the learning rate decays to zero. Finally, 



the network (the output layer with modified weight vector) is obtained to represent the topological 

relationship between training data, in which each neuron represents a cluster. 

𝑑𝑑𝑗𝑗(𝜕𝜕) = �(𝜕𝜕𝑖𝑖 − 𝜔𝜔𝑗𝑗𝑖𝑖)2𝐷𝐷
𝑖𝑖=1  

 

(4) 

where D is dims of input; 𝜕𝜕𝑖𝑖 is input data; 𝜔𝜔𝑗𝑗𝑖𝑖 is weight vector between neuron j and input data. 𝑇𝑇𝑗𝑗,𝐼𝐼(𝑥𝑥)(t) = exp (− 𝑆𝑆𝑗𝑗,𝐼𝐼(𝑥𝑥)
2

2𝜎𝜎(𝑡𝑡)2) 
 

(5) 

I(x) is the winner neuron; 𝑆𝑆𝑗𝑗,𝐼𝐼(𝑥𝑥) is distance between the winner neuron and neuron j; 𝜎𝜎 is a coefficient 

of decay with time. ∆𝜔𝜔𝑗𝑗𝑖𝑖 = 𝜂𝜂(𝑡𝑡) ∙ 𝑇𝑇𝑗𝑗,𝐼𝐼(𝑥𝑥)(𝑡𝑡) ∙ (𝜕𝜕𝑖𝑖 − 𝜔𝜔𝑗𝑗𝑖𝑖) (6) 

𝜂𝜂(t) is learning rate and decrease with time. 

For the trained surrogate model, the information contained in the neurons is called the map 

codebook. When using it for forward prediction or inverse source identification, the surrogate model 

determines the winner neuron by calculating the distance between the neuron and the input vector, and 

the data vector in the map codebook corresponding to the winner neuron is output. The flow chart of this 

study using the SOM surrogate model for prediction is shown in Fig. 1. A detailed explanation of the 

original SOM surrogate model can be found in the previous research work (Jiang et al. 2021; Xia et al. 

2019). 

 

 

 

Fig. 1 The schematic diagram for application of the constructed surrogate model 

The previous research work (Xia et al. 2019) has indicated that Imp SOM algorithm performs better 

than batch SOM in the construction of surrogate models for groundwater pollute transport. Besides the 

training algorithm, the hyperparameter such as map units was the most important parameter and 

determined by trial and error method (Jiang et al. 2021). Furthermore, the quantity and quality training 

data were also important factor to determine the quality of SOM-based surrogate model. With regard to 

the quantity of training data, almost all previous research had taken this into account, but as far as we 

know, there was almost no research on the quality of training data in SOM-based surrogate model. 

Considering that the ensemble-based data assimilation methods was the most widely used method 

for groundwater inverse problems and because of the similarity between the a priori/posterior set and the 

training data, the ensemble-based data assimilation method was adopted to improve the training data, 



then the surrogate model was constructed on the basis of posterior samples.  

The main procedures for constructing the modified SOM based surrogate model (ILUES-SOM) for 

the solute transport model are as follows.  

Step 1: Generaton of training and validation data.  

A large amount of training data is needed to obtain an accurate surrogate model. In this study, the 

training data for the SOM based surrogate model consists of the inputs and outputs of the original 

groundwater numerical model. The input is the pollution source parameter and the hydraulic 

conductivities at pilot points, where the pollution source parameter includes the location of the pollution 

source and the release concentration of pollutants in each stress period. The output is the pollutant 

concentration at the observation points.  

A modified iterative ensemble smoother (SGSIM-ILUES) proposed by Jiang et al. (Jiang et al. 2022) 

was adopted as the inversion framework to improve the training data. The SGSIM-ILUES method was 

based on the coupling of ILUES and sequential gaussian simulation (SGSIM) in geostatistics. Specially, 

the inversion of hydraulic conductivities was converted to the estimation of hydraulic conductivity at 

pilot points. The posterior samples from ILUES algorithm (1 iteration) was used as training data. In order 

to evaluate the accuracy of the surrogate model obtained, the same steps are used to generate the 

validation data, and the validation data is fixed to 500 groups in this study. A detailed explanation of the 

SGSIM-ILUES method can be found in the study (Jiang et al. 2022).  

Step 2: Training of the SOM based surrogate model.  

As mentioned, the codebook size (units) and the training data size (TDS) have significant impact 

on the performance of the SOM based surrogate model. Therefore, the number of units is set to 100, 500, 

1000, 1500, 2000, 2500, 3000, respectively, and the training data size is set to 500, 1000, 2000, 

respectively. After training multiple surrogate models, use the validation data to evaluate the accuracy of 

each candidate surrogate model, and select the optimal surrogate model for subsequent groundwater 

model parameter inversion. 

Step 3: Using the surrogate model to identify unknown values.  

Finally, the constructed ILUES-SOM based surrogate model can be used to estimate the missing 

components. Using the known observed true values, find the best matching unit (BMU) in the optimal 

ILUES-SOM based surrogate model, from which the estimated values of the groundwater model 

parameters can be retrieved, and then use the geostatistical method (i.e. SGSIM) to obtain the estimated 

hydraulic conductivity field, so as to complete the inversion of the pollution source parameters and the 

hydraulic conductivity field. 

4. Illustrative Example 

4.1 A hypothetical aquifer site 

In this study, advection and dispersion were dominated processes in a two-dimensional contaminant 

transport system under steady-state groundwater flow conditions. The hypothetical aquifer was saturated 

and confined aquifer with a 2D steady-state groundwater flow. Specifically, the aquifer size was 40 m in 

the x-direction and 20 m in the y-direction. The top and bottom boundary was no-flux. The constant 

hydraulic heads of 12 m and 10 m were the west and east boundary, and the aquifer thickness was 1 m. 

Values of model parameters are listed in Table 1.  

 

 

 

 



 

Table 1 Hydrogeological characteristics of the hypothetical aquifer 

Parameter Units Value 

Grid size m 0.5 × 0.5 

Aquifer thickness m 1.0 

Effective porosity - 0.30 

Longitudinal dispersivity m 2.0 

Transverse dispersivity m 0.6 

Simulation time day 40 

 

Considering the spatial heterogeneity, the reference hydraulic conductivity field (Fig. 2(a)) was 

lognormally distributed with mean =4.0 and variation = 0.5, and the correlation length along x-direction 

and y-direction were 8.0 m and 4.0 m, respectively. The reference hydraulic conductivity field was 

generated based on known hydraulic conductivity of hard data using SGSIM method.  

In this hypothetical aquifer, some amount of contaminant was released from a point source (Fig. 2(a) 

asterisk). A contaminant source is placed in this hypothetical aquifer. The contaminant source was 

characterized by ten parameters, i.e., Sx, Sy, SPi(MT-1) during the ith stress periods, for 𝑖𝑖 = 1, . . . ,8 as 

listed in Table 2. It is assumed that the possible location range of pollution sources (Fig. 2(a) Red dotted 

area) and prior range of pollution source (in Table 2) can be determined in the investigation of 

groundwater pollution sites.  

The simulation mode for MODFLOW and MT3DMS was steady-state and transient, respectively. 

The whole simulation time was 40 days, which was equally divided into 8 stress periods. There were 

twenty observation wells with their locations shown in Fig. 2(a) to gather observation head and 

concentration every four days, i.e., 𝑡𝑡 = 4,8,12. . . ,40. The number of pilot points in this study was fixed 

at 80, and the distribution is shown in Fig. 2(b). Consequently, 10 unknown contaminant source 

parameters and hydraulic conductivities at 80 pilot points need to be estimated. 

 

 

 

Fig. 2 (a)The reference hydraulic conductivity with location of contaminant sources and observation 

wells; (b)location of pilot points 1–80 

 

 

Table 2 Actual values of the contaminant source flux and prior range 

0 5 10 15 20 25 30 35 40

No-flow Boundary

X(m)

0

5

10

15

20

Y
(m

)

S
p

ec
if

ie
d

 H
ea

d
 B

o
u

n
d

a
ry

(1
2

m
)

S
p

ec
if

ie
d

 H
ea

d
 B

o
u

n
d

a
ry

(1
0

m
)

No-flow Boundary

0 5 10 15 20 25 30 35

No-flow Boundary

X(m)

0

2

4

6

8

10

12

14

16

18

Y
(m

)

S
p

ec
if

ie
d

 H
ea

d
 B

o
u

n
d

a
ry

(1
2

m
)

S
p

ec
if

ie
d

 H
ea

d
 B

o
u

n
d

a
ry

(1
0

m
)

0

1

2

3

4

5

6

lnK(m/d)No-flow Boundary

(a (b

  Contaminant sources     Observation wells 



Contaminant Parameter Prior range Actual value 

Sx [L] [1.25 10.25] 2.25 

Sy [L] [7.75 13.75] 10.25 

SP1(g/s) [35 75] 50 

SP2(g/s) [35 75] 48 

SP3(g/s) [30 70] 45 

SP4(g/s) [30 60] 40 

SP5(g/s) [25 55] 36 

SP6(g/s) [22 45] 30 

SP7(g/s) [15 30] 20 

SP8(g/s) [7 15] 10 

4.2 Assessment criteria 

In this study, the pollution source parameter (SS), hydraulic conductivities at pilot points (KPP) and 

observation values (OBS) in the validation data were regarded as missing parts, and these missing values 

were estimated by SOM based surrogate model. The normalized absolute error of estimation (NAEE) 

and root mean square error (RMSE) were used to evaluate the inversion results. The NAEE can 

quantitatively characterize the deviation degree between the estimated value and the actual value, which 

is defined as follows: 

 NAEE(%) =
∑ |(𝑑𝑑𝑒𝑒𝑠𝑠𝑒𝑒)𝑖𝑖𝑁𝑁𝑖𝑖=1 − (𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒)𝑖𝑖|∑ (𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒)𝑖𝑖𝑁𝑁𝑖𝑖=1 × 100 (7) 

RMSE can measure the degree of match between the estimated value and the actual value, and is 

defined as follows: 

 
RMSE = �∑ [(𝑑𝑑𝑒𝑒𝑠𝑠𝑒𝑒) − (𝑑𝑑𝑎𝑎𝑎𝑎𝑒𝑒)]2𝑁𝑁𝑖𝑖=1 𝑁𝑁  

(8) 

where dest is estimated value, dact is actual value, N is the number of values.  

In this study, NAEEss, NAEEKPP and NAEEOBS represent NAEE calculation results of pollution 

source parameters, hydraulic conductivities at pilot points and observation values, respectively. The 

surrogate model with the highest estimation accuracy (NAEE) of both pollution source parameters and 

hydraulic conductivities at pilot points was selected as the optimal surrogate model.  

5. Results and discussion 

Considering the characteristics of the proposed methodology (in Section 3), the construction of 

SOM surrogate models, identification of contaminant source and hydraulic conductivity field based on 

SOM surrogate model were carried out and organized into three subsections. 

(1) Firstly, the original SOM based surrogate model (S1) and the ILUES-SOM based surrogate 

model (S2) were constructed using randomly generated training samples and posterior samples from 

SGSIM-ILUES algorithm (1 iteration), respectively, and the optimal sizes of the codebook and training 

sample for SOM surrogate models were obtained. 

(2) Then, the unknown contaminant source and hydraulic conductivities at pilot points were 

identified based on surrogate model S1 and S2, and the better surrogate model was found by comparison. 

(3) Finally, the identification performance of the better surrogate model was evaluated in the 

presence of observation error and in the absence of observational data, respectively. 



5.1 SOM based surrogate model 

The first stage was to obtain the optimal sizes of the codebook and training sample for these two 

SOM based surrogate model (original SOM and ILUES-SOM), because their sizes greatly affected the 

accuracy and efficiency of the SOM based surrogate models. Specifically, the training data size was 500, 

1000, 2000 groups, respectively, and the codebook size of the SOM was set to 100, 500, 1000, 1500, 

2000, 2500, 3000, respectively. Their corresponding original SOM and ILUES-SOM based surrogate 

models were constructed. 

5.1.1 Original SOM based surrogate model 

The verification results (NAEEOBS, NAEESS, NAEEKPP) of the SOM surrogate models with different 

parameter (training data size, TDS; codebook size, Units) combinations were compared in Fig. 3. The 

NAEE of estimating OBS, SS and KPP were obviously decreased with Units (precision increased with 

increased Units, in Fig. 3(a, b, c)) except the estimation of OBS with TDS=2000. There were significant 

increasing trends of NAEEOBS, NAEESS, NAEEKPP with TDS (precision decreased with increased TDS). 

Note that the required CPU time is a crucial factor in addition to the model’s accuracy. The CPU time 

increased exponentially with codebook size (Fig. 3d), and the computational time for SOM based 

surrogate model (in Fig. 3d) was much smaller than the computational time for the physically based 

model (i.e. training data generation). 

After consideration of above-mentioned accuracy and efficiency, the optimal surrogate model is the 

codebook trained by the combination of TDS=500 with Units =3000. 

Fig. 3 Validation results and Training time of surrogate model S1: NAEE of (a) OBS, (b) SS, (c) KPP, 

(d) Training time 

5.1.2 ILUES-SOM based surrogate model 

Considering the improvement of training data can help improve the quality of surrogate model, 

posterior samples from data assimilation algorithm was adopted as training data for SOM based surrogate 
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model. Considering that the ensemble-based data assimilation methods such as ILUES algorithm usually 

meant higher computational burden, which increased nearly linearly with the iteration number, only one 

iterative SGIM-ILUES operation was performed in the proposed ILUES-SOM surrogate model. 

The verification results (NAEEOBS, NAEESS, NAEEKPP) of the trained ILUES-SOM based surrogate 

models were shown in Fig. 4. In comparison with Fig. 3, NAEEOBS, NAEESS, NAEEKPP have been 

significantly improved, which proved that ILUES-SOM surrogate model was superior to original SOM 

model. It can be seen that there were no significant variations of NAEEOBS, NAEESS, NAEEKPP with 

Units. As the validation results depicted in Fig. 4, when training data size was 500 groups and codebook 

size was 3000, the surrogate model had the highest inversion accuracy for the hydraulic conductivities 

at pilot points, and the inversion accuracy of pollution source parameters was also high. As selection 

principles suggested (in sect 4.2), the optimal surrogate model is the codebook trained by the combination 

of TDS=500 with Units =3000. 

 

Fig. 4 Validation results of surrogate model S2: NAEE of (a) OBS, (b) SS, (c) KPP 

5.2 Application for constructed SOM based surrogate model 

The unknown contaminant source and hydraulic conductivities at pilot points were identified based 

on surrogate model S1 and S2. For further comparison, the contaminant source and hydraulic 

conductivity field were identified by SGSIM-ILUES inversion model with Ne =2000 and Niter =8 (model 

O). 

The inversion results of the hydraulic conductivity field of the above-mentioned three models (O, 

S1, S2) were shown in Fig. 5. Compared with the reference log-transformed conductivity field, the 

SGSIM-ILUES inversion model (model O) has the best inversion result, and the two SOM based 

surrogate models have a relatively large error in characterizing low conductivity areas. After further 

comparison, the morphology of K-field depicted in model S2 was slightly better than that in model S1. 

To test the accuracy of SOM based surrogate model, the identified contaminant source information 
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from different inversion models were compared with the actual values. It can be seen in Fig. 6 that the 

estimation precision of ILUES-SOM (S2) was fairly high for both contaminant source location and 

source fluxes, and was close to that of SGSIM-ILUES (O). Further comparison of the inversion accuracy 

of model S1 and S2, model S2 was more accurate except the source flux at SP1. Fig. 7 showed the 

estimated values and estimated deviations of model S1 and S2. It was clear that the deviation bar of 

model S1 was much bigger than model S2, indicating that ILUES-SOM (S2) was the better model for 

estimating unknown contaminant source. 

Fig. 5 (a)The reference K-field; (b)-(d) The corresponding interpolated K-field based on estimated KPP 

of ILUES based on original model (O) and optimal surrogate models of S1, S2 

 

 

 

 

Fig. 6 Comparison of estimated SS by ILUES based on original model (O) and optimal surrogate 

models of S1, S2 
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Fig. 7 Error comparison of estimated source fluxes by optimal surrogate models of S1 and S2 

 

After a comparative analysis of the inversion performance of the two SOM surrogate models in 

terms of K-field and unknown contaminant source (SS), respectively, the performance of the two SOM 

models (S1, S2) and the ILUES inversion model (O) are synthesized by RMSE criteria (Table 3). 

Specially, for estimating SS and KPP, the inversion accuracy of model S2 was closer to that of ILUES 

inversion model, and clearly superior to that of model S1. 

 

Table 3 Comparison of RMSE and time cost of estimated SS and KPP by ILUES inversion model (O) 

and optimal surrogate models of S1, S2 

 RMSE 
Time consuming(s) 

 SS KPP 

O 1.22 1.20 157856 (43.85h) 

S1 4.52 1.87 3251.5 (0.90h) 

S2 1.81 1.33 21932.8 (6.09h) 

 

Table 3 showed the computation time for ILUES inverse model (O) and two SOM based surrogate 

model (S1, S2), where the computation time of ILUES inverse model (Ne =2000 and Niter =8) was 43.85 

hours. The computational time of the SOM based surrogate model mainly included the time to generate 

training data and the training time of the SOM model, where the former was the main computational 

burden. It should be noted that model S2 were constructed using posterior samples from SGSIM-ILUES 

algorithm (1 iteration), thus its time to generate training data included the time for initial sample 

generation and the time for 1 iteration of SGSIM-ILUES operation.  

As can be seen from Table 3, model S1 constructed based on the original data has the largest 

improvement in computational efficiency compared to model O by 97% (i.e., the computational time is 

reduced from 43.85h to 0.90h), but there were significant deviations in the inversion accuracy of the 

parameters (SS and KPP). Meanwhile, the computational efficiency improvement of model S2 was 

slightly lower than that of model S1, but also reached 86% (from 43.85 h to 6.09 h), and the inversion 

accuracy of the unknown model parameters was closer to that of the ILUES inversion model (SS and 

KPP). 

Considering the calculation accuracy and computational efficiency of the two SOM-based surrogate 

model, model S2 (ILUES-SOM model) was a better choice, which could not only ensure the parameter 
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inversion accuracy, but also significantly improve the computational efficiency. 

 

5.3 Further discussion  

As can be seen from the results of 5.1 and 5.2, model S2 not only showed better accuracy in the 

validation stage of surrogate model, but also had better performance in the parameter inversion stage. 

Considering that groundwater system was a complex system affected by many factors, there were various 

uncertainties, and in practical problems, the uncertainty of site information was mainly caused by 

incomplete observation data. In order to fully consider the actual situation, two scenarios were designed 

to further analyze the performance of the optimal ILUES-SOM surrogate. In scenario 1, a varying degree 

of observation error was introduced to test the robustness of the proposed ILUES-SOM surrogate model; 

and early observation data was missing in scenario 2 to complicate the identification process. 

Scenario1 

In this scenario, a varying degree of observation errors were introduced to test the robustness of the 

proposed ILUES-SOM model. These observation errors were generated by adding different degree of 

random errors to the numerically simulated concentrations (C) at observation wells. 

It is assumed that the random errors at the observation wells follow a normal distribution, where the 

arithmetic mean is zero and the standard deviation is 1.  𝑏𝑏′ = 𝑏𝑏 + 𝜀𝜀 × 𝑎𝑎 × 𝑏𝑏 (9) 

where 𝑏𝑏′  is the perturbed value; 𝜀𝜀  is a normally distributed random value; a is the error level of 

observation, and three error level with the values of 5%, 10% and 15% were chosen to estimate the effects 

of errors on parameter inversion.  

The inversion results of hydraulic conductivity field with varying degrees of noise in the 

contaminant concentrations were shown in Fig. 8. It can be seen that the estimated K-fields under 

different error level (error-free, 5%, 10%, 15%) were stable and slightly affected by error level (up to 

15%).  

The identification results of unknown contaminant source by the optimal ILUES-SOM model were 

shown in Table 4, and the inversion results were not significantly affected when the error level was below 

15%. Specially, for estimating SS and KPP, RMSE(SS) and RMSE(KPP) for the cases with different 

observation noise were almost stable and only slightly larger than that of the error-free case (Table 4). 

Therefore, the proposed ILUES-SOM based surrogate model was able to handle varying degrees of 

observation errors for identifying unknown contaminant source and estimating K-field. The identification 

error was stable when the observation errors range from 5% to 15%. 

 



 

Fig. 8 (a) The reference K-field; (b)-(d) The corresponding interpolated K-field based on estimated 

KPP of data with 5%,10% and 15%error 

 

Table 4 Comparison of actual and estimated SS using optimal surrogate models of S2. The last two 

lines are the RMSE for SS and KPP 

Stress period 

Source 

location (m) 

& Actual flux 

(g/s) 

 Estimated source flux (g/s) 

Data with error 

Missing data 
Error-free 5% error 10% error 15% error 

Sx 2.25 2.34  2.74  2.34  2.98  2.28  

Sy 10.25 10.35  10.77  10.35  10.42  10.78  

SP1 50 46.71  47.49  46.71  46.09  46.94  

SP2 48 49.96  48.25  49.96  49.84  49.63  

SP3 45 47.16  46.94  47.16  42.76  46.12  

SP4 40 41.90  41.29  41.90  38.20  41.92  

SP5 36 35.11  38.14  35.11  33.84  38.27  

SP6 30 32.44  32.73  32.44  29.43  32.61  

SP7 20 21.45  22.05  21.45  19.23  21.72  

SP8 10 11.02  11.52  11.02  11.71  11.16  

RMSE(SS) - 1.81  1.76  1.81  1.90  1.83 

RMSE(KPP) - 1.33 1.35 1.33 1.33 1.38 

Scenario 2  

In this section, the missing observation data for the first three observation time (𝑡𝑡 = 4,8,12) were 

considered, and the observation error level was set 5%. The inversion result of hydraulic conductivity 

field under incomplete observation data was shown in Fig. 9. In comparison to the reference K-field (Fig. 

9a), the major low and high conductivity zones were effectively captured by ILUES-SOM model (Fig. 

9b). 

The identification results of unknown contaminant source under incomplete observation data were 
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shown in last column of Table 4 and Fig. 10, it can be seen that the estimated values of contaminant 

source did not change significantly except for source flux in the 5th stress period. Specially, for estimating 

SS and KPP, RMSE(SS) and RMSE(KPP) were increased by 0.02 (from 1.81 to 1.83) and 0.05 (from 

1.33 to 1.38), respectively.  

Therefore, the proposed ILUES-SOM based surrogate model showed satisfactory performance 

when the early observation data were missing. The identified contaminant source with and without 

missing data were similar to the actual values, and the estimated K-field under incomplete observation 

data could depict the morphological characteristics of reference conductivity field.  

 

Fig. 9 (a) The reference K-field; (b)The corresponding interpolated K-field based on estimated KPP 

of missing data 

 

 

Fig. 10 Comparison of estimated SS by optimal surrogate models of S2 

6. Conclusions 

1. In this study, the proposed ILUES-SOM surrogate model was constructed for simultaneous inversion 

of hydraulic conductivity field and contaminant source parameters by combining the SGSIM-ILUES and 

SOM. Specifically, the inversion of hydraulic conductivity field was converted to the estimation of 

hydraulic conductivity at pilot points.  

2. Considering the estimation accuracy and computational efficiency of the two SOM-based surrogate 

model, ILUES-SOM model was a better choice, which could not only ensure the parameter inversion 
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accuracy, but also significantly improve the computational efficiency. This indicated that the quality of 

training data can efficiently improve the performance of SOM-based surrogate model. 

3. In terms of parameter inversion accuracy, ILUES-SOM model (1 iteration) was close to ILUES inverse 

model, but with significantly lower time cost. In other words, ILUES-SOM model has the qualities of 

fast inversion of SOM based surrogate model, while being able to achieve the inversion accuracy that 

can be achieved only by multiple iterations of ILUES inversion. 

4. The proposed ILUES-SOM surrogate model for contaminant transport showed remarkable robustness. 

Varying degrees of observation errors were added to the limited observation data, and the estimation 

performance was still well and stable when the error level was under 15%. Even though early observation 

data were missing, the estimation precision of contaminant source was almost the same as that without 

missing, and the estimated K-field also could depict the morphological characteristics of reference 

conductivity field.  
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