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Abstract

Background
Whole-body metabolism is emerging as a critical player in the pathophysiology of intracranial aneurysms
(IAs). However, the vital metabolic signatures for IA risk stratification and its potential biological
underpinnings remain elusive. Therefore, our study aimed to develop an early diagnosis model and
rupture classification model by analyzing plasma metabolic profiles of IA patients.

Methods
Plasma samples from a cohort of 105 participants, including 75 patients with IAs in ruptured and
unruptured statuses and 30 control participants, were collected for analysis. A pseudotargeted
metabolomics strategy based on LC-MS/MS was applied for integration analyses of plasma samples,
and significant differential metabolites were identified through univariate and multivariate statistical
analysis. Furthermore, an integrated machine learning strategy based on LASSO, random forest and
logistic regression were used for feature selection and model construction.

Results
The composition of metabolites changed significantly with the severity of IA. Among them, glutathione
metabolism and bile acid metabolism may play a crucial role. Two sets of biomarker panels (M6 & M5)
were defined to discriminate IA and its rupture with the area under receiver operating characteristic curve
(AUC) of 0.843 and 0.929 on the validation sets, respectively.

Conclusion
The present study comprehensively characterizes plasma metabolites in different statuses of IA and
demonstrates the potential of metabolic markers as non-invasive risk diagnostic tools for IA.

Introduction
Intracranial aneurysms (IAs) are abnormal bulges that develop from the wall of intracranial arteries,
affecting about 3–5% of adult populations [1]. Although IAs is a prevalent cerebrovascular disease
worldwide, there are currently no approved biomarkers to readily assess disease progression. Moreover,
the insidious course of IAs may lead to a propensity to misdiagnose at the early stage. The mortality rate
of the first rupture of an aneurysm is 30%-40%. As for re-rupture aneurysmal cases, the mortality rate may
reach up to 60%-70%, laying burdens on patients, families and society [2]. Current diagnosis of
intracranial aneurysms requires heavy reliance on imaging techniques and the clinical assessment of
high-risk aneurysms depends greatly on the clinician's experience, mainly according to the clinical factors,
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hemodynamics and morphology of IA [3]. In addition, there is still a lack of validated biomarkers for early
diagnosis and risk assessment of IA, which causes difficulties for large-scale screening. Moreover, once
an unruptured intracranial aneurysm is detected, decisions regarding optimum management are still
controversial [3, 4]. In this regard, it is of immense value to develop biological signatures that assist in the
early diagnosis of IA and the prediction or classification of IA rupture.

In recent years, plasma metabolites as potential biomarkers have received enormous attention and have
been an emerging field of research on IA. Previous studies have found several metabolic abnormalities of
amino acids and fatty acids in patients with unruptured intracranial aneurysm (UIA) [5], suggesting that
plasma metabolites were closely related to UIA. However, targeted studies of amino acids and fatty acids
focused only on fewer metabolites and cannot globally reflect the overall metabolism of different IAs
statuses. Additionally, widely targeted metabolomics [6, 7] are rarely used to discover biomarkers for early
diagnosis of IA and rupture risk assessment. Pseudotargeted metabolomics can monitor hundreds to
thousands of metabolites by dynamic multiple reaction monitoring, which merges the advantages of
untargeted and targeted metabolomics with high sensitivity, high specificity and excellent quantification
ability [8, 9]. Therefore, we hypothesized that significant differences in plasma metabolites could be
identified in control subjects, UIA and RIA patients using this novel approach.

The present study aimed to describe the profiling of plasma metabolic characteristics and compare the
difference among various statuses of IA patients using a widely targeted metabolomics method [7, 10].
Moreover, to explore the novel biomarkers for IAs, the classifiers based on the machine learning algorithm
of least absolute shrinkage and selection operator (LASSO) and random forest were used to establish the
IAs diagnosis model and rupture discrimination model. In addition, this study also aimed to explore
potential biological functions and metabolic pathways of different metabolites so as to provide clues to
novel diagnostic, preventive and therapeutic strategies against IA and its rupture. Based on the
differential metabolite analysis of plasma samples from 105 participants, including 30 control
participants and 75 patients with IA, we found that the composition of metabolic profile changed
significantly with the severity of IAs. The two models we established with integrated machine learning
strategies could effectively distinguish the aneurysm status. The results of receiver operating
characteristic curve (ROC) showed strong predictive power. Our findings highlighted the role of specific
metabolites as novel early diagnosis and risk assessment tools for IA.

Materials And Methods
Study design and participants

The study was conducted according to the guidelines laid down in the Declaration of Helsinki, and
approval for the study was obtained from the Ethics Committee of Zhujiang Hospital, Southern Medical
University (reference number: 2021-KY-038-02). Informed consent has been obtained for utilizing samples
for research, with prior approval by the clinical Biobank Centre at Zhujiang Hospital of Southern Medical
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University (approval number 2020-YBK-001-02). The study adheres to STROBE statement reporting
guidelines.

Patients with IA in different statuses (asymptomatic UIA patients and RIA patients immediately after
onset) and control participants (age and gender-matched) without aneurysmal symptoms or a history of
subarachnoid hemorrhage were prospectively recruited for analysis in this study at Zhujiang Hospital of
Southern Medical University from June 2020 to June 2021. For the disease groups, patients were
diagnosed and grouped based on digital subtraction angiography (DSA) imaging and clinical records. IAs
patients were further divided into two groups as follows: (1) untreated patients with unruptured
intracranial aneurysms, (2) patients with ruptured intracranial aneurysms (RIAs) immediately after onset.
Exclusion criteria were as follows: (1) aged <18 years, (2) having non-aneurysmal subarachnoid
hemorrhage or treated UIAs before sample collection, (3) complicated with serious diseases such as
cancer, persistent infectious disease or , (4) no diagnostic DSA images of IAs or incomplete clinical data.

Sample collection and storage

For disease groups, blood samples were collected prior to the endovascular coiling or microsurgical
clipping before giving any anesthetic agent or any treatment. For the control group, blood samples were
collected from participants who participated in the physical examination. Blood samples were collected
in EDTA tubes by qualified medical personnel and centrifuged at 3000 rpm for 10 min at 4 ℃ to obtain
aliquots of plasma and stored at -80℃ for subsequent metabolites detection.

Metabolomic study

Sample preparation and extraction. The plasma sample was thawed on ice, vortexed for 10 s and mixed
well, 300 μL of pure methanol was added to 50 μL of plasma, and then the mixture was whirled for 3 min
and centrifuged for 10 min at 12,000 rpm at 4 °C. Then, the supernatant was collected after
centrifugation (12,000 rpm at 4°C for 5 min). Leave the supernatant in a refrigerator at -20°C for 30 min,
centrifuge it at 12000 rpm at 4°C for 3 min, and take 150 μL of supernatant in the liner of the
corresponding injection bottle for on-board analysis.

T3 UPLC Conditions. The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, ExionLC
AD, https ://sciex. com.cn/, MS, QTRAP® System, https://sciex.com/) [11]. The analytical conditions were
as follows: UPLC column, Waters ACQUITY UPLC HSS T3 C18 (1.8μm, 2.1 mm*100 mm), column
temperature, 40 °C, flow rate, 0.4 mL/min, injection volume, 2 μL or 5 μL, solvent system, water (0.1%
formic acid): acetonitrile (0.1% formic acid), gradient program, 95:5 V/V at 0 min, 10:90 V/V at 10.0 min,
10:90 V/V at 11.0 min, 95:5 V/V at 11.1 min, 95:5 V/V at 14.0 min.

QTOF-MS/MS. The Triple TOF mass spectrometer was used for its ability to acquire MS/MS spectra on
an information dependent basis (IDA) during an LC/MS experiment [12]. In this mode, the acquisition
software (Triple TOF 6600, AB SCIEX) continuously evaluates the full scan survey MS data as it collects
and triggers the acquisition of MS/MS spectra depending on preselected criteria. In each cycle, 12
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precursor ions whose intensity greater than 100 were chosen for fragmentation at collision energy (CE) of
30 V (12 MS/MS events with product ion accumulation time of 50 msec each). ESI source conditions
were set as following: Ion source gas 1 as 50 Psi, Ion source gas 2 as 50 Psi, Curtain gas as 25 Psi,
source temperature 500 °C, Ion Spray Voltage Floating (ISVF) 5500 V or -4500 V in positive or negative
modes, respectively.

ESI-Q TRAP-MS/MS. LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear
ion trap mass spectrometer (QTRAP), QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-Spray
interface, operated in positive and negative ion mode and controlled by Analyst 1.6.3 software (Sciex).
The ESI source operation parameters were as follows: source temperature 500 °C, ion spray voltage (IS)
5500 V (positive), -4500 V (negative), ion source gas I (GSI), gas II (GSII), curtain gas (CUR) were set at 50,
50, and 25.0 psi, respectively, the collision gas (CAD) was high. Instrument tuning and mass calibration
were performed with 10 and 100 μmol/L polypropylene glycol solutions in QQQ and LIT modes,
respectively. A specific set of MRM transitions were monitored for each period according to the
metabolites eluted within this period [13].

Quality control (QC) samples were a mixture of all sample extracts, which were inserted into the queue to
monitor the stability of the detection method. PCA plot was used to estimate the degree of variability and
the overall metabolic difference.

Data processing and statistical analysis

The raw data were represented by the area under the ion intensive peaks. In total, we confirmed 501
metabolites after removing unknown substances and interferon ion pairs for further analysis. The data
normalized with log2 transformation and standard with z-score. We conducted unsupervised analysis
PCA (principal component analysis) and supervised analysis Orthogonal Projections to Latent Structures
Discriminant Analysis （OPLS-DA）to evaluate the profiling of metabolites in each group, and performed
permutation in 200 times to validate the power of our modeling, all of which were using R package
"prcomp", "MetaboAnalystR" （R version 3.6.1）, and SIMCA software [14].

The univariance analysis with normally distributed variables between two groups was analyzed by
Student's t-test, while non-normally distributed were analyzed by Mann-Whitney test. Categorical variables
were compared by the χ 2 test or Fisher's exact test using SPSS26.0. Selected significant difference
metabolites between every two groups （UIA vs. Control, RIA vs. UIA）were determined by Variable influence
on projection (VIP) ≥1, p-value <0.05 (FDR<0.1), and fold change (FC, based on mean) ≥1.2 or FC ≤0.83.
We also conducted pathway enrichment analysis based on the KEGG Pathway database
(http://www.kegg.jp/kegg/pathway.html) [15].

Machine-learning strategy

The multivariance analysis was used in two machine learning methods, including least absolute
shrinkage and selection operator (LASSO) and random forest (RF) [16], to further select candidate
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biomarkers from significantly different metabolites by using R package "glmnet" and R package
"varSelRF" separately (R version 3.6.1) [17]. Briefly, for each comparison, the data subset was randomly
divided into a training set and a verification set in 2:1. Then, 500 times selection of LASSO and 10-fold
cross-validation (CV) to determine the candidate metabolites with optimal parameter lambda and select
markers by random forest (RF). Finally, the candidate biomarkers were figured out both in LASSO and RF
and were ranked using the LASSO non-zero coefficients and RF mean decrease of accuracy. The logistic
regression model fitted by several combinations of biomarkers, and receiver operating characteristic
curve (ROC) with the calculation of AUC were completed by R package "pROC" [18].

Results
Clinical and demographic characteristics of the study cohorts

A concise workflow of the entire study design is shown in figure 1. Totally, 105 plasma samples including
75 from patients with IAs in different statuses and 30 from control participants were collected for
analysis in this study. Characteristics of the UIAs, RIAs patients and control participants are shown in
Table 1. As shown, there were no significant differences between groups in terms of demographic factors
(age, sex and tobacco use). However, the control participant had a lower prevalence of hypertension than
the disease groups but there were no differences between UIA and RIA. Additionally, there were no
differences among the three groups in regard to the prevalence of other comorbidities such as cardiac
disease (myocardial infarction and angina), hyperlipemia, stroke history and diabetes mellitus. In terms
of aneurysm characteristics, UIA often occurred in the internal carotid artery while irregular morphology
was observed more commonly in RIA. (Table 1).

Plasma metabolic profiling of all samples

A total of 501 metabolites were detected using hydrophilic and hydrophobic methods by UHPLC-TQMS.
Our results showed that the QC samples were clustered together, indicating the stability of this analytic
method (Supplement figure 1A). In addition, the method stability was assessed by overlaying different
samples' total ion current diagrams (TIC diagrams). The results showed that the curves of the TIC
diagrams were highly overlapped, and the retention time and peak intensity were consistent,
demonstrating that the signals were stable throughout the analysis process (Supplement figure 1B).

Comparison of plasma metabolic profiling between the UIA and control groups

Firstly, to identify the metabolites associated with aneurysm formation, we focused on the differential
metabolites between UIA and controls. Using the OPLS-DA model, the classification results showed a
significant separation of all plasma metabolites between UIAs and controls (Figure 2A). The top20 VIP
metabolites included various adenosine metabolites (Supplement Figure 3A). Next, we performed a
univariate T-test analysis based on the fold changes of metabolites in the two groups and found 19
metabolites with p-value <0.05 (FDR<0.1) and VIP>1, in which 11 metabolites decreased and eight
metabolites increased in UIAs, as shown in the volcano plot (Figure 2B). By comparison, the top
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foldchange metabolites result showed that the abundance of amino acid and its metabolomics was
upregulated. Meanwhile, some derivatives of benzene and nucleotide were generally declined in UIAs
(Figure 2C).

Besides, clustering analysis of these 19 significantly altered metabolites showed a clear separation in the
heatmap (Supplement Figure 2A). KEGG pathway enrichment analysis of differential metabolites showed
that phosphonate and phosphinate metabolism had the highest risk factor. There are mainly nine
significantly disturbed metabolic pathways such as glutathione metabolism, biosynthesis of amino acids
and cofactors (Figure 2D).

Comparison of plasma metabolic profiling between the RIA and UIA groups

Furthermore, special attention was given to the transition from a stable aneurysm to rupture and
subarachnoid haemorrhage. OPLS-DA models of metabolic profiling data indicated that the overall
plasma metabolites were significantly different among the various statuses of IAs patients (Figure 3A),
suggesting that these two disease stages had distinct metabolic profiles at the molecular level. The top20
VIP metabolites included indole and arachidonic acid (Supplement Figure 3B).By univariate analysis, 172
differential metabolites between RIAs and UIAs were identified, of which 69 were upregulated and 103
were downregulated (Figure 3B). All of these significantly altered metabolites clustered well in the
heatmap (Supplement Figure 2B). The top downregulated foldchange metabolites mainly include various
secondary bile acids, for example glycochenodeoxycholic acid, glycine deoxycholic acid and so on
(Figure 3C). These differential metabolites were enriched in 6 pathways with the highest risk factor,
including linoleic acid metabolism, vascular smooth muscle contraction, fatty acid metabolism,
phosphonate and phosphinate metabolism, retrograde endocannabinoid signaling and serotonergic
synapse (Figure 3D).

Machine-learning-based selection of biomarker panels for classification of RIA and UIA

After systematically defining the metabolomic profiles and pathways associated with UIAs and RIAs, we
set out to establish a diagnostic model by selecting metabolites that could be used to predict the
presence of UIA and differentiate RIA from UIA. The metabolites obtained after preliminary statistical
screening are still numerous (p<0.05, FC>1.2). To further narrow down the biomarker candidates, we
applied a variable selection method to screen for important metabolites. Variable selection is to select a
set of independent variables that have strong explanatory power for the dependent variable from a large
number of independent variables through statistical analysis methods, and is an essential part of
statistical inference. Here, all samples were randomly split into training and validation sets in a 2:1 ratio.
LASSO and Random Forest were used to select metabolites, and then their intersections are candidate
metabolites, served as the optimal biomarkers. To improve predictive performance and avoid overfitting
and false positives, we performed 500 times feature selection and 10-fold cross validation on the training
set [19]. Logistic regression was used for final model building based on optimal biomarkers, which were
evaluated by AUC value of ROC curve and prediction accuracy in the validation set (Figure 4A).
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By utilizing the above machine-learning strategy, we identified a diagnostic panel to predict the presence
of UIA (UIA versus control) containing six metabolites (dubbed M6), including N-Acetyl-L-Leucine,
porphobilinogen, ethylsalicylate, ethionamide, N6-methyladenosine and 1-Methyladenosine. The
diagnostic model distinguished UIA from control with an AUC of 0.9 in training set (Figure 4B), 0.843 in
validation set (Figure 4C) and 0.882 in all samples (Supplement Figure 4A) with high sensitivity and
specificity. The prediction effect of the model was rendered by scatter plots to evaluate the reliability of
the machine-learning strategy, and the results demonstrated that different samples could be correctly
classified with a high accuracy of 19/24 on the validation set (Figure 4D).

We further explored the possibility of distinguishing different statuses of IA patients (RIA versus UIA). The
optimal biomarkers or rupture prediction model that had similar performance in two machine learning
methods consisted of five metabolites (dubbed M5), including glycochenodeoxycholic acid, 5,6-
dimethylbenzimidazole, uracil, catechol and N-(1-Deoxy-1-fructosyl) phenylalanine. The rupture prediction
model distinguishing RIAs from UIAs yielded an AUC of 0.99 in the training set (Figure 4E), 0.929 in the
validation set (Figure 4F) and 0.933 in all samples (Supplement Figure 4B). The scatter plot shows good
prediction effect of the model for the RIA group and UIA group with accuracy of 23/25 (Figure 4G).

Finally, the abundances of M6 in diagnostic model showed statistical significance both on the training
set and validation set implying their potential as biomarkers to distinguish UIA (Figure 5A). While most
biomarkers in rupture prediction model also showed consistent significant difference, but
glycochenodeoxycholic acid and 5,6-dimethylbenzimidazole only showed a downward trend in the
validation set of RIA (Figure 5B).

Discussion
Herein we performed a pseudotargeted metabolomics study to systematically define the metabolic
profiles and related pathways in the development of IA. The metabolomic profile analysis showed
significantly diverse pathways in UIAs patients compared to control participants, among which
glutathione metabolism emerges as the most significantly altered. Furthermore, two pathways appear to
play a crucial role in the progression from UIA to RIA. Moreover, we developed a comprehensive biomarker
discovery strategy to further select and structurally validate two panels of six- and five-metabolites based
biomarker combinations with potential clinical utility for classifying UIA and its rupture using two
machine learning algorithms (LASSO and random forest), which are increasingly recognized as an
effective method to evaluate and predict disease states [20]. The plasma biomarker panel distinguished
UIAs from the controls with dramatically high performance with AUC of 0.9 in the training set and 0.843
in the validation set. More importantly, we developed a prediction model based on five metabolites to
distinguish RIA patients from UIA, with high effectiveness: AUCs in the training and validation sets ranged
from 0.99 to 0.929, respectively. Our findings highlighted the role of specific metabolites as novel early
diagnosis and risk biomarkers for IA. The metabolites we selected achieved excellent diagnostic and
predictive power. The ROC curve indicated the potential biomarker panels would be suitable for diagnosis
and rupture risk assessment of IAs.
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Intracranial aneurysms result in high morbidity and mortality due to a significant rate of asymptomatic
carrying rate and cause damage to the nervous system after rupture [21]. Although DSA is currently the
gold standard for the diagnosis and risk assessment of IAs [22], regular and repeated invasive
examinations are challenging to perform in large scale population screening because of health risk,
subjective variation in imaging interpretation, and cost [23]. Thus, in this regard, an urgent need is
required to establish and validate biomarkers with high specificity and accuracy for early diagnosis,
dynamic monitoring and assessment of IA rupture risk. With rapid technological evolution, metabolomics
is increasingly being used to define predictive biomarkers for diseases, particularly cardiovascular
disease, and is increasingly becoming a blueprint for understanding the pathophysiological mechanisms
of disease. Our study provided a comprehensive picture of metabolites in the entire spectra of IA patients
and determined potential biomarkers for its detection and risk assessment, allowing a better
understanding of the pathologic process of IA.

There are several notable findings. The metabolic profile analysis showed significantly altered pathways
in patients with UIA compared to controls, among which glutathione metabolism emerges as the most
significantly dysregulated. Recent research indicated that upregulation of glutathione metabolism could
increase the production of reactive oxygen species (ROS), which plays a vital role in the pathogenesis of
IAs [24]. And it also enhances vascular endothelial growth factor receptor 2 (VEGFR2) activation, which is
a fundamental regulator of angiogenesis and plays an important role in vascular smooth muscle cell
phenotypic modulation [25]. Correspondingly, our study showed that glycine and L-ornithine increased
significantly in UIA patients in this pathway. Therefore, we hypothesize that these amino acid metabolites
may contribute to IA formation through oxidative stress. Previous study has found significant metabolic
abnormalities of amino acids and fatty acids in patients with unruptured aneurysms [5]. Our finding was
consistent with it, but our results further suggested that fatty acid metabolism mainly contributed to the
progressive stage of IA. With the aggravation of IA, linoleic acid metabolism pathway and vascular
smooth muscle contraction pathway were typically enriched. Specifically, arachidonic acid plays a vital
role in both two pathways. Recent studies have found that arachidonic acid metabolites promote the
occurrence, development and plaque instability of atherosclerosis [26], which is a risk factor for IA [27].
Therefore, it is reasonable to speculate that arachidonic acid plays a role in the progression of IA.
Moreover, it is well known for the role of phenotypic transformation of vascular smooth muscle cells in
the progression of IA [28, 29]. In our study, there existed characteristic enrichment of vascular smooth
muscle contraction pathway accompanied by the decrease in adenosine content. At the same time,
methylation-modified adenosine such as N6-methyladenosine and 1-methyladenosine, as biomarkers for
the diagnostic model, are also significantly down-regulated in UIA. Therefore, we assume that these
metabolites may be involved in decreasing vascular smooth muscle contractility.

Among the top fold changed metabolites between RIA and UIA, we were surprised to find a significant
decrease in various glycine-conjugated secondary bile acids, of which glycochenodeoxycholic acid was
also a biomarker in rupture prediction models. Glycochenodeoxycholic acid is produced by the action of
enzymes existing in the microbial flora of the colonic environment [30]. Previous animal and human
studies have demonstrated that alterations in gut microbiota contribute to the rupture of intracranial
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aneurysms [31, 32]. Our study suggests that secondary bile acids may mediate the pathogenic effect of
gut microbiota disturbance on IAs, which needs to be further confirmed in future studies. Subsequently,
uridine and uracil decreased dynamically with the IA and its rupture. Uridine played a crucial role in the
central nervous system and uridine administration had anti-epileptic actions [33]. Accordingly, drug target
enrichment in a large-scale GWAS research showed pleiotropic characteristics of anti-epileptic drugs with
the genetic association of intracranial aneurysms [34]. Therefore, our study raised the possibility that
uridine may also have a potential treatment effect on IAs.

Despite the valuable results of our study, our research also has several limitations. Firstly, it was
performed in small cohorts and was not fully validated in the prospective cohort study. Therefore, large,
multicenter clinical trials will be needed to evaluate the precision and robustness of the two panels as
non-invasive biomarkers for IAs. Secondly, taking into account the fact that the aneurysm rupture event
itself can also cause the body's stress response, some metabolites that change significantly in the rupture
group can only indicate the post-rupture state rather than a risk predictor. However, the metabolites
involved in the pathologic process of intracranial aneurysms still have fundamental application
prospects for rupture risk prediction, and it is worthwhile further to verify their mechanism through basic
experiments in the future. Thirdly, other risk factors that may affect IAs were not involved in our study
including genes and hemodynamic parameters. Moreover, the detailed roles of the biomarker metabolites
in the pathogenesis of IA require further investigation on potential therapeutic targets, which must be
further elucidated or experimentally validated.

Conclusions
In summary, our study has exemplified the power of combining metabolomics and machine learning
algorithms for identifying potential metabolic biomarkers to discriminate UIA from controls and even
predict the development of UIA. These prediction models demonstrate the potential of metabolic markers
as non-invasive risk diagnostic tools for IA and may also be applied in epidemiologic settings to predict
the percentage of individuals with UIAs at high risk of rupture. Such a novel approach may have a
profound impact on the clinical assessment and management of IAs.
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Table 1 Demographic and clinical features of the study cohort  

  Control(n=30)  UIAs(n=42) RIAs(n=33) P value

Patient characteristics      

Age, years* 51.00±12.67 53.31±10.65 58.36±11.51 0.066

Female§ 17 (56.7%) 34 (81.0%) 23 (69.7%) 0.083

Tobacco use§ 1 (3.3%) 2 (4.8%) 5 (15.2%) 0.14

Comorbidities§        

Hypertension 7 (23.3%) 21 (50%) 18 (54.5%) 0.026a

Cardiac disease  3 (10.0%) 1 (2.4%) 0 0.096

Hypercholesterolemia 2 (6.7%) 5 (11.9%) 1 (3.0%) 0.346

Stroke history 6 (20.0%) 4 (9.5%) 0 0.026

Diabetes mellitus 3 (10.0%) 3 (7.1%) 4 (12.1%) 0.762

Aneurysm characteristics§      

Multiplicity NA 11 (26.2%) 14 (42.4%) 0.139

Regular morphology NA 39 (92.9%) 15 (45.5%) ＜0.001b

Size#        

max diameter, mm NA 4.30 (3.40,5.25) 5.00 (4.00,7.53) 0.288

Location§       0.006b

ICA NA 29(69.0%) 8 (24.2%)  

MCA NA 6 (14.3%) 7 (21.2%)  

PCA NA 0 1 (3.0%)  

BA NA 1 (2.4%) 2 (6.1%)  

AComA NA 3(7.1%) 8 (24.2%)  

PComA NA 3 (7.1%) 7 (21.2%)  

Table legend 

* mean ± SD, § n (%), # median (IQR).
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For the difference comparison of clinical characteristics among the three groups, one-way analysis of
variance (ANOVA) was employed in cases of continuous normally distributed data. Non-normally
distributed variables between two groups were analyzed by  Mann-whitney test. Categorical variables
were compared by the χ2 test.

Hypertension is defined as blood pressure＞140/90mmHg. Cardiac disease is defined as history of
myocardial infarction or angina. NA: not available, ICA: internal carotid artery, MCA: middle cerebral artery,
PCA: posterior cerebral artery, BA: basilar artery, AComA: anterior communicating artery, PComA: posterior
communicating artery.

a P < 0.05 for equality among control, UIA and RIA. b P < 0.05 for equality between UIA and RIA.

Figures

Figure 1

Study design and workflow of biomarker discovery in intracranial aneurysms.

UIA= unruptured intracranial aneurysm, RIA= ruptured intracranial aneurysm, TOF= time-of-flight, MRM=
multiple reaction monitoring, PCA = principal components analysis, OPLS- DA = orthogonal partial least
squares discriminant analysis, LASSO= least absolute shrinkage and selection operator, ROC = receiver
operating characteristic.

Figure 2

Metabolic profiles distinguishing unruptured intracranial aneurysm (UIA) patients from controls

 (A) OPLS-DA score plots of UIA patients and control participants. (B) Volcano plots of UIA patients and
control participants. log2FC > log21.2 or < -log21.2, -log10FDR> 1 were considered as significant. (C) Bar
graphs presented as log2FC of significantly different metabolites between UIA patients and control
participants. (D) KEGG enrichment bubble plots of UIA patients and control participants. The color of
bubbles represents the value of adjusted p value and the pathways of p< 0.05 are marked in the figure.
The size of bubbles represents the number of counts (sorted by gene ratio).
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Figure 3

Metabolic profiles distinguishing ruptured intracranial aneurysm (RIA) patients from UIA patients

(A) OPLS-DA score plots of RIA patients and UIA patients. (B) Volcano plots of RIA patients and UIA
patients. log2FC > log21.2 or < -log21.2, -log10FDR> 1 were considered as significant. (C) Bar graphs
presented as log2FC of significantly different metabolites between RIA patients and UIA patients. (D)
KEGG enrichment bubble plots of RIA patients and UIA patients. The color of bubbles represents the value
of adjusted p value and the pathways of p< 0.05 are marked in the figure. The size of bubbles represents
the number of counts (sorted by gene ratio).
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Figure 4

Potential biomarker panels for predicting the presence of UIA and differentiate RIA from UIA

(A) Workflow for biomarker discovery identified by integrated machine learning method. (B) ROC curve of
potential plasma metabolites biomarkers discriminating UIAs patients and control participants in training
set, (C) ROC curve of potential plasma metabolites biomarkers discriminating UIAs patients and control
participants in validation set, (D) Scatter plot showing model prediction performance in discriminating
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UIA patients and control participants. Based on the training set and verification set data, the logistic
regression was used to build the optimal biomarkers model. The horizontal coordinate is the actual group
of the sample, and the vertical coordinates are the possibility of the sample's group predicted by the
model. The dotted line is the cuff-off value of 0.5. (E) ROC curve of potential plasma metabolites
biomarkers discriminating RIA patients and UIA patients in training set. (F) ROC curve of potential plasma
metabolites biomarkers discriminating RIA patients and UIA patients in validation set. (G) Scatter plot
showing model prediction performance in discriminating RIA patients and UIA patients.

Figure 5

Relative content change of potential biomarkers in training and validation set. (A) Box plots of M6
biomarkers in UIAs patients and control participants. (B) Box plots of M5 biomarkers in RIA patients and
UIA patients.
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