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Abstract: In response to the difficulty of detecting and classifying pests and vegetable and fruit 8 

leaves with pests and diseases, this study proposes a novel vegetable and fruit leaf pest detection 9 

method called deep block attention SSD (DBA_SSD) for the identification of pests and diseases 10 

and classification of the degree of pests and diseases of vegetable and fruit leaves. We propose three 11 

vegetable and fruit leaf pest detection methods, namely, squeeze-and excitation SSD (Se_SSD), 12 

DB_SSD, and DBA_SSD. Se_SSD fuses SSD feature extraction network and attention mechanism 13 

channel, DB_SSD improves VGG feature extraction network, and DBA_SSD fuses the improved 14 

VGG network and channel attention mechanism. To reduce the training time and accelerate the 15 

training process, the convolutional layers trained in the Image Net image dataset by the VGG model 16 

are migrated to this model, whereas the collected vegetable and fruit disease image dataset is 17 

randomly divided into training set, validation set, and test set in the ratio of 8:1:1. In addition, data 18 

enhancement methods, such as histogram equalization and horizontal flip were used to expand the 19 

image data. The performance of the three improved algorithms is compared and analyzed in the 20 

same environment and with the classical target detection algorithms YOLOv4, YOLOv3, Faster 21 

RCNN, and YOLOv4 tiny. Experiments show that DBA_SSD outperforms the two other improved 22 

algorithms, and its performance in comparative analysis is superior to other target detection 23 

algorithms. 24 

Keywords: disease detection; degree classification of disease; data enhancement; target recognition; 25 

SSD 26 

0 Introduction 27 

Fruits and vegetables are susceptible to various diseases, thereby affecting their quality and 28 

yield seriously. The formulation of prevention and control plans as soon as possible before the 29 

outbreak of the disease can maximize the effect of prevention and control and reduce economic 30 

losses. Therefore, the identification of vegetable and fruit diseases and insect pests is an effective 31 

way to inhibit the rapid development of diseases and avoid their occurrence. Previously, people used 32 

to experience subjective judgments by category crop diseases. However, the ability of this process 33 

to distinguish various diseases is limited, and it is time consuming. 34 

Agricultural detection based on artificial intelligence, such as crop yield prediction[1], weed 35 

identification processing[2], and pest and disease detection[3, 4]，is widely used with the development 36 

of artificial intelligence technology. Machine learning-based disease detection requires 37 

preprocessing the dataset, extracting the features of disease regions in the image using feature 38 

extraction algorithms, sending the obtained feature information to the classifier to obtain the model 39 

parameters, and obtaining the disease and pest categories and the degree of disease and pest of the 40 

object to be detected. However, the model generalization ability is weak because of the machine 41 

learning-based image recognition., When the number of categories is excessive, the features of each 42 

class cannot be distinguished effectively. Moreover, the categories can only be recognized in a 43 

specific image context. Thus, the needs of large-scale planting, based on which it is important to 44 



research a fast end-to-end vegetable and fruit leaf pest detection method, cannot be met. 45 

In recent years, deep learning algorithms based on convolutional neural networks (CNN)[5] 46 

have been widely used, and CNN have a large number of adjustable parameters[6]. It is very effective 47 

for real-life object detection, recognition and classification[7]. In the field of agricultural research, 48 

deep learning technology in agriculture includes crop/weed recognition, fruit harvesting[8], and plant 49 

recognition[9]. Similarly, recent studies have also focused on the identification of plant diseases. 50 

Some of the latest network models have been applied to the classification of plant diseases. In 51 

addition, some researchers have introduced deep learning algorithms to improve the performance 52 

of plant species disease classification. Longsheng Fu[10] proposed an orchard kiwi fruit target 53 

detection algorithm. According to the characteristics of kiwi fruit images, the 3*3 and 1*1 54 

convolutions were introduced into the YOLOv3-tiny[11] model, DY3TNet model was proposed and 55 

combined with R- CNN[12], YOLOv2[13] and YOLOv3-tiny are compared.The experimental results 56 

show that the improved DY3TNet model is small in size and high in efficiency. Guoxu Liu et al.[14] 57 

detected tomatoes based on the YOLOv3 model [15], combined dense structure for feature extraction, 58 

replaced  traditional R-Bbox with C-Bbox, matched the shape of the tomato, reduced the number 59 

of parameters, and compared YOLOv2 , and Faster RCNN[16]. Literature[17] proposed a tomato gray 60 

spot recognition method based on Mobilenev2[18] and YOLOv3 lightweight network model. This 61 

method improves the accuracy of tomato gray spot recognition by introducing GIOU regression loss 62 

function, and uses a pre-training method that combines hybrid training and migration learning to 63 

improve the generalization ability of the model. Literature[19] compared the performance of five 64 

networks, namely, AlexNet[20], VGG-16[21], ResNet-101[22], DenseNet-161[23], and SqueezeNet[24] 65 

for nutrient deficiency symptom identification based on the Deep Nutrient Deficiency for Sugar 66 

Beet dataset and discussed their limitations. 67 

Building a fast and high classification accuracy model is necessary to determine the detection 68 

quality of plant and fruit leaf diseases and insect pests. The current mainstream target recognition 69 

networks include YOLO series, Faster RCNN, SSD[25], and FPN[26]. The SSD target detection 70 

network uses an end-to-end method to regress features and extracts different levels of image features, 71 

which cover low-level and high-level semantic information. Previous studies have shown that the 72 

SSD network is fast. However, the direct application of SSD methods to detect vegetable and fruit 73 

pests and diseases cannot meet the high precision requirements in agricultural production. This 74 

paper proposes a fusion residual network and 1*1 convolution feature extraction module. It 75 

strengthens the feature extraction capability of SSD and improves the positioning and recognition 76 

accuracy of SSD for detecting vegetable and fruit pests. We also use data-enhancement to perform 77 

spatial transformation and pixel transformation on images, thereby not only improving the 78 

abundance of algorithm features, detection accuracy, and detection efficiency but also reduces the 79 

labor costs for agricultural fruit and vegetable pest detection. 80 

This study focuses on proposing a novel end-to-end pest detection algorithm called Deep Block 81 

Attention SSD (DBA_SSD) for vegetable and fruit leaves. Our main work and contributions are 82 

presented as follows: 83 

1. We proposed a novel end-to-end detection algorithm for plant and fruit leaf diseases and 84 

insect pests, DBA_SSD, by combining the attention mechanism and convolution kernel, which 85 

combines the attributes of the plant and fruit leaf disease and insect pest pictures and pay more 86 

attention to pest and disease details when testing fruit and vegetable leaves for pest and disease. 87 

2. We graded the health of the fruit and vegetable leaves. According to the research results 88 



of the paper, different measures can be taken according to the severity of the diseases of the fruit 89 

and vegetable leaves. Increasing the yield of fruits and vegetables is of great significance. 90 

3. We implemented the classic SSD, YOLOv4, YOLOv3, Faster RCNN, and YOLOv4 tiny 91 

models and compared them with our proposed DBA_SSD. Our method is better than the classic 92 

baseline method on the vegetable and fruit leaf data set. 93 

The main structure of this article is presented as follows. The first chapter mainly introduces 94 

the related work on the detection of leaf diseases and insect pests of fruits and vegetables and combs 95 

the detection technology of leaf diseases and insect pests of fruits and vegetables. The second 96 

chapter introduces the SSD model and related improvement modules and proposes two improved 97 

methods for the SSD target detection algorithm. The third chapter introduces the environment of 98 

algorithm experiment, data set structure, experiment procedure, and experiment evaluation standard. 99 

The fourth chapter conducts a comparative analysis of the results of the two sets of experiments and 100 

related ablation experiments on the proposed DBA_SSD. The other is a comparative analysis of the 101 

results of SSD improved algorithms and other target detection algorithms. Finally, we summarize 102 

and prospect the research in this article. 103 

1 Related work 104 

At present, the research methods on plant disease recognition mainly focuses on two aspects: 105 

one is disease recognition based on machine learning, and the general steps include diseased leaf 106 

image segmentation, feature extraction, and disease recognition; and the other is target recognition 107 

technology based on deep learning, wherein terminal end-to-end target detection is favored by many 108 

researchers because of its fast recognition speed and efficient feature extraction methods. 109 

In the research on the identification of vegetable and fruit diseases based on machine learning, 110 

Literature[27] proposed a DCNN-based apple tree leaf disease (ATLD) diagnosis method, and 111 

established 5 common ATLDs and healthy leaf data sets. The DCNN model combines DenseNet 112 

and Xception[28] models by using support vector machine to classify apple leaf diseases, the 113 

experimental results show that the accuracy of the DCNN model better than and comparing 114 

Inception-v3[29], MobileNet[30], VGG-16, DenseNet-201, Xception, VGG-INCEP. Shrivastava et 115 

al.[31] proposed a rice disease image classification by only method using color features, and explored 116 

the feature extraction methods of 14 different color channels. They obtained 172 different color 117 

channel feature information and used 7 different classifiers. The performance is compared, and the 118 

result shows that the classification accuracy of the support vector machine classifier is up to 94.65%. 119 

Literature[32] introduced a hybrid method for detecting plant leaf diseases and insect pests. The first 120 

stage corresponds to the image enhancement and image conversion scheme to overcome the 121 

problems related to low illumination and noise. The second stage combines the feature extraction 122 

technology of GLCM, complex Gabor filter, Curvelet, and image moments. The third stage uses the 123 

extracted features to train the nerve fuzzy logic classifier, and the proposed combination of feature 124 

extraction and image preprocessing can improve classification accuracy. Abdulridha[33] used 125 

hyperspectral imaging and machine learning to develop a technique for detecting pumpkin powdery 126 

mildew in the asymptomatic, early, middle, and late stages. This method uses a radial basis function 127 

to treat the disease. Strains and healthy strains were distinguished, and the severity of diseased 128 

strains was classified. Abdu[34]  129 

proposed a method for identifying the surface of plant diseased leaves, extracting optimized 130 

features from the diseased area, and identifying plant diseased leaves based on a feature-based 131 



machine learning classifier. The diseased features are connected in series to form a pathological 132 

feature vector for disease recognition to improve detection accuracy. 133 

 134 

In deep learning-based research on fruit and vegetable diseases, Salma Samiei[35] u used red 135 

clover and alfalfa as research objects and proposed CNN-LSTM models combined with denoising 136 

algorithms to classify the different growth stages of two different plant species. Based on high-137 

resolution remote sensing data, Alin-Ionut, Ples, oianu et al.[36] and others proposed an integrated 138 

deep learning model for individual tree crown detection and species classification. Mohamed 139 

Kerkech et al.[37] proposed a new method of grape disease detection based on the SegNet[38] 140 

architecture for visible light and infrared image segmentation to identify shadows, ground, healthy 141 

and symptomatic vines, and finally merge the segmentation obtained from visible light and infrared 142 

images to generate the whole disease map of grapes. Literature[39], a U-Net method for pixel-level 143 

purple rapeseed segmentation was proposed to calculate the model parameters by adjusting the 144 

sample size. In the literature[40], a new thermal imaging method was proposed to calculate the color 145 

similarity problem between unripe citrus fruits and leaves, which were prone to temperature 146 

differences between fruit and leaf surfaces because of the varying rates of temperature change 147 

between the fruit and leaf surfaces caused by water mist and to build a deep learning model based 148 

on the thermal imaging system. Meanwhile, the disease detection algorithm is moving towards 149 

lightweight, thereby making deploy into embedded devices easy. Chongke Bi[41] proposed a 150 

lightweight method for apple leaf disease identification based on MobileNet model. This method 151 

was also compared with ResNet152 and InceptionV3. The method can provide stable recognition 152 

results and is easily deployed in mobile devices. Utpal Barman[42] compared MobileNet CNN and 153 

Self-Structured CNN (SSCNN) based on citrus disease dataset from smartphone images. The 154 

experiments show that SSCNN is more accurate in classifying citrus leaf diseases based on 155 

smartphone images and takes less computation time. After research, increasing number of scholars 156 

tend to detect plant diseases using deep learning-based target detection methods, especially YOLO, 157 

SSD, and other target detection algorithms represented by one-stage methods, which omit tedious 158 

machine learning steps, such as image preprocessing, segmentation, and feature extraction, in a one-159 

step end-to-end method with high recognition accuracy. Therefore, this paper explores the 160 

effectiveness of target detection algorithms for vegetable and fruit leaf disease detection and grading 161 

by using SSD as baseline method. 162 

2 Novel end-to-end method for leaf disease detection of fruits and vegetables  163 

2.1 SSD Network 164 
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Fig. 1 SSD backbone network structure 166 

The SSD algorithm model is a one-stage real-time target detection model proposed 167 

simultaneously with YOLO series. SSD combines the one-stage regression prediction idea of the 168 

YOLO series and the Anchor Box mechanism of the Faster RCNN by using VGG as the base feature 169 

extraction network and extracting six different size feature layers from the bottom to the top layer 170 

as the regression prediction features. The advantage of SSD is that it improves the operation speed 171 

of the algorithm greatly while maintaining the detection accuracy. Moreover, the detection of small 172 

targets and large objects are considered. Figure 1 shows the SSD backbone network structure. 173 

 The loss function of SSD contains log loss for classification and smooth L1 for regression, and 174 

controls the proportion of positive and negative samples, which can improve the speed of 175 

optimization and the stability of training results. The total loss function is the sum of the errors of 176 

classification and regression.    is used to adjust the weight between the confidence loss and 177 

location loss, default =1, and N denotes the total number of default boxes that eventually match with 178 

Ground Truth boxes. Confidence loss is a typical softmax loss, and location loss is a typical smooth 179 

L1 loss. 180 
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Total loss: 
1

L(x,c,l,g)= ( ( , ) ( , , ))conf locL x c L x l g
N

+  (1) 

Classified 
losses: 

0

confL ( , ) log( ) log( )ˆ ˆx
N

pp

ij i i
i Neg i Neg

x c c c
 

= − −    
exp( )

exp( )
ĉ
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Although SSD adopts the direct regression prediction of the full-roller machine and no longer 182 

generates candidate frames, which greatly improves the detection speed of the SSD network, the 183 

SSD algorithm will miss and mis-detect when facing similar surface features and leaf occlusion 184 

situations, which often occur in actual leaf disease detection. For this reason, SSD needs to be 185 

improved to enhance feature recognition. 186 

2.2 Squeeze-and Excitation SSD (Se_SSD) Network 187 

Se_Block[43] mainly focuses on the relationship between channels and can explicitly model the 188 

interdependencies between feature channels with the structural unit "Squeeze-and Excitation (SE)" 189 

module, which adaptively adjusts the feature response values of each channel and internal 190 

dependencies between channels. The Se_Block module works as shown in Fig.2, First, feature 191 

compression is performed along the spatial dimension of the feature map, and each two-dimensional 192 

feature channel is turned into a real number, that has a global perceptual field to a certain extent. 193 

The output has the same number of dimensions as the input feature channels. Then, based on the 194 

correlation between the feature channels, a weight is generated for each feature channel to represent 195 

the importance of the feature channels. Finally, the original features are re-calibrated in the channel 196 

dimension by multiplying the channel-by-channel weights onto the previous features. 197 



AdaptiveAvgPool2d
Conv2D

ReLU

Conv2D

Sigmoid

X 

K*X
KX 

 198 

Fig. 2 Se_Block Attention Module 199 

To increase the feature extraction capability of SSD feature extraction model and focus more 200 

on the feature layers with higher importance, this paper adds Se_Block attention mechanism module 201 

in front of the last six effective feature layers used for regression prediction on the basis of SSD 202 

model. The feature layers are rescaled by channel dimension. The structure of Se_SSD network is 203 

shown in Fig.3. 204 
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Fig.3 Se_SSD network structure 206 

2.3 DBA_SSD Network 207 
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Fig. 4 (a) Residual network module and (b) 1*1 convolution 208 

The residual network module, which is a module with good application in the last two years, 209 



is shown in Figure 4(a). X is the input feature map, Wi is the weight of the ith layer network, F( X, 210 

Wi) + X is the feature output, and F( X, Wi) + X is how the data are computed in the module. The 211 

residual network is superior to the traditional convolutional network. The residual network module 212 

implements an ultra-deep network and avoids the bottleneck problem of saturating the neural 213 

network with correctness due to continuous deepening. In addition, by directly connecting the input 214 

and output to achieve the goal of simplifying the learning objective and difficulty. 1*1 convolution 215 

[46] is shown in Figure 4(b), and 1*1 convolution is usually followed by a nonlinear layer of Relu 216 

for nonlinearization to learn more features. In addition to this 1*1 convolution's can change the 217 

dimensionality of the image and transform the original image by 1*1 convolution to improve the 218 

generalization ability to reduce overfitting, and at the same time reduce the computational effort by 219 

boosting and reducing the number of channels to achieve cross-channel information interaction and 220 

feature integration in the process. 221 
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combining residual network and 1*1 convolution; (b) Deep_Block_Attention, a feature extraction 223 

module adding an attention mechanism to (a)) 224 
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Fig.6 DBA_SSD network structure 226 

As shown in Figure 5, two kinds of rich feature extraction modules are designed in this paper, 227 

as shown in Figure 5(a), Deep_Block is used to enhance the network feature extraction capability 228 

by using 1*1 convolution to reduce the number of channels after convolution, fusing multi-channel 229 

information, while introducing a residual structure to prevent the loss of feature layer information. 230 

Deep_Block_Attention adds a channel attention mechanism at the end of the Deep_Block structure 231 

for fine-tuning at the channel level. As shown in Figure 5(b), the feature extraction network of SSD 232 

is reconstructed with the rich feature extraction module as the basic feature extraction unit, as shown 233 

in Figure 6, to deepen the feature extraction of each layer and increase the richness of feature 234 

learning by the rich feature extraction module. 235 

3 Experimental environment and experimental design 236 

3.1 Experimental environment 237 

This experiment is a deep learning model built under the Pytorch deep learning framework, 238 

using a dataset of 3000 vegetable and fruit leaves, and the final output prediction frame identifies 239 

the leaf species and determines the severity of leaf disease. The experimental environment uses 240 

AMD Ryzen 7 4800H processor, NVIDIA GeForce RTX 2060 graphics card, 32G RAM, and 241 

Pytorch deep learning framework. 242 

3.2 Dataset 243 

Benefiting from the convenience and simplicity of Labelimg, this experiment uses Labelimg 244 

software to label the dataset and obtain data in VOC format for training, with label files as .xml files 245 

and pictures as .jpg files. The dataset of the experiment has 3000 images, which are divided into 5 246 

major categories: Apple, Tomato, Potatoes, Strawberry and Chili; each major category is divided 247 

into 3 subcategories according to the severity of leaf disease: healthy, general, and severe. In total, 248 

15 subcategories are noted, and the image resolution is around 255*470*3 pixels. The ratio of test, 249 

train, and val in the total data set is 1:8:1. Figure 7 shows the composition of the data set. 250 
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Fig.7 Data set composition structure 252 



3.3 Experimental design 253 

 To ensure the equalization of the dataset and to increase the richness and quality of the dataset, 254 

data enhancement and image preprocessing were performed on the images before the experimental 255 

tests[44]. The means of enhancement are Histogram Equalization, Horizontal Flip + Hue Saturation 256 

Value, Vertical Flip + Channel Shuffle, Horizontal Flip + Vertical Flip+ Channel Shuffle. The 257 

enhanced images are shown in Figure 8, with each of the 15 classes expanded to 1,000 images, and 258 

the number of data sets expanded from 3,000 to 15,000, with the training, validation, and testing 259 

ratios randomly assigned according to 1:8:1. 260 

Among them, Histogram Equalization is a means of image pixel processing that serves to bring 261 

out the objects with insignificant contrast. It is essentially a grayscale transformation that spreads 262 

concentrated grayscale intervals over the entire grayscale interval. It is a nonlinear transformation. 263 

A digital image histogram with a gray level in the range [0, L-1] is a discrete function of. 264 

 𝑠𝑘 = ∑ 𝑛𝑗𝑛𝑘
𝑗=0      k = 0, 1, 2, … 𝐿 − 1 (5) 

where n is the sum of the pixels in the image, is the number of pixels in the current gray level, 265 

and L is the total number of possible gray levels in the image. Color histogram equalization is the 266 

fusion of each of the three channels of the image after equalization. Histogram equalization is 267 

performed on the dataset considering the presence of blur and insignificance in the dataset. 268 
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Fig. 8 Data Enhancement 270 

To better test the performance of the improved algorithm, four experiments were designed. 271 

Se_SSD with channel attention mechanism added at the end of the feature extraction network, 272 

DB_SSD (Deep Block SSD) with improved VGG feature extraction network, DBA_SSD with 273 

fusion of the improved VGG network and channel attention mechanism, and SSD of the original 274 

network are compared, and the VGG model trained on Image Net image dataset is trained by 275 

migrated convolutional layers to this model. 276 

Experiment 1: The Se_SSD network with the Se_Block channel attention mechanism added is 277 

trained and the average accuracy of this network for the detection of fruits and vegetables leaves is 278 

tested. 279 

Experiment 2: The DB_SSD network with the Deep_Block module added is trained in the 280 

environment and hardware conditions of Experiment 1, where the Deep_Block module does not 281 

contain the attention mechanism, and the effect of the network with the added attention mechanism 282 

on the detection of fruits and vegetables leaves is tested. 283 

Experiment 3. The DBA_SSD network with the Deep_Block_Attention module added, and the 284 

Deep_Block_Attention module containing the attention mechanism, i.e., the SSD network with both 285 

improved structure and added attention mechanism, is trained and tested under the environment and 286 

hardware conditions of Experiment 1. 287 

Experiment 4. The original SSD network is trained and tested under the environment and 288 

hardware conditions of Experiment 1. 289 



All the four experiments were trained on the basis of 15,000 vegetable and fruit pest leaf 290 

datasets and tested 1500 randomly selected images. The experiments followed the experimental 291 

flow in Fig.9, the experiment-comparison-optimization-experiment pattern, to obtain the average 292 

accuracy mAP under this model and to compare the mAP values of different models. 293 

Making 

labels for 

datasets

Dataset Training

Labelimg

标签制作

Plotting 

the loss 

graph

绘制loss图

Plotting the 

mAP diagram

Comparison 

of results

Network structure 

and parameter tuning

绘制MAP图

Optimal 

structure

Image space 

transformation

Image pixel 

processing

Enhancement

 294 

Fig.9 Experimental flow 295 

3.4 Performance Evaluation Metrics 296 

 Precision is a measure of the accuracy of a model's prediction, and its value is equal to the 297 

number of correctly predicted positive samples over the total number of positively predicted samples. 298 

Recall (Recall) is a measure of the model's ability to identify positive samples, and its value is the 299 

number of correctly predicted positive samples over the total number of positively predicted samples. 300 

The prediction results of the model are shown in Table 1 for  TP, FP, FN, and TN. 301 

Table 1 Confusion matrix 302 

 True class 

Predict class 

TP 

True Positive 

FP 

False Positive 

FN 

False Negative 

TN 

True Negative 

True Positives (TP): indicates the number of correctly identified positive samples; True 303 

Negatives (TN): indicates the number of correctly identified negative samples; False Positives (FP): 304 

indicates the number of incorrectly identified negative samples; False Negatives (FN): indicates the 305 

number of incorrectly identified positive samples. 306 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (6) 

 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁      (7) 

    The PR curve is a graph drawn with Recall as the horizontal axis and Precision as the vertical 307 

axis; Precision is negatively correlated with Recall, and the recall rate decreases as precision 308 

increases. AP (Average Precision) as a single category indicator is the integration of PR curve. 309 

 AP = ∫ 𝑝(𝑟)10 𝑑(𝑟)   (8) 

The value of mAP(mean average precision), as one of the important metrics for the evaluation 310 



of the whole model, is the average of the summation of all the category APs. 311 

 mAP = ∑ 𝐴𝑃(𝑛)𝑁𝑛=1𝑁   (9) 

where n is the category and N is the total number of categories. 312 

4. Analysis of experimental results 313 

4.1 DBA _SSD model experimental comparison analysis 314 

The first 50 Epochs were trained by freezing some of the network layer weights, and each batch 315 

was trained with 8 images. For the last 50 Epochs, the frozen layers were unfrozen and the full 316 

network was trained. The learning rate started at 5e-4, and after unfrozen the learning rate was 1e-317 

4. Fine tuning of the model parameters was performed. As shown in Figure 12, the horizontal 318 

coordinate is the number of Epochs trained, and the vertical coordinate is the loss value at the end 319 

of training for each Epoch. different line shapes indicate different improvement algorithms. As 320 

shown in Figure 11, the loss value of the model decreases as the number of iterations increases. The 321 

loss values in the training log gradually stop changing around 90 - 100 Epoch. The red thin solid 322 

line in the figure indicates the loss value of DBA_SSD, whose value is lower compared with the 323 

loss of SSD, Se_SSD, and DB_SSD algorithms. 324 

 325 

Fig.11 SSD and its improved algorithm loss variation graph 326 

The test results between SSD and its improved algorithm are shown in Table 2. DBA_SSD has 327 

the highest accuracy because Deep Block strengthens the network's feature extraction ability on the 328 

one hand, and it incorporates the channel attention mechanism to accelerate the network learning 329 

on the other hand, so that the network focuses on the channels with high information content for 330 

feature learning.The prediction accuracy between its SSD and its improved algorithm for predicting 331 

different species of fruit and vegetable diseases is shown in Figure 12. The prediction accuracy of 332 

DBA_SSD is relatively high among most of the categories, and the mAP value of DBA_SSD is 333 

92.20%, while the mAP values of SSD, Se_SSD, and DB_SSD are 9.96%, 90.77%, and 89.93%, 334 

respectively. 335 

Table 2 Comparison of accuracy of improved SSD algorithm 336 



Target identification 
methods 

Inserted modules mAP 

SSD \ 89.96% 

Se_SSD  Se_Block 90.77% 

DB_SSD  Deep_Block 89.93% 

DBA_SSD Deep_Block_Attention 92.20% 

 337 

Fig.12 AP diagram of SSD and its improved algorithm for the detection of different kinds of 338 

diseases 339 

Further observe the data distribution of the experimental results in Figure 13. The horizontal 340 

coordinates indicate the improved algorithm types, the vertical coordinates are the distribution of 341 

predicted AP values for the 15 types, the points of the triangle indicate the mean, and the thin solid 342 

line in the middle of the rectangle indicates the median. From Figure 13, we can see that among the 343 

four algorithms SSD, Se_SSD, DB_SSD, and DBA_SSD, DBA_SSD prediction accuracy is more 344 

concentrated. Moreover, the median and mean are the highest. DBA_SSD algorithm has better 345 

performance compared with other improved algorithms. 346 



 347 

Fig.13 Box diagram of SSD and its improvement algorithm 348 

4.2 Comparative analysis with classical target detection algorithms 349 

This experiment compares and analyzes the test results of the classical target detection 350 

algorithms YOLOv4[45], YOLOv4 tiny[46], Faster RCNN, and YOLOv3. This experiment is 351 

conducted with the same dataset in the same experimental environment, and its Loss variation of 352 

each algorithm is shown in Figure 14. 353 

 354 

Fig.14 Target detection algorithm loss diagram 355 

Each vegetable and fruit plant leaves in this paper can be classified into three categories 356 

according to the degree of disease, which are healthy, general and severe (Table 3). Figure 15 then 357 

averages the detection accuracy of the same leaves on the basis of Table 3. The prediction accuracy 358 

of this category is the average of the sum of the prediction accuracy of the three degrees of leaves. 359 

Therefore, its horizontal coordinates indicate different target detection algorithms, and its vertical 360 

coordinates indicate the average prediction accuracy and the total average prediction accuracy (mAP) 361 

of different kinds of fruits and vegetables leaves. 362 

Compared with DBA_SSD, YOLOv4 has lower prediction accuracy for Strawberry and Chili, 363 



YOLOv4 tiny has weaker prediction ability for Tomato, and YOLOv3 has lower prediction accuracy 364 

for Strawberry. This is  the learning difference caused by different algorithms of feature extraction 365 

networks focusing on different information of the learned images, and DBA_SSD solves this 366 

deficiency by covering all levels of semantic information. The rightmost column indicates the 367 

average detection accuracy of the DBA_SSD algorithm in different categories, with the highest 368 

classification accuracy of 100% and the lowest of 82.24%. 369 

Table 3 Comparison of the accuracy of the improved SSD model and other target detection 370 

algorithms for the detection of different kinds of diseases 371 

 Algorithm 

Category 

YOLOv4 YOLOv4 
tiny 

YOLOv3 SSD Faster 
RCNN 

DBA_SSD 

Apple(general) 94.79% 78.32% 88.87% 83.45% 74.85% 91.83% 

Apple(health) 100.00% 99.78% 94.83% 100.00% 100.00% 99.73% 

Apple(severe) 82.27% 88.01% 90.71% 88.93% 88.20% 91.56% 

Chili(general) 73.99% 92.32% 81.60% 83.89% 90.54% 90.65% 

Chili(health) 98.75% 100.00% 100.00% 100.00% 100.00% 99.12% 

Chili(severe) 73.74% 72.70% 91.55% 83.94% 100.00% 88.86% 

Potatoes(general) 92.71% 89.41% 88.37% 80.35% 88.65% 92.72% 

Potatoes(health) 94.74% 100.00% 100.00% 100.00% 99.80% 100.00% 

Potatoes(severe) 98.08% 91.18% 89.32% 87.46% 82.88% 82.24% 

Strawberry(general) 63.52% 80.89% 59.83% 80.69% 73.48% 85.37% 

Strawberry(health) 99.52% 100.00% 100.00% 100.00% 100.00% 100.00% 

Strawberry(severe) 67.46% 76.44% 78.95% 84.11% 92.64% 95.07% 

Tomato(general) 85.70% 85.64% 95.81% 82.85% 85.02% 85.54% 

Tomato(health) 100.00% 94.58% 100.00% 100.00% 89.14% 91.67% 

Tomato(severe) 80.35% 64.31% 78.24% 93.69% 86.33% 88.65% 

mAP 87.04% 87.57% 89.21% 89.96% 90.10% 92.20% 

 372 

Fig.15 Heat map of correlation between different target detection algorithms and vegetable and 373 



fruit leaf types 374 

Figure 16 shows that YOLOv4 corresponds to the largest rectangular box area, and its upper 375 

quartile edge is close to 100%, indicating the existence of a certain number of prediction accuracies 376 

higher than 95%. However, its predicted category accuracy is more discrete. YOLOv3 has a smaller 377 

rectangular area, but its distance at the top of the rectangle is not as far as DBA_SSD, indicating 378 

that the number of its higher accuracy is not as high as DBA_SSD. Although the upper quartile line 379 

of SSD is in contact with the 100% line, its rectangle area is larger, indicating that the prediction 380 

accuracy varies widely and is unstable. The rectangle box area of DBA_SSD is the smallest among 381 

other algorithms, indicating that the prediction accuracy is more concentrated and is closer to the 382 

100% line, suggesting that a large part of the prediction accuracy is high and the prediction of each 383 

kind is more stable. The experiment shows that the DBA_SSD model has a high accuracy rate for 384 

the recognition of fruit and vegetable leaves, and the SSD is a one-stage target recognition algorithm 385 

with the advantage of fast recognition speed. The comprehensive performance of DBA_SSD has 386 

been improved compared with the previous SSD, and the performance is also higher compared with 387 

other target detection algorithms. The detection effect is shown in Fig.17. 388 

 389 

Fig.16 Box plot of AP statistics under target detection algorithm 390 

 391 

 392 



 393 

 394 

 395 

Fig.17 DBA_SSD recognition effect 396 

5 Summary and Outlook 397 

 This paper discusses the work related to vegetable and fruit pest leaf detection, which augments 398 

the dataset with spatial transformation, as well as pixel processing on top of the original one. To 399 

address the problem wherein the recognition rate of the SSD model is not high and the detail 400 

information is not paid attention to, which resulted in high accuracy and incorporated 1×1 401 

convolution, residual network and attention mechanism into the SSD algorithm, the DBA_SSD 402 

network model for vegetable and fruit leaf pest detection is proposed to compare and analyze the 403 

experimental effect of multiple sets of classical target detection algorithms in vegetable and fruit 404 

leaf health detection. It makes the SSD algorithm improve to 92.20% on the original basis with high 405 

robustness and speed. In this paper, we mainly performed research on vegetable and fruit pest 406 

identification algorithms, but a gap for the application of target detection algorithms in actual 407 

production, and future work will mainly focus on the reduction and optimization of algorithms to 408 

implant embedded devices for the application of real-time monitoring of agricultural plant diseases. 409 
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Figures

Figure 1

SSD backbone network structure

Figure 2

Se_Block Attention Module



Figure 3

Se_SSD network structure

Figure 4

(a) Residual network module and (b) 1*1 convolution

Figure 5

Enriched feature extraction module
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DBA_SSD network structure

Figure 7

Data set composition structure
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Data Enhancement
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Experimental �ow
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SSD and its improved algorithm loss variation graph



Figure 11

AP diagram of SSD and its improved algorithm for the detection of different kinds of diseases

Figure 12



Box diagram of SSD and its improvement algorithm

Figure 13

Target detection algorithm loss diagram

Figure 14

Heat map of correlation between different target detection algorithms and vegetable and fruit leaf types



Figure 15

Box plot of AP statistics under target detection algorithm



Figure 16

DBA_SSD recognition effect


