

Preprints are preliminary reports that have not undergone peer review. They should not be considered conclusive, used to inform clinical practice, or referenced by the media as validated information.

Endoplasmic reticulum stress reduces PGC-1a in skeletal muscle through ATF4 and the mTOR-CRTC2 axis

Marta Montori-Grau David Aguilar-Recarte Mohammad Zarei Javier Pizarro-Delgado Xavier Palomer Manuel Vázquez-Carrera

Video Byte

Keywords: insulin resistance, ER stress, PGC-1α, mTOR, CRTC2, IRS1, skeletal muscle, mouse model, cell culture, palmitate, tunicamycin, myotubes, tunicamycin, signaling axis, molecular biology, research, Cell Communication and Signaling, type 2 diabetes mellitus, muscle cells, muscle

Posted Date: May 18th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1667970/v1

License: (a) This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Abstract

Insulin resistance and its progression to type 2 diabetes mellitus is an important public health concern. Both endoplasmic reticulum (ER) stress and reduced levels of the regulatory protein PGC-1a have been implicated in insulin resistance, but little is known about any interactions between them in this context. A recent study used cultured human skeletal muscle cells and mouse experiments to examine these potential interactions. In both cultured cells and mice, induced ER stress led to a decrease in PGC-1a and an increase in expression of ATF4, a transcription factor. To see if ATF4 was influencing PGC-1a expression, researchers increased ATF4 expression without ER stress, which also decreased PGC-1a expression, and reducing ATF4 before inducing ER stress blocked the drop in PGC-1a. ER stress activated mTOR, a major regulatory protein, and reduced levels of CRTC2, which is a transcription co-activator that increases PGC-1a transcription. Inhibiting mTOR activity or blocking one of its downstream targets prevented the ER stress-induced reduction in CRTC2 and PGC-1a expression. These results demonstrate that PGC-1a transcription is regulated by ATF3 and the mTOR-CRTC2 axis in ER stressed skeletal muscle. and point to these pathways as potential therapeutic targets for insulin resistance.