Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

Burrows-Wheeler Post-Transformation with
Effective Clustering and Integer Coding Through
Vectorization

Amit Kumar Yadav (& Kumaramit.ak2019@gmail.com)
Department of Electronics and Computer Engineering, Pulchowk Campus, IOE, TU, Nepal

Sanjeeb Prasad Panday (% sanjeeb@ioe.edu.np)
Department of Electronics and Computer Engineering, Pulchowk Campus, I0E, TU, Nepal

Research Article

Keywords: BWT, Integer Compression, Lossless Compression, Non-parametric coding, Non-statistical
Coding, Run Length Encoding, Move to Front coding, Vectorization

Posted Date: May 16th, 2022
DOI: https://doi.org/10.21203/rs.3.rs-1655438/v1

License: © ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1655438/v1
mailto:Kumaramit.ak2019@gmail.com
mailto:sanjeeb@ioe.edu.np
https://doi.org/10.21203/rs.3.rs-1655438/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 BTEX template

Burrows-Wheeler Post-Transformation with
Effective Clustering and Integer Coding
Through Vectorization

Amit Kumar Yadav!" and Dr Sanjeeb Prasad Panday'"

Department of Electronics and Computer Engineering,
Pulchowk Campus, IOE, TU, Kathmandu, Nepal.

*Corresponding author(s). E-mail(s):
kumaramit.ak2019@gmail.com; sanjeeb@ioe.edu.np;

Abstract

This research is mainly based on lossless integer Compression. In this
research one of the most renowned method called Burrows-Wheeler
transform (BWT) has been used. This method is used to sort data
reversibly. After this transformation, most of the repeated characters
come together. The result of BWT has been passed through Run Length
Encoder (RLE) module to get the Run characters, Run Length and
Run Character frequencies. The Run characters and Run Character
Frequencies have been passed through Move-to-Front (MTF) module
to get MTF number and final MTF list. Then the MTF number and
Run length, which are non-negative integers, have been sorted using
counting sort module. This module sorts the numbers according to the
Run characters. The result is non-negative integers which have been
coded using interpolative coding method. This method is also known as
Non-statistical and Non-parametric Coding. The data has been decom-
pressed using the same modules as compression but in reverse order. It
results lossless output. To implement vectorization big files are broken
into chunks and passed through each module, creating new processes.
So, it works in parallel. This method results speed boost exponentially
with file size while keeping compression factor intact if not better.

Keywords: BWT, Integer Compression, Lossless Compression,
Non-parametric coding, Non-statistical Coding, Run Length Encoding, Move
to Front coding, Vectorization

Springer Nature 2021 B TEX template

2 Article Title

1 Introduction

Computer memory, also known as a hierarchy of storage devices, ranges from
slow to fast and inexpensive to expensive. Disk and tape are said to be slow
and inexpensive whereas registers or CPU cache are considered as fast and
expensive. Running an application is directly dependent on accessing to slower
storage devices. Previously, when disks and tapes were considered slow, devel-
opers were focused on to optimize these devices only. Later, CPUs became so
fast that accessing to main memory became limiting factor or bottleneck for
many works. If the bandwidth requirement for accessing the main memory
can be reduced, then the speed to perform a task can definitely be increased.
Using data compression, the query performance can be improved (1).
Information theory is characterized as the study of efficient coding and its
outcomes, in the form of transmitting speed and possibility of error (2). Infor-
mation theory is the base on which compression algorithms have been built.
In a sense, we've come from ancient computing with limited memory and
bandwidth to modern mobile computing with limited memory and costly data
plans. Since the limitation of bandwidth and large size of contents, data com-
pression has become essential practice to perform to provide higher quality of
service in digital world.

Since the first publication in 1994, researchers in the lossless compression
field have been particularly interested in the Burrows Wheeler Transformation
(BWT) (3). Besides the theoretical interest of BWT, highly practical loss-
less compression schemes can use it as a basis. BWT-based schemes usually
compromise between the high compression rate of the prediction by partial
matching (PPM) method with the pace of dictionary-based methods such as
the variants Lempel-Ziv.

The compression process usually consists of two main parts: modeling and
coding. Modeling usually produces the input for coding, together with the
probability distribution, a set of (possibly transformed) items. The source
data is transformed in many modelling methods into a series of smaller inte-
gers which can be encoded more compactly than the original items (4). In
this research, the proposed method uses vectorization technique to compress/
decompress integer sequences. If the integers are small, the representation can
be done using short codes. For the modelling purpose, broadcasting technique
has been used. It makes modelling faster and computation less complex.

In this research, integer coding is proposed to perform through vectorization.
BWT uses necessary input symbols as the sort key to sort the data uniquely.
Similar data are grouped together creating a cluster. The data in same cluster
contains same character a number of times and only few symbols can be there
based on similar contexts (5).

This research is focused on implementing proper methods as post-
transformation stage to achieve better compression as well as implementing
proper preprocessing model to handle any kind of files. Also the main focus
of this research is to obtain better compression and decompression speed by
using non-parametric coding method. Since the output of post transformation

Springer Nature 2021 B TEX template

Article Title 3

is non-negative integer, non-statistical compression technique has been used
to compress the data. Also, it is expected to exploit the superscalar nature of
modern processors and Single instruction multiple data (SIMD) instructions
to achieve the goal (6). In previous work, Interpolative coding has been used to
code the data. It gives better compression but a lot slower than other schemes.
In this research it’s been tried to obtain an improved trade-off between com-
pression rate and time to encode/ decode using SIMD. This technique works
on multiple chunks in parallel (7).

In summary, this paper makes the following contributions:

e Using broadcasting technique in clustering, to model large set of data in
parallel

e Perform Vectorization of integer coding to achieve better compression in less
time

e Handle non-text files as well as large files with same proficiency

This paper is organized as follows. Section 2 introduces Related work of
Research. Section 3 describes Compression using Vectrorized processing.
Section 4 explains the setup and results. This section also explains some key
points of this research. Finally, we conclude this paper in Section 5.

2 Related Work

2.1 Burrows-Wheeler Transform

Bzip2 is one of the recent powerful software program for efficient data com-
pression. It is one of the best general purpose compression tool for text. The
base of this program is Burrows-Wheeler transform algorithm. The BWT algo-
rithm was introduced by Burrows and Wheeler in 1994 (3).

Since the output contains many repeated characters, it can be compressed eas-
ily. The remarkable thing about this transform is that it generates a string
which is easy to encode. It’s better than sorting because in sorting the reverse
process does not exist. But BWT allows the original document to be gener-
ated using the last column of data and index of original data.

The encoding algorithm changes the order of the symbols of source by manip-
ulating the entire source sequence. The original sequence of symbols can be
obtained by using decoding process. The permutation of all input sequence
of symbols is taken during encoding which results a new sequence containing
favorable features for compression.

2.2 Local-to-Global Transform

Compression is directly dependent on the context of the source. When
it changes, the symbol distribution within the BW transformed data also
changes. These changes can perform dramatic effect on the performance of the
algorithm. Using entropy coders to react to these changes cannot be enough
even when it is adaptive. For this reason, Local to Global Transform (LGT) is

Springer Nature 2021 B TEX template

4 Article Title

employed in most methods (4). The purpose of this stage is to transform the
local structure of the BWT output into global structure which can be consid-
ered more stable over the entire file.

In the original publication of BWT, Burrows and Wheeler suggested a recod-
ing method as LGT. They used Move-to-Front (MTF) as LGT. This method
converts a given input characters into integer denoting their last position and
move it to the front. It is described in more detail in next section. Many authors
believe that using this method is adding unnecessary complication. Some has
suggested to get rid of it to obtain better compression but at slower rate. The
major drawback of using MTF is that the contextual information is lost in
the way. But other authors have mentioned that MTF can represent a better
compromise between speed and compression rate.

2.3 Entropy Coding

Entropy coding is used as final stage in any BWT-based compression method.
In this stage the actual compression is performed. Huffman coder was used in
the original paper of Burrows and Wheeler as the final stage for encoding MTF
numbers. Later arithmetic coder was used to improve the compression rate.
In the recent research, Niemi A. and Teuhola J used interpolative coding to
encode MTF numbers (9). They implemented run length encoding and MTF
in this order and sorted their outputs based on run characters. It was then
coded using interpolative coding. In the decompression process the integers
were sorted using Move from Front module.

2.4 Integer Coding

The second and most important part of compression is coding. In this research
the model generates non-negative integers. To compress and store integer can
be costly to CPU. The main focus is on vectorization of integer coding algo-
rithm. Some work has been done in this domain. we have tried some renowned
methods to achieve expected results.

2.4.1 Variable byte and byte oriented coding

This coding is very popular. It is known under different names such as v-bytes,
variable-byte, vbyte, VInt, varint and var-byte. It codes the data in the unit
of bytes. The 7 lowest order bits of a byte is to store the original data and the
eighth bit is used to denote whether next bit is used to denote the same integer.
There are other variable byte encoding mechanisms like binary packing, the
simple family and patched coding (7).

2.4.2 Semi-fixed Length Coding

When the upper bound of an integer that needs to be coded is not a power of
two, Semi-Fixed length coding is used (8). It’s also called “truncated binary
coding” by Golomb. It is a prefix code which contains two code word lengths:

Springer Nature 2021 B TEX template

Article Title 5

n and n-1 bits. There are many number of possible assignments of semi-fixed-
length codewords to the n integers, but only the four shown in table 1 are used
as it is easily computable:

Table 1 Semi Fixed Coding

Number Low Short Mid Short High Short Mid Long

0 100 0000 0000 100
1 111 0011 0011 0000
2 0000 0100 100 0011
3 0011 0111 111 0100
4 0011 100 0100 0111
5 0100 111 0111 111

3 Methodology

The compression starts with an input file. In previous works, only text file has
been compressed. But in this research, the preprocessing algorithm handles
the file in different format and convert it into appropriate format for further
processing. Algorithm 1 shows the overall process.

Algorithm 1 BW Clustering Vectorization Coder

AN S

%

10:
11:
12:

Get input file from user

Perform preprocessing

Tune the data to adapt Vectorization

BWT (preprocessedData) = bwtIndex + TransData
RLEncoder(TransData) = runChar + runLen + runCharFreq
MTF (runChar, runCharFreq) = mtfNum + finalMtfState
Sort(mtfNum, runChar, runLen, runCharFreq) = sortedMtfNum + sorte-
dRunLen

b = encoder(bwtIndex)

b.append (encoder(finalMtfState))

b.append (encoder(runCharFreq))

b.append (encoder(sortedMtfNum))

b.append (ecoder(sortedRunLen))

The file content can be normal text file or binary file like images, spread-

sheet, mp4 etc. These files can’t be opened and treated the same. So, before
any process starts the files are categorized into binary vs non-binary files. Also
the files with different encoding than UTF-8 or UTF-16 are also treated as
binary files. The preprocessing algorithm is shown in algorithm 2:

6 Article Title

Springer Nature 2021 B TEX template

Algorithm 2 Preprocessing

: Get input file from user
: Check file size and split into chunks if necessary

. If step 3 fails, read file in binary format
: Return binary index, data

1
2
3: Try to read input file normal way (UTF-8 encoding)
4
5

The compression and decompression works in reverse fashion. For decom-
pression, same modules are used but in reverse order. In this research for
desorting the MTF numbers a reverse method has been used called Move-
From-Front (9). This name is given according to its work. It moves the data

from front to its original location using final mtf list.

Changing the context changes the symbol distribution in the BW-transformed
data. These changes directly affect the encoder performance. Even the Encoder
is adaptive, it may not react smooth enough to adapt such changes. To over-
come this effect, a method called Local-to-Global Transform is employed after

BWT. Each module is explained in detail in following sub-sections.

BWT Permutation Index

BWT
Run Char Frequency b e ruttion
- Index
: =11]
Run Chars MTF Final MTF =
> List = 4| compressed
=]
BWT =+ RLE] Header
MTF Num 1 - =
Sorted =
> MTF Num| &
= Compressed
Run Chars Sort Sorted Run - =+
> Data
Len
Fun Lengths
Fig. 1 Block Diagram of Compressor
| BWT index | 5
Run character \ DeSort
frequencies 830!
w &hard(ter»* w MTF numbers, run lengths
Final L — o
MTF list state L o= > aviiii Reverse-
23 i
Sorted = 8 =2
run-lengths E 5 > il Run lengths RLDecode
Sorted
MTF numbers >

Fig. 2 Block Diagram of Decompressor

Springer Nature 2021 B TEX template

Article Title 7

3.1 Vectorization of Input Files

In this research we have tried to compress and decompress big files using Vec-
torization method. This method lets us to exploit multiprocessing feature of
computers manually.

This technique is similar to MapReduce method. Big files are broken into
smaller chunks using splitter and each chunk is Mapped to parallel processes.
After the process is finished, the Mapper reduces the chunks into a single file.
It is used for both Compression and Decompression of bigger files.

So whenever a file bigger than 500Kb is used then it passes through Vector-
ization module and creates number of chunks. This also affects the symbol
distribution of a file. If a file contains repeated characters and splitted into
more than one file then compression won'’t be as good as if it is treated as
one file. But the plus side is, as the file size increases the compression rate
may go down but compression speed will be a lot faster than other traditional
methods. It is shown in figures 3 and 4.

~ .
Input Data — i 1.- CE \ L . Compressed Data
Splitter ’ Merger

Decoding Mechanism
,/-_
// ™,
& .
E A D 4
Compressed e N ecompresse
Splitter ,” Merger
> pd
-"""-—..,_‘ P //

Fig. 4 Decompression using Vectorization

Springer Nature 2021 B TEX template

8 Article Title

3.2 Run Length Encoder

The traditional way of run-length encoding has been used. The two-vector
approach has been used along with it i.e Run char and Run length. Due to
interpolative coder characteristics, run characters and their lengths are kept
separately. The run characters are converted into MTF numbers by using MTF
coder (10).

The RLE of our post-transformation method is shown in Figure 5. The run
character frequencies are also computed and stored in alphabetical order. The
MTF recoding uses this data to determine unique alphabets.

Input aabbaabbccdacddaadd
Run Characters a b a b c d acd a d
Run Lengths 2 2 2 2 2 1112 2 2
Run Character 4 2 23

Frequencies

Fig. 5 Example of run-length encoding of BWT output

3.3 Move-To-Front Coder

Each run character is converted to a number of distinct characters using MTF
since its last presence. The two-vector method of RLE lets decrement each
MTF number by one as it’s described in above section. Figure 6 shows a
descriptive example.

Run Character: ababcdacdada

MTF list State:

/b/d/ /‘/ /'d/d/'

b
d d a

= i H =Y

= 6
\

- 6

oo
(=T
oo

Proces sing Dn‘chon

Fig. 6 MTF of the Run characters

3.4 Clustering by reversible sorting

MTF numbers are small and run lengths are long for common characters while
it’s an opposite case for uncommon characters. The triples of [MTF number,
run character, run length] can be used to exploit this knowledge by clustering
it. It is done by using run characters (4). Also, it must be remembered that
the reversible operation of Clustering should be possible to recover the original

Springer Nature 2021 B TEX template

Article Title 9

Run Char: a b a b c d a c d a d
MTF Num: 05‘ 0 0 0 1 3
Run Len: 2 \ 2 2 2 2 1

Sorted d\L o [o [3,1f0 TJo
MTF

Sorted 2} (2 |1 [2.-120AME
Run Len

a b
Processig Direction

Y

Fig. 7 Sorting

triples. Two arrays are created as output by the encoder. The one output is
for MTF numbers and another output is for run lengths. In above section, we
have said that the arrays are divided into bins. Figure 7 shows that the bins
are implicit and the joined in alphabetic order. To show the next available
position, a pointer is used. Each pointer initially points to the start of the
respective bin. The triples, MTF number, run character and run length, are
evaluated from left to right. The current run character is used to sort the
current run length and MTF number. Finally, the pointers pointing to bin are
increased by one, maintaining the stability.

3.5 Interpolative Coding

For encoding the MTF output, Interpolative coding has been used. As disuc-
ssed in section 2, it is a type of semi fixed coding. In previous research (9),
different coding for leaf and nodes have been used. But in this research only
one coding called Mid Short coding has been used. In this method the short
codes are assigned to the middle integers and long ones are assigned to the
numbers near the edges.

Let’s say an array contains non-negative numbers.

A=256,8210,7,3

Interpolative coding requires to put these numbers in tree structure as follow:
The root is coded using universal coding such as gamma coding (4) and the
colored nodes are coded using semi fixed coder. As it can be seen the nodes
contains the sum of its children. As the number of integers increases, so does
the height of tree and the weight of each node. With increasing weight of
nodes, the bits require to encode also increases. It is coded as parent child
relationship using semi fixed coding.

Springer Nature 2021 B TEX template

10 Article Title

Fig. 8 Interpolative Coding

3.6 Move-From-Front Decoder

The decoder looks at the final state of MTF list and read the character at the
front of the list. Then it applies the process called desorting to next number
in the MTF list and Run length from the container or bin of that particular
character. It reads the MTF number and then moves the character downward
in MTF list by that number. This way it operates in reverse order than MTF
(9).

Run character frequencies are used by the decoder to reverse the sorting. Since
the decoder is operating in reverse order now, the pointer pointing to bins
are now set to point to the rear of sort bins. MTF list is updated as well as
bin pointer is decremented after desorting. This process continues as iterative
process and shown in figure 9.

MTFList: a b a b c d a ¢ d a d
b‘/ aA/ b ‘/ a / a a / d d/ c e ¢
C ¢ c c b b b b b b b
d d d d d I e a a d a
MTF Num: 0 0 0 3 0 3 3
Run Len: 2 2 2 1 2 2 2 X
N\ X 1
Sorted 0 0 0 3
MTF
Sorted T i 1 7 [1 2\ 2|
Run Len

Processing Direction

o
-

Fig. 9 Move From Front

Springer Nature 2021 B TEX template

Article Title 11
4 Results and Discussion

4.1 Experimental Setup

For testing purpose, Google colab has been used. The final program runs on
local machine. The local machine has 1 TB Hard disk, 6 GB Ram and Intel(R)
Core(TM) i5-6200U CPU @ 2.30GHz Processor.

For proper evaluation, the standard files have been used. Some of them are:
Calgary corpus, Canterbury Corpus, Artificial Corpus, Large Corpus, Misc
Corpus and some other standard files. The table 2 contains the corpus names
and their contents.

Table 2 Standard Corpus list

Corpus Number of Files
Calgary 19

Canterbury 12

large 3

misc 1

Princeton 5

These files are grouped into 4 classes: Small, Medium, Big and Bigger.They
are categorized according to their size range.

Table 3 File class and Size

Class File size Range

Small Less than 500 Kb
Medium 500 Kb to 1 Mb
Big 1 Mb to 5 Mb
Bigger More than 5 Mb

4.2 Read/ Write structure of files

The input file has been preprocessed using 2. The algorithm results a bit saying
whether the input file is a normal text file or not. This bit is called binary flag.
Then the file size is read to determine if splitting the file is required or not. So
another flag bit called split flag has been used. If file is split then each chunk
is passed through Encoding mechanism to process it. Otherwise, a single file
is passed. After preprocessing is done, then it’s been passed through BWT
module which results the transformed file.

This module does not perform the compression but it helps other modules to
compress data effectively. The index has been passed to final result as it is.

Springer Nature 2021 B TEX template

12 Article Title

First, it is converted into binary format along with the number of bits required
to represent it. So,

BwtHeader = Binarylindex + length(indexinbinary]

Then, the Transformed file has been passed through RLE module. This module
produces three intermediate files: Run chars, Run length, Run char frequency.
The Run chars are passed through MTF module which provides MTF list and
MTF Final State. The Run chars, MTF list and Run char frequency are passed
through sorting module. This module sorts the MTF list and Run chars to
provide effective clusters for compression. The Run char frequency and MTF
Final State are passed through encoder to generate Compression Header. The
compression data is made up of sorted MTF list and sorted Run length.

The encoder encodes every file in this format:

Inter EncodeData = EncodedData + lea f Len + lea f Bit + root

Since Encoder module does not know where to stop, the length of leaves are
also encoded along with the number of bits needed to represent it. The leaf
bit has been used to dynamically code the length of leaves instead of fixed
binary representation of leaves. The leaf bit is of 2 bit length which provides
the information of how many bits has been used to represent the length of the
leaf node. Since the output of Encoder module is self-explanatory, combining
the output of other intermediate is not a problem. The decompression process
starts in reverse order. First binary flag and split flag is taken care of then
the BWT index is taken care of using its leaf bit. Then the remaining file is
passed through Decoder module to list the intermediate files recursively. After
the intermediate files are generated they are passed through their respective
decoder modules to generate original file.

4.3 Structure of the output

The compressed file consists of compressed data and some extra information.
The main components are: the BWT permutation index, compressed header
containing mtf final list and run character frequency, and the last compo-
nent is compressed data containing sorted mtf list and sorted run char length.
All these components, except BWT permutation index is encoded with semi
fixed length encoder. The BWT permutation index is coded using byte coder
which uses a fixed byte to code. The leaf flag has been used to denote how
many bytes have been used for BWT permutation index. Since, the encoder
is non-statistical and non-parametric, the decoder decompresses each compo-
nent separately before starting MFF process. Only then Run length decoder
and BWT restore module runs. For most of the files the compressed header is
less than 1% of the total size. So, the overhead of the post BWT stage seems
reasonable. The data in figure 10 validates it.

Springer Nature 2021 B TEX template

Article Title

Intermediate Components bib Book2 Alice29.txt
BWT Index 16 bits 24 bits 8 bits

MTF Final list 657 bits 786 bits 602 bits
Run Char Freq 852 bits 1160 bits 812 bits
Sorted MTF numbers 145402 bits 807003 bits | 225284 bits
Sorted Run lengths 71352 bits 412865 bits | 110522 bits

Fig. 10 Component sizes of example output

4.4 Experimental Data

13

For testing and Validation purpose, standard corpus have been used. The
comparison is between previous related works (termed as Traditional method)
and proposed method termed as Vectorized Method. Compression Factor and
Compression Speed for different class of files are shown in below figures.

Files Compression
Factor

alice29.txt 3.606654177
asyoulik.txt 3.195950776
bib 4.075345225
cp.html 3.225353959
fields.c 3.580603725
geo 1.621202286
grammar.lsp 2.853527607
lcet10.txt 4.079983174
news 3.2576234
obj1 1.79979913
obj2 2.886544647
paperl 3.246473282
paper2 3.315812828
paper3 2.95515752
paperd 2.559922929
paper5 2.475460758
paper6 3.117738504
plrabn12.txt 3.368526648
progc 3.190575916
progl 4.663542277
progp 4.651375283
sum 2.708598952
trans 5.414956944
xargs.1 2.380067568

Fig.

Files Compression
Factor

book1 3.411892367

book2 3.999188189

pi.txt 2.010781812

pic 10.26616791

ptt5 10.26616791

Traditional Method

Compression Time

1.633629322
1.386314154
1.089112759
0.633303165
0.516620874
2.577129126
0.462763548
3.325102568
3.208414316
0.788921833
4.955744028
0.803879261
0.980376244
0.798863649
0.530577898
0.559498787
0.760961533
3.843715906
0.690184832
0.903580904
0.818808794
1.216745377
1.052181721
0.451788187

Decompression Time

0.603385687
0.537536621
0.399927616
0.104722023
0.079768419
1.044204712
0.03790164
1.592766047
1.557835102
0.23434186
1.599741697
0.277229309
0.373000622
0.242335558
0.081815243
0.081812143
0.237396479
2.212081194
0.205429077
0.219444513
0.161564589
0.322134972
0.458770275
0.04986763

Traditional Method

Time
6.281194687
4.727349281
10.19274664
26.80357528
24.20224404

Compression Decompression

Time
3.442791939
2.451440334
6.350999355
2.236017466
1.794199228

Proposed (Vectorized) Method

Compression
Factor
3.606654177
3.195950776
4.075345225
3.225353959
3.580603725
1.621202286
2.853527607
4.079983174
3.2576234
1.79979913
2.886544647
3.246473282
3315812828
2.95515752
2559922929
2.475460758
3.117738504
3.368526648
3.190575916
4.663542277
4.651375283
2.708598952
5.414956044
2.380067568

11 Result of Small Class Files (Size less than 500 Kb)

Compression Time

1.20377779
0.959430218
0.761961699
0.169548035
0.087795973
2.125315189
0.034907103

2.94312191

2.83039856

0.38098526

4.55879879
0.370992184

0.58643055
0.378985643
0.105717897
0.097737074
0.266269445
3.788858891
0.259303093
0.484702587
0.344069719
0.729035378
0.623364449
0.043885846

Decompression Time

0.718082428
0.595407486
0.500657558
0.1276896

0.063800097
1.121993303
0.026957273
1.645597219
1.706433773
0.255308867
1.667540789
0.232377768
0.399932146
0.240390539
0.098735809
0.085774422
0.209443569
2.403568745
0.202462435
0.28822875

0.169577599
0.274266243
0.268282175
0.032910824

Proposed (Vectorized) Method

Compression
Factor
3.257324808
3.831283438
2.009226367
10.26124163
10.26124163

Compression
Time
4.611659765
3.917514801
6.590366602
23.08925128
23.3235898

Fig. 12 Result of Medium Class Files (Size between 500 Kb to 1 Mb)

Decompression
Time
2.91756916
2.550177336
4.261595249
2.047487974
1.827134848

Springer Nature 2021 B TEX template

14 Article Title

Traditional Method Proposed (Vectorized) Method
Files Compression Compression Decompression Compression Compression Decompression
Factor Time Time Factor Time Time
bible.txt 5.214622721 28.12904954 14.06040668 4.715942934 12.87555051 7.822067976
E.coli 3.362656147 44.81708312 24.5902009 3.335356204 23.88908243 14.45332766

kennedy.xls 4.746260814 14.23989987 4.644572258 4.995944032 7.104990959 3.022898674
world192.txt 5.873706058 15.33898973 7.287499189 4.797343559 8.500255585 4.980671406

Fig. 13 Result of Big Class Files (Size between 1 Mb to 5 Mb)

4.4.1 Compression Factor

As we can see in figure 14 for small class files, the compression factor does not
differ in two methods. The reason behind this is because the files are smaller
than the chunk size defined. Hence both methods result same compression
factor.

The medium and large class files are bigger than 500 kb which is bigger than
our default chunk size. From the compression factor graph 15 and 16, it can
be seen that files have different compression factor between two methods. For
some files compression is better in traditional method. This happens when the
content of the file is repetitive. When it is processed together it can result
better compression but when it’s divided into smaller chunks, the repetition
of characters also breaks. So it results worse compression Factor.

Small Files (Size less than 500Kb)

Compression Factor
w

Y
FF S PR T FF S L L L F SRS S
D @¥ N & o @ K K K K KD F T &S
& & &« & & & & & E L b
O & Q\g

Files

==e==Traditional CF ==®==Vectorized CF

Fig. 14 Compression Factor of Small Class Files

Springer Nature 2021 B TEX template

Article Title 15

Medium Files (Size between 500Kb and 1Mb)

Compression Factor
= o
IS o o 5 s

o

bookl book2 pi.txt pic ptts

Files

emtemTraditional CF === Vectorized CF

Fig. 15 Compression Factor of Medium Class Files

Big Files (Size between 1 Mb to 5 Mb)

/

@

ol

Compression Factor
w IS

~

"

bible.tt E.coli kennedy.xls world192.tbxt

Files

—e—Traditional CF —#—Vectorized CF

Fig. 16 Compression Factor of Big Class Files

4.4.2 Compression Speed

The time taken to compress different class of files have been analyzed. As the
file size has increased the difference between time taken by Traditional method
and Vectorized method has also increased. Vectorized method results better
speed as we move from small class to big class files. Figures 17, 18, 19 shows
Compression time between traditional and vectorized method.

Figure 20 shows compression time vs Decompression time of Vectorized
method. We can see that Decompression speed is a lot faster than Compression
Speed.

Springer Nature 2021 B TEX template

16 Article Title

Small Class File (Size less than 500 Kb)

-

Compression Speed
r w

2 o S ©
S ‘i“@"\#{f Qéézq"s?@ S &S 4

Files.

Fig. 17 Compression Speed of Small Class files

Medium Class File (Size between 500 Kb to 1 Mb)

30

25

Y]
5]

Compression Speed
5 b

bookl book2 pi.txt
Files
m Traditional Method Compression Time m Proposed (Vectorized) Method Compression Time

Fig. 18 Compression Speed of Medium Class files

Big Class Files (Size between 1 Mb to 5Mb)
50

45

40
@ 35
E
=
= 30
2
B 25
g— 20
£
8 15
10
; . .
o
bible.txt E.coli kennedy.xls world192. txt
Files
m Traditional Method Compression Time m Proposed (Vectorized) Method Compression Time

Fig. 19 Compression Speed of Big Class files

Springer Nature 2021 B TEX template

Article Title 17

14

Seconds
=Y =] =]

=]

. T

Small Medium

W Compression Speed (Avg) W Decompression Speed [Avg)

Fig. 20 Compression Speed compared to Decompression Time

Springer Nature 2021 B TEX template

18 Article Title

5 Conclusion and Future Work

In this research, non-statistical coding method has been used to perform com-
pression. A better implementation of BWT method reduced time significantly.
The traditional method could not be used to compute because of memory over-
flow. But by using Suffix Array it’s only a matter of second to get preprocessed
data. Then, the only problem was traversing through the binary tree during
coding and decoding. Better implementation of this coding/ decoding method
could result faster and better result. The vectorization of integer coding has
been implemented. Handling bigger files as well as non-text file, it gave better
result than many other non-statistical algorithms available these days.

Up to now, most of the compression algorithm works serially. But the pro-
posed method works in parallel. Hence the compression/ Decompression speed
increases. Also it became easier to work with bigger files.

For future work, the partition of files can be handled with more care. The work
is based on Integer compression, so the compression factor is not good for all
files. The compression is slightly worse than statistical methods. But if the par-
tition of chunks can be handled carefully, this drawback can be removed. Also,
different encoding technique can be tested to improve speed and compression
factors.

Declarations

Acknowledgements. Not applicable.

Author Contributions. AKY:Envisioning the idea, defining the research
problem and contributing to the solution of the problem, and editing the paper.
SPP: Contributing to the solution of the problem and doing the implementa-
tion of the paper and editing the paper. All the authors of this paper have
collaborated and worked toward developing the paper and made significant
contributions to the paper.

Funding. Not applicable

Conflict of interest. The authors declare that they have no conflict of
interest.

Data availability. Yes, all related materials concerning this paper are
available with us and can be provided upon request.

Code availability. Yes, the code is available with us.

Springer Nature 2021 B TEX template

Article Title 19

References

1]

2]

Timothy Bell, Tan H Witten, and John G Cleary. Modeling for text
compression. ACM Computing Surveys (CSUR), 21(4):557-591, 1989.

Jukka Teuhola. Tournament coding of integer sequences. The Computer
Journal, 52(3):368-377, 2009.

Michael Burrows and David Wheeler. A block-sorting lossless data com-
pression algorithm. In Digital SRC Research Report. Citeseer, 1994.

Alistair Moffat and Lang Stuiver. Exploiting clustering in inverted file com-
pression. In Proceedings of Data Compression Conference-DCC’96, pages
82-91. IEEE, 1996.

Peter Fenwick. Burrows wheeler compression. Lossless Compression Hand-
book,pages 169-193, 2003.

Daniel Lemire and Leonid Boytsov. Decoding billions of integers per second
through vectorization. Software: Practice and Experience, 45(1):1-29, 2015.

Fabrizio Silvestri and Rossano Venturini. Vsencoding: efficient coding and
fast decoding of integer lists via dynamic programming. InProceedings
of the 19th ACM international conference on Information and knowledge
management,pages 1219-1228, 2010.

Alistair Moffat and Lang Stuiver. Binary interpolative coding for effective
index compression.Information Retrieval, 3(1):25-47, 2000

Arto Niemi and Jukka Teuhola. Burrows-wheeler post-transformation
with effective clustering and interpolative coding.Software: Practice and
Experience, 50(9):1858-1874, 2020.

[10] Borut Zalik, Domen Mongus, Niko Luka ¢, and Krista Rizman~Zalik.

Efficient chain code compression with interpolative coding.Information
Sciences,439:39-49, 2018.

	Introduction
	Related Work
	Burrows-Wheeler Transform
	Local-to-Global Transform
	Entropy Coding
	Integer Coding
	Variable byte and byte oriented coding
	Semi-fixed Length Coding

	Methodology
	Vectorization of Input Files
	Run Length Encoder
	Move-To-Front Coder
	Clustering by reversible sorting
	Interpolative Coding
	Move-From-Front Decoder

	Results and Discussion
	Experimental Setup
	Read/ Write structure of files
	Structure of the output
	Experimental Data
	Compression Factor
	Compression Speed

	Conclusion and Future Work
	Acknowledgements
	Author Contributions
	Funding
	Conflict of interest
	Data availability
	Code availability

