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Abstract
Corynebacterium striatum, a common constituent of the human skin microbiome, is now considered an
emerging multidrug-resistant pathogen of immunocompromised and chronically ill patients. However,
little is known about the molecular mechanisms in the transition from colonization to the multidrug-
resistant (MDR) invasive phenotype in clinical isolates. This study performed a comprehensive pan-
genomic analysis of C. striatum, including isolates from ‘normal skin microbiome’ and from MDR
infections, to gain insights into genetic factors contributing to pathogenicity and multidrug resistance in
this species. For this, three novel genome sequences were obtained from clinical isolates of C. striatum of
patients from Brazil, and other 24 complete or draft C. striatum genomes were retrieved from GenBank,
including the ATCC6940 isolate from the Human Microbiome Project. Analysis of C. striatum strains
demonstrated the presence of an open pan-genome (α = 0.852803) containing 3,816 gene families,
including 15 antimicrobial resistance (AMR) genes and 32 putative virulence factors. The core and
accessory genomes included 1,297 and 1,307 genes, respectively. The identified AMR genes are primarily
associated with resistance to aminoglycosides and tetracyclines. Of these, 66.6% are present in genomic
islands, and four AMR genes, including aac(6')-ib7, are located in a class 1-integron. In conclusion, our
data indicated that C. striatum possesses genomic characteristics favorable to the invasive phenotype,
with high genomic plasticity, a robust genetic arsenal for iron acquisition, and important virulence
determinants and AMR genes present in mobile genetic elements.

1. Introduction
Corynebacterium striatum is generally a common inhabitant of the human skin and upper respiratory
tract. Still, it is also considered an emerging nosocomial pathogen in humans, affecting patients in
opportunistic circumstances due to chronic diseases, immunosuppression, invasive medical procedures,
previous antibiotic therapies and use of prosthetic devices (Khan et al. 2021). A growing number of
reports have demonstrated the relevance of C. striatum in the etiology of a variety of infectious
processes, in both immunocompromised and immunocompetent patients: endocarditis (Mansour et al.
2020; Rasmussen et al. 2020; Chang and Chen 2020; Biscarini et al. 2021; Bläckberg et al. 2021),
meningitis (Zhang et al. 2020), and chronic septic arthritis (Hollnagel et al. 2020).

Hospital outbreaks by multidrug resistant (MDR) C. striatum isolates have now been reported in many
countries worldwide, including Brazil (Otsuka et al. 2006; Renom et al. 2007; Verroken et al. 2014; Wang et
al. 2016; Alibi et al. 2017; Ramos et al. 2018; Suh et al. 2019; Asgin and Otlu 2020). In these previous
studies, different C. striatum strains presented resistance to antimicrobial agents from varied classes:
penicillin, ciprofloxacin, moxifloxacin, gentamicin, clindamycin, erythromycin, rifampicin, imipenem,
chloramphenicol, levofloxacin, tetracycline, tobramycin, as well as for daptomycin, one of the newest
therapeutic alternatives (Galimand et al. 2015; Hahn et al. 2016; Nudel et al. 2018; Ramos et al. 2019;
Garcia et al. 2020; Mitchell et al. 2021; Souza 2021; Abe et al. 2021).
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Only a few studies have investigated the virulence mechanisms of C. striatum. Some demonstrated the
relevance of biofilm formation during bloodstream infections, contributing to host invasive diseases. C.
striatum strains were reported as etiologic agents of serious nosocomial invasive bloodstream infections
of inpatients submitted to invasive medical procedures including endotracheal intubation and
catheterization (Souza et al. 2015; Kang et al. 2018; Ramos et al. 2018); adherence properties to several
medical devices made of different abiotic and biotic (hydrophilic and hydrophobic) materials (Alibi et al.
2021; Souza 2021); and, increased resistance of sessile and planktonic forms to some biocides,
antiseptics and varied antibiotic classes (Souza et al. 2020). Furthermore, other virulence factors have
also been investigated in the Caenorhabditis elegans-based virulence assay (Souza et al. 2019).

Recent studies have investigated the genetic composition of the species C. striatum and demonstrated
that clonal multidrug-resistant isolates can be identified as the causative agents of nosocomial outbreaks
(Pereira Baio et al. 2013; Nudel et al. 2018; Wang et al. 2019, 2021) Genetically diverse isolates carrying
similar mobile genetic elements conferring multiple resistance to antimicrobials have already been
described, then confirming the role of horizontal gene transfer in the rapid acquisition of the MDR
phenotype in the species (Navas et al. 2016; Ramos et al. 2018).

In this study, we performed a pan-genomic analysis of the C. striatum species, including comparative
analyzes of the genomes of three clinical isolates newly sequenced by our research consortium
associated to additional twenty-four genomes retrieved from public databases. We observed that C.
striatum has an open pan-genome, with extensive horizontal gene transfer activity probably being the
primary driver of the rapid acquisition of resistance to multiple antimicrobial agents in the species.

2. Materials And Methods
2.1. Whole-genome sequencing and analysis

The QIAamp DNA mini kit (Qiagen) was used to extract total genomic DNA from three C. striatum clinical
isolates (2023, 2230, 2247) (Ramos et al. 2019) obtained from the Hospital Universitário Pedro Ernesto,
State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil. Complete genome sequencing was
performed with the Ion Torrent Personal Genome Machine System, using a 318 chip and a fragments
library, exactly as previously described by our research team (Mattos-Guaraldi et al. 2015). The FastQC
tool was used for quality assessment of the generated sequences
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), trimming was performed to keep only
reads with Phred values > 20. de novo genome assembly was achieved by SPAdes 3.0 (Bankevich et al.
2012) and MIRA 4.0 (Chevreux et al. 1999).

2.2. Data retrieval from public databases and through literature mining 

Twenty-four additional genomic sequences from C. striatum isolates were retrieved from NCBI’s GenBank
(see supplementary material Table S1). Clinical data, isolation sites, and phenotypic profiles of
susceptibility to antimicrobial agents were obtained through literature searches. All genomic sequences

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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were re-annotated using the Pathosystems Resource Integration Center (PATRIC) platform (Wattam et al.
2017) for standardization of genomic annotation with the RASTtk pipeline (Brettin et al. 2015).

2.3. Phylogenetic and phylogenomic analyses

A Multilocus Sequence Analysis (MLSA) and phylogenetic network analysis were performed with the
following genes, retrieved from the standardized genomic sequences:
atpA, dnaE, dnaK, fusA, leuA, odhA and rpoB (Mattos-Guaraldi et al. 2015). A public genomic sequence for
the PES1 strain of Corynebacterium simulans was used as an external group. The seven gene sequences
for each genome were recovered from the standardized annotations, concatenated, and then aligned
using MAFFT (Katoh et al. 2017). GBlocks were used to obtain regions with improved syntenies between
the concatenated sequences (Castresana 2000). The MLSA tree was built using PhyML 3.0 (Guindon et
al. 2010), with a substitution model GTR +G +I. A phylogenetic network was constructed with SplitsTree
4 (Huson and Bryant 2006). In addition, a minimum spanning tree based on Core Genome Multilocus
Sequence Typing (cgMLST) was built with BacWGSTdb (Ruan and Feng 2015).

2.4. Pan-genomic analysis of C. striatum

The C. striatum pan-genome was inferred for the 27 standardized genomic sequences using the Bacterial
Pan Genome Analysis (BPGA 1.3) pipeline (Chaudhari et al. 2016), using USEARCH v11 (Edgar 2010) for
gene grouping and an identity cutoff value of 50%. The Power Law regression model (n = k . Nα) was
used to determine whether the pan-genome is open (α ≤ 1) or closed (α > 1) (Tettelin et al. 2005, 2008).
The subgroups of the pan-genome were submitted for functional annotation of the Cluster of
Orthologous Groups (COG) categories using the eggNOG-Mapper (Huerta-Cepas et al. 2017).

2.5. Predictions of antimicrobial resistance genes (AMRs) and virulence factors

The prediction of antimicrobial resistance (AMR) genes was performed in the PATRIC platform, using
annotations of the Database of Antibiotic Resistant Organisms (NDARO)
(https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/) and the Comprehensive Antibiotic
Resistance Database (CARD) (Jia et al. 2017). Predictions of genes coding for potential virulence factors
were made with VFanalyzer (Liu et al. 2018), using pattern searches by Hidden Markov Models with
GLIMMER3 (Delcher et al. 2007); the Virulence Factor Database (VFDB) includes domain profiles
generated by hmmbuild and searched by hmmsearch, both from the HMMER3 package (Mistry et al.
2013). 

2.6. Predictions of genomic islands, prophages, plasmids and CRISPR arrays 

The prediction of genomic islands (GIs) was performed with IslandViewer 4 (Bertelli et al. 2017), which is
a web server that integrates four different prediction methods: IslandPick (Langille et al. 2008), SIGI-
HMM (Waack et al. 2006), Islander (Hudson et al. 2015) and IslandPath-DIMOB (Hsiao et al. 2003). The
system automatically displays additional predictions of virulence factors and antimicrobial resistance
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genes. Prophage sequences were predicted by Phage Search Tool Enhanced Release (PHASTER) (Arndt
et al. 2016). PlasmidFinder was used to identify plasmid-derived sequences in the genomes (Carattoli et
al. 2014). Insertion sequences (ISs) were searched using both the IS Finder tool (https://www-
is.biotoul.fr/blast.php), for individual sequences, and the Mobile Element Finder, for complete genomes
(https://cge.cbs.dtu.dk/services/MobileElementFinder/). We searched for Integrons using Integron Finder
2.0 (Néron et al. 2022) and compared integrases from the INTEGRALL database (Moura et al. 2009).

The CRISPR-CasFinder tool (Couvin et al. 2018) was used to identify CRISPR arrays and spacers
sequences in the C. striatum genomes, using a 100 bp flanking distance an evidence level higher than 2.

2.7. Circular plot diagrams and genomic context analysis of antimicrobial resistance genes 

Circular plot charts of the C. striatum genomes were generated with the Blast Ring Image Generator (BRIG
0.95) (Alikhan et al. 2011) by comparing all genomic sequences against a reference genome using the
Basic Local Alignment Search Tool (BLAST 2.10.1) (Camacho et al. 2009). Predicted coordinates for
genomic islands, prophages, virulence factors and antimicrobial resistance genes, including Illustrator for
Biological Sequences (IBS 1.0.3) (Liu et al. 2015).

3. Results And Discussion
3.1. General features of the C. striatum genomes

C. striatum genomes presented a predicted size ranging from 2.61 Mb to 3.13 Mb, with a slight variation
in G+C percentage between genomes (range: 59.2% - 59.8%). The total number of predicted coding
sequences (CDSs) varied between 2,089 and 2,924. A phylogenetic network analysis based on seven
housekeeping genes indicates the existence of two well-defined groups of C. striatum strains separated
by geographical origin (Fig. 1a). The presence of different MDR C. striatum clones, identified by the
cgMLST analysis (Fig. 1b), corroborates with findings from previous studies based on pulsed-field gel
electrophoresis (PFGE) (Ramos et al. 2019). Interestingly, while strains with very similar phenotypic
antimicrobial susceptibility profiles could be found forming clonal complexes (strains 2308 and 2023)
(Fig. 1b), we also found strains carrying significantly different contents of AMR genes forming a clonal
group (strains LK37 and 797_CAUR) (Fig. 1b). This finding underscores the potential role of horizontal
gene transfer as a significant force driving the acquisition of antimicrobial resistance genes in the
hospital environment by the species C. striatum. 

The single strain from a non-human host, Kc-Na-01, presented the most significant genetic divergence
from all studied isolates (Fig. 1a). Then, we analyzed this genome using average nucleotide identity by
BLAST (ANIb) and found that this genomic sequence shares a higher than 94.5% identity with all
genomic sequences included in the study (Supplementary Fig. S1). Even though it is generally regarded
that a standard cutoff for species circumscription would be at ≥ 95% ANIb, some studies have shown
that an ANIb value of ca. 94% equals to ca. 70% DNA-DNA hybridization (DDH) (Konstantinidis and Tiedje

https://cge.cbs.dtu.dk/services/MobileElementFinder/
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2005; Rodriguez-R and Konstantinidis 2014; Qin et al. 2014). This assumption would permit classifying
the strain Kc-Na-01 as belonging to the species C. striatum.

3.2. Pan-genomic analysis of C. striatum

The species C. striatum possesses an open pan-genome (α = 0.852803) (Fig. 2a), with 3,816 gene
families, of which 33.99% (1,297) are present in the core genome and 34.25% (1,307) in the accessory
genome. The unique genes represent 31.76% of the predicted gene families (1,212) (Fig. 2b). The strains
KC-Na-01, from a non-human host, and BM4687, a clinical isolate from France, concentrate 42.8% of the
species’ total number of unique genes (260 and 326 individual genes, respectively). For strain KC-Na-01,
the high number of unique genes may be partially explained by the existence of sequences derived from
two different plasmids that contribute to the complete gene set of this isolate. Noteworthy, a new
aminoglycoside 3-N-acetyltransferase (AAC(3)-XI) from chromosomal origin was recently discovered
from the analysis of the genome of isolate BM4678 (Galimand et al. 2015).

The gene families in the C. striatum pan-genome are mainly distributed in the following COG functional
categories: Metabolism (36.9%); Information storage and processing (35.3%); Cellular processes and
signaling (8.2%); and Poorly characterized (19.4%) (Fig. 3a). Regarding the core genome, the most
prevalent functional categories included: Translation, ribosomal structure and biogenesis (9.6%); Amino
acid transport and metabolism (9.2%); and Transcription (9.1%). The accessory genes are mainly
classified into the categories of Amino acid transport and metabolism (10.1%); Replication,
recombination and repair (8.6%); and Transcription (8%). Finally, unique genes predominate in the
categories of Replication, recombination and repair (19.7%); Transcription (10.9%); and Defense
mechanisms (10.4%) (Fig. 3b). A high number of genes related to transcription regulation was an
essential feature of the three pan-genome subsets. 

3.3. Prediction of antimicrobial resistance genes (AMRs)

Through automated prediction, we identified 15 antimicrobial resistance genes (AMRs) in the C. striatum
genomes (Fig. 4a). The single gene identified in all strains was rpsL, which codes for the 30S subunit-S12
ribosomal protein, presenting mutations similar to those described in streptomycin-resistant M.
tuberculosis (Sreevatsan et al. 1996). However, the ATCC6940 and 1961 strains have a streptomycin
susceptibility phenotype (Fig. 4b), whereas all the other strains isolated in Brazil have a streptomycin-
resistant phenotype (Fig. 4b). 

The AMR genes aph(3')-Ia, aph(3')-Ib and aph(6)-Id code for aminoglycoside phosphotransferases (Wright
and Thompson 1999) that were found in the C. striatum genomes in the following proportions: 40.7%,
37.0% and 37.0%, respectively (Fig. 4a). These genes encode enzymes that catalyze the phosphorylation
of various aminoglycosides. The aac(3)-XI gene, found in 22.0% of the strains, encodes the enzyme
aminoglycoside 3-N-acetyltransferase type XI, initially described in C. striatum (Galimand et al. 2015). 
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The cmx gene, part of the MFS transporters family and promotes chloramphenicol efflux (Tauch et al.
1998), was present in 44.0% of the strains (Fig. 4a). As expected from previous studies, all strains that
possessed this gene presented phenotypic non-susceptibility to chloramphenicol (Fig. 4b). 

The ermX gene was found in 74.0% of the strains and codes for the rRNA methyltransferase enzyme
responsible for the ineffective binding of macrolides, lincosamides, and streptogramins to the 23S
ribosomal binding site (Roberts et al. 1999). 

The sul1 gene was identified in 18.5% of the strains and is part of a gene family that codes for
alternatives to the dihydropteroate synthase enzymes, which have less affinity for
sulfonamides (Changkaew et al. 2014). 

Although the tetA and tetW genes were found in 44.4% and 40.7% of the C. striatum strains, respectively
(Fig. 4a), resistance to tetracycline did not correlate well with the identification of these genes in the
genomic sequences (Fig. 4b). These genes confer resistance to tetracycline through different
mechanisms: tetA encodes transport proteins of the MFS family, whereas tetW encodes ribosomal
protection protein (Roberts 2005).

Four AMR genes in the C. striatum pan-genome were identified as unique genes: tetB, aac(6')-lb7, aadA
and qacE. The tetB gene was found in the 2023 strain, but this strain is phenotypically susceptible to
tetracycline, despite carrying the tetA and tetB genes, encoding efflux pumps for tetracyclines (Fig. 4b).
Additionally, mutations in the rpoB gene similar to those found in rifampicin-resistant strains of
Mycobacterium tuberculosis were found in the 2023 strain, which is phenotypically resistant to
rifampicin (Ramos et al. 2019). 

The other three unique genes (aac(6')-lb7, aadA and qacE) were only found in the LK37 lineage (Fig. 4a).
The aac(6')-Ib7 gene encodes the aminoglycoside acetyltransferase enzyme (Roberts et al. 1999) and
the aadA the aminoglycoside nucleotidyltransferase enzyme (Clark et al. 1999) responsible for
aminoglycoside resistance, while the qacE gene codes for a proton-dependent efflux pump for
monovalent cationic antiseptics such as ammonium quaternary (Paulsen et al. 1996). 

3.4. Prediction of virulence factors

We identified 32 genes potentially related to virulence in C. striatum, with 19 (59.3%) genes present in all
strains, 11 (34.3%) genes appearing in at least two strains, but not in all, and 2 (6.3%) genes uniquely
present in one strain (Fig. 5). These virulence factors are distributed in 10 functional categories (Fig. 5). In
the ‘iron uptake category’, three operons were identified as present in all C. striatum strains, namely the
fagABCD operon, also present in Corynebacterium pseudotuberculosis strains (Billington et al. 2002;
Dorella et al. 2006) the hmuTUV and the irp6ABC operons, also found in C. diphtheriae (Allen and Schmitt
2009; Schmitt 2014). Additionally, the itrAB operon is present in 17 C. striatum lineages (63%), and the
mbtH and fxbA genes in 12 lineages (44.4%); these genes have been widely described in bacteria of the
genus Mycobacterium (Dussurget et al. 1999; Timms et al. 2015). 
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Four genes coding for transcriptional regulators of potential virulence genes were also found in all C.
striatum genomes (Fig. 5). The iron-activated dtxR gene is involved in regulations of genes related to iron
homeostase, such as the genes of the fagABC, hmuTUV and ipr6ABC operons in Corynebacteria spp.
(Qian et al. 2002; Trost et al. 2010). This gene may also be involved in regulating of irtA, irtB, mbtH and
fxbA, as demonstrated by (Manabe et al. 2005). The senx3, sigA and sigD genes have already been
shown to play essential roles in the virulence and persistence of Mycobacteria spp. (Gomez et al. 1998;
Raman et al. 2004; Singh and Kumar 2015). 

The pafA and mpA genes, present in all strains, are part of the Pup proteasome System in Actinobacteria
and have relevance in the persistence of M. tuberculosis in the host (Darwin 2009). The SpaFED pili are
present in 21 strains, together with the genes of the sortases srtB and strC necessary for the pili’s
assembly (Gaspar and Ton-That 2006). These protein structures are displayed on the cell surface and
participate in biofilm formation, DNA translocation, and interactions with other bacteria, besides working
as phage receptors, contributing to pathogenesis (Mandlik et al. 2008; Proft and Baker 2009; Kline et al.
2010).

 The secA2 secretion system was found in all C. striatum strains (Fig. 5). This system has been
demonstrated to be responsible for the exportation of multiple effectors that interfere with phagosome
maturation and promote intracellular replication in M. tuberculosis (Zulauf et al. 2018). 

Orthologs of the genes wecB and wecC code for the enzymes UDP-N-acetilglucosamine-2-epimerase and
UDP-N-acetil-d-manosamine desidrogenase, uniquely found in the strain Kc-Na-01 (Fig. 5). Although these
enzymes are expected to be found in Gram-negative bacteria, for the synthesis of lipopolysaccharide (Rai
and Mitchell 2020), the orthologs mnaA and mnaB have been described in Staphylococcus spp. and are
involved in the biosynthesis of the cell envelope.

3.5. Genomic islands (GI), prophages, insertion sequences (IS), and CRISPR loci

Eigthy-four out of 129 AMRs distributed throughout all strains were found within genomic islands (Fig.6).
Sixteen strains presented the ermX adjacent to gcrA and gcrB, as shown in the genomic context for strain
2023 (Fig. 7a). Seven AMRs were found within the GI18, including ermX, tetA, and tetB (Fig. 6; Fig. 7b).
The genes aph(3”)Ib, aph(6)-Id, and cmx are all presented in GI8 (Fig. 6). These together with other genes
that are found in the flanking regions of AMR genes were identified in the pTP10 plasmid, which is part of
the C. striatum M82B genome (Tauch et al. 2000), as well as of the genome of C. striatum strain
2308 (Ramos et al. 2018). 

Seventy-four bacteriophage signatures were detected in the studied genomes (Supplementary Table S2).
Nevertheless, only 16 phage sequences were found intact in the genomes, of which the most prevalent
were the PHAGE_Rhodoc_REQ3_NC_016654 and the PHAGE_Staphy_SPbeta_like_NC_029119. Notably,
four AMR genes were found within a phage context in strain LK37 (Fig. 7c), present in GI5 (Fig.6).
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Integrons are versatile genetic elements, characterized by the ability to insert, excise, rearrange and
express genes through a site-specific recombination system and can act as vehicles for intra- and inter-
specific transmission of genetic material (El Sayed Zaki et al. 2022). Integrons are characterized into
classes based on the type of integrase gene. Class 1 integron is the most frequently observed in clinical
isolates, mainly in Gram-negative bacteria (Racewicz et al. 2022). In Pseudomonas aeruginosa, the
presence of class 1 integron is associated with the emergence of the MDR phenotype (El Sayed Zaki et al.
2022). However, studies on the presence of integrons in Gram-positive bacteria especially in
Corynebacterium species are scarce. Class 1 integrons have been found in some Corynebacterium
clinical isolates, such as Corynebacterium diphtheriae biovar mitis (Barraud et al. 2011), Corynebacterium
resistens (Schröder et al. 2012), and Corynebacterium urealyticum (Rocha et al. 2020). To date, there are
no studies describing the presence of class 1 integrons in C. striatum (Leyton et al. 2021). In our study, we
found the class 1 integron in LK37 carrying the genes sul1, qacE, aadA, and aac(6’)-lb7 (Fig. 7c), in strains
2130, 2296, 2425, and 3012STDY7069329 carry only the sul1 gene (Supplementary Table S3).

We also evaluated the insertion sequences (IS) that appear in the same genomic context as the AMR
genes. The main IS families found in these regions were IS3, IS481, IS256, ISL3 and IS6. Interestingly, the
ISCre1, belonging to the IS256 family, is associated with the aac(3)-XI gene in 7 C. striatum isolates.
Additionally, the ISCx1 insertion sequence, belonging to the ISL3 family, was found in association with
erm(X), tet(W) and aac(3)-XI. The IS1249 was also found in the genomic context of erm(X) and the
IS5564 was located near the genes aph(3”)-Ib and aph(6’)-Id. Both IS1249 and ISCx1 are part of a
transposon Tn5432, which has been identified in the genomic sequences of C. striatum by recent
studies (Wang et al. 2019; Leyton et al. 2021; Leyton-Carcaman and Abanto 2022) (Fig. 7c).

We also evaluated the genomic context of virulence factors and found that the operons spaDEF,
fagABCD, hmuTUV, irtAB, and the gene fxbA can also be located in GIs. Twenty-one C. striatum isolates
have mobile genetic elements in the same context of genes coding for SpaD-like pili (Fig. 8). This region
is also within a predicted genomic island, GI17 (Fig. 6). Noticeably, five strains present frameshifts in at
least one of the pili encoding genes (Fig. 8b), suggesting an incapacity to pili assembly or dependence on
sortases StrB and StrC (Gaspar and Ton-That 2006). Some strains did not present the pili assembly
machinery within the same genomic context: KC-Na-01, 1961, 962_CAUR, 963_CAUR, 1329_CAUR and
LK37 (Fig. 8c). 

Great variability in CRISPR-associated loci was identified in the species C. striatum (Supplementary Table
S4). The studied genomes presented an average number of 52 detected spacer sequences, but with a
wide range between 5 and 117 sequences. The identified repeat sequences were more consistently
distributed throughout the genomes (Supplementary Table S3). Some genomes presented two clusters of
genes coding for CRISPR-associated proteins (Cas), but the most prevalent organization found was the
type IE CRISPR system (Supplementary Table S3). A recent study suggests the existence of an alternative,
as-yet-unidentified CRISPR system organization in this species, termed Type I-E’ (Ramos et al. 2022).

4. Conclusions
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We found that the C. striatum species has an open pan-genome, presenting widespread acquisition of
novel genes by horizontal gene transfer. This is particularly demonstrated by the high number of
identified genes related to resistance to aminoglycosides and tetracycline. The C. striatum genomic
sequences illustrate the existence of a robust iron acquisition machinery in the species, suggesting an
improved ability to adapt and survive within the host environment. However, the absence of pili or
frameshifts in at least one of the five genes in some isolates can lead to a lowered ability to infect and
persist in the host, considering that it was the only pili identified in the species. This study highlights the
importance of correctly identifying this microorganism in the clinical microbiology laboratory, besides
performing molecular surveillance of antimicrobial resistance genes within the hospital environment, due
to the widespread presence of clinically relevant AMRs in the species and the apparent facility to share
mobile genetic elements.
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Figures

Figure 1

Phylogenetic and phylogenomic analyses of C. striatum. C. striatum isolates: in orange, environmental
isolate (South Korea); green, isolates from Hospital Universitário Pedro Ernesto (Rio de Janeiro – Brazil);
yellow, reference strains (ATCC, NCTC and NBRC); black, strains with unknown isolation location; red,
isolates from University of Washington Medical Center (Seattle – USA); pink, strain isolated at the
University of Pennsylvania (Philadelphia – USA); brown, isolate from the University of Washington (Saint
Louis – USA); blue, isolates from the Brigham and Women's Hospital (Boston – USA); purple, isolate from
Hôpital Paris Saint-Joseph (Paris – France). a SplitTree of the MLSA alignment; b Minimum spanning
tree based on cgMLST.
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Figure 2

Pan-genome development analysis of Corynebacterium striatum. a There are number of gene families in
the pan-genome (orange) and in the core genome (green). b The flower diagram demonstrates the
dimensions of the core genome and accessory genes in gene numbers, and the contribution of genes per
isolate to accessory genes and single genes.
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Figure 3

Classifications of the pan-genome’s gene set based on COG categories. a Type of gene groups by general
COG categories. b Type of gene groups by detailed COG categories.
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Figure 4

Antimicrobial resistance genes. a Left panel: MLSA tree; right panel: prediction of antimicrobial resistance
genes. b Antimicrobial susceptibility phenotype retrieved from the literature. The same color scheme is
used for geographic coordinates, as in Fig. 1.

Figure 5

Predictions of virulence factors in C. striatum. The colored legend shows the different functional
categories of the identified genes.

Figure 6
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Circular plot view of the C. striatum genomic sequences. All genomes were aligned to a reference
genome, and in the outermost circle were represented the Genomic Islands and Prophage sequences
identified from the reference genome. Reference genomes: a ATCC6940; b 2023; c LK37.

Figure 7

Genomic context of AMR genes and mobile genetic elements. Shown in blue, are miscellaneous genes; in
yellow are mobile genetic elements; in red are antimicrobial resistance genes; in gray are, hypothetical
genes. a Genomic context of AMR genes from the C. striatum 2023 strain. b Genomic context of
antimicrobial resistance genes from the C. striatum LK37 strain. c Prediction of prophage sequences in
the genomic context of AMR genes in LK37.

Figure 8

Genomic context of virulence factors in C. striatum genomes. Shown in blue, miscellaneous genes; in
yellow, mobile genetic elements; in green, virulence factor genes; in orange, virulence factor genes with
frameshift mutations; in gray, hypothetical proteins. a Genomic context of SpaD-type pili in ATCC6940. b
Demonstrates frameshift in spaD-like pili genes. c Genomic context of the KC-Na-01, 1961, CAUR_962,
CAUR_963, CAUR_1329 and LK37 strains at the same locus of the ATCC6940 strain.
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