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Abstract 

In the present study, the sound transmission loss through the air-filled rectangular double-walled sandwich 

smart magneto-electro-elastic (MEE) plates with porous functionally graded material (PFGM) core layer 

under initial external electric and magnetic potentials, and external mean airflow is studied using the third-

order shear deformation theory (TSDT). Three states of uneven porosity distributions are considered for 

PFGM core layer which are supposed to vary along the in-plane and thickness directions based on the 

power-law model. The derivation of vibroacoustic equations in the form of coupled relations is realized by 

implementing Hamilton’s principle. An analytical approach, i.e. second velocity potential, is exploited to 
solve them in conjunction with double Fourier series, and the final result is the desired sound transmission 

loss (STL) equation. The developed solution is investigated in terms of its accuracy and precision via a 

comparison with other available data in existing research. Parameter studies reveal the impacts of the initial 

electric and magnetic potentials, porosity distributions, incident angles, acoustic cavity depth on STL 

through the double-walled sandwich smart MEE plates.  

Keywords Sound Transmission Loss, Magneto-electro-elastic Plate, Porosity, Functionally Graded 

Material, Third-Order Shear Deformation Theory.  

 

I. Introduction  

Introducing the concept of porosity in other fields of sciences has resulted in interesting 

concepts such as metal foams that present various advantages such as superior energy absorption 

[1] and resistance to heat and impact [2]. The shape of the pores, pore strut or wall arrangement, 

surface area and surface roughness, in addition to porosity and pore size, determine the behavior 

of porous materials. It is, thus, mandatory to define the relation between pore features and physical 

behavior of such materials to be able to use them in different applications or studies. Until now, 

several experimental and numerical projects investigated the influence of the porous materials on 

mailto:Tchanach@engr.tu.ac.th)
mailto:peyman.saffari1364@gmail.com)
mailto:rpeyman@engr.tu.ac.th
mailto:refahati@damavandiau.ac.ir
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the dynamic problems, such as, free and forced vibration of beams [3], plates [4], and cylindrical 

shells [5]. Because of high stiffness-to-weight rations and high strength to-weight in plates, these 

significant structural components are applied in many engineering applications like aviation, 

buildings, submarines, and automotive [6–9]. Al Rjoub and Alshatnawi [10] investigated the 

influence of even porosity distribution on the variations of natural frequencies of functionally-

graded material (FGM) cracked plate using The power law model. Formed from a combination of 

metal and ceramic, FGMs display a uniformly-varying distribution of properties along a desired 

path in the structure. Muc and Flis [11] studied the flutter characteristics and free vibrations of 

PFGM plates via the TSDT, analytical and Rayleigh-Ritz methods. Roodgar Saffari et al. [12–15] 

used NSGT in the framework of the first-order shear deformation shell assumption to study the 

free vibration of fluid-conveying BN nanotubes. Hashemi et al. [16] used Poincare–Lindstedt 

method (MPLM) to analyze the nonlinear free vibration behavior of in-plane bi-directional PFGM 

plate. Quan et al. [17,18] indicated the effect of the porosity coefficient, volume fraction index, 

and elastic medium on the nonlinear vibration of PFGM sandwich plate subjected to the blast 

loading. Thongchom et al. [19, 21] investigated tensile strength and modulus of elasticity 

nanocomposite and sound transmission loss of sandwich cylindrical shell  

The capability of smart materials including piezoelectric (PZT), MEE, electrorheological fluid 

(ERF) to adept their properties in reaction to environmental factors including electricity, magnetic, 

heat, and loading is one of the major reasons for the wide range of studies conducted on them 

[22,23]. MEE composites constitute a motivating type of composite smart materials which offer 

the advantages of both piezomagnetism and piezoelectricity. The ability provided by converting 

energy between different phases partly explains the interest of researchers into these materials [24–
26]. Vinyas and Kattimani [27] presented a finite element method (FEM) to calculate the static 

parameters of FG MEE rectangular plates under the thermal environment. A simple velocity 

feedback control law for vibration suppression skew MEE plates utilizing active constrained layer 

damping (ACLD) based on the layerwise shear deformation theory was carried out by Vinyas [28]. 

Also, Vinyas [29] numerically analyzed the effect of porous properties on the frequency response 

of FGM MEE circular and annular plates taking account the third-order shear deformation theory 

TSDT and the FEM. Ebrahimi et al. [30] studied the effects of magnetic and electric potentials in 

conjunction with porosity volume fraction on the variations of FGM-MEE plate resting on elastic 

substrate applying TSDT. Arshid et al. [31] used the generalized differential quadrature method 

(GDQM) to investigate the natural frequencies of annular plate made up of FGM MEE under multi 

physical loads. Hamidi et al. [32] presented the dynamic behavior of MEE multilayer plates on the 

elastic substrate. Esayas and Kattimani [33] analyzed the influences of the porosity on the 

nonlinear vibration of FGM-MEE plates constricted layer damping patches. Sh et al. [34] used 

FSDT and finite element method (FEM) to study the geometrically nonlinear free vibration and 

transient problem of porous FGM-MEE plates. Dat et al. [35] investigated the effect of temperature 

increment, magnetic and electric potentials on the vibration behavior of sandwich MEE plate under 

blast loading.  

https://www.sciencedirect.com/science/article/abs/pii/S2352012420306147#!
https://www.sciencedirect.com/science/article/abs/pii/S2352012420306147#!
https://www.sciencedirect.com/science/article/pii/S026382232033227X?casa_token=rySEp0BZNCwAAAAA:O_2N0QJ_wqpJ5zhfxq8Vu8AwjoO51m_avhvX6STTYFrC9efRHD2VZpsI8h8lP74RySqMHG9-9sQ#!
https://www.sciencedirect.com/science/article/pii/S026382232033227X?casa_token=rySEp0BZNCwAAAAA:O_2N0QJ_wqpJ5zhfxq8Vu8AwjoO51m_avhvX6STTYFrC9efRHD2VZpsI8h8lP74RySqMHG9-9sQ#!
https://www.sciencedirect.com/science/article/pii/S0263823121006741?casa_token=HLU0d0YmMeQAAAAA:FN9psCXPV7g4B1InDybgw56Fpi558yPyzOxNVoZToxuF2-iWzl967W45tGT0OJAk9eAAynhQPgs#!
https://www.sciencedirect.com/science/article/pii/S026382231731019X#!
https://www.sciencedirect.com/science/article/pii/S026382231731019X#!
https://www.sciencedirect.com/topics/engineering/layerwise
https://www.sciencedirect.com/topics/engineering/shear-deformation
https://www.sciencedirect.com/science/article/pii/S0263822318324164#!
https://www.sciencedirect.com/topics/engineering/effect-of-porosity
https://www.sciencedirect.com/science/article/pii/S2214914721000787#!
https://www.sciencedirect.com/science/article/pii/S2214914721000787#!
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The study on double-walled structures is inseparable from the research on double-walled plates 

as they are promising components in rapid transit, aerospace vehicles and double-glazed windows, 

among others [36]. Outstanding features of double-walled structures in mechanical and acoustic 

aspects have made them an attractive choice in different fields of science from civil engineering 

to aerospace [37–39]. The continuous research on their noise cancellation characteristics is one 

important area where their great potential is being exploited via empirical and analytical means. 

The literature is rich in studies focusing on the vibroacoustic features of noise transmission of 

single or double-walled shells and plates. A statistical energy analysis (SEA) was presented by 

Oliazadeh et al. [40] to estimate sound transmission loss (STL) through single-and double-walled 

thin rectangular plates considering absorbing material. A common method of evaluation of noise 

attenuation is the measurement of sound transmission loss. To this aim, the energy of the impingent 

sound waves is divided over that of the transmitted sound waves. The resulting ratio is usually 

expressed in dB. They validated their results with the experimental outcomes and demonstrated 

that filling the acoustic cavity between the double-walled plate with lightweight absorbing material 

like fiberglass rises the STL at the critical frequency. Xin et al. [41] studied the influence of 

external mean flow on the changes of STL of double rectangular plate via acoustic velocity 

potential. The STL through the triple-panel partition is compared with that of a double-panel 

partition by Xin and Lu [42] for clamped boundary conditions. Talebitooti et al. [43] employed 

wo-variable refined plate theory for predicting the STL cross laminated composite plate in the 

presence of external mean flow. Based on the viscoelastic Zener model in the framework of FSDT, 

Amirinezhad et al. [44] analyzed the wave propagation across plate made of polymeric foam. The 

main results denoted that increasing damping reduces the stiffness and therefore reduces STL in 

high frequencies. Danesh and Ghadami [45] analytically investigated the effect of electric voltage 

of piezoelectric materials on the variation of STL through double-walled FGM piezoelectric plate 

using TSDT. They proved that Using Helium and Hydrogen gases for filling the acoustic cavity 

between the two piezoelectric plates has a substantial effect on the sound isolation performance. 

Recently, Hasheminejad and Jamalpoor [46] applied the classical plate theory (CPT) and multi-

input multi-output sliding mode control (MIMOSMC) plan to improve the STL of simply 

supported hybrid smart double sandwich plate including PZT and ERF materials. The 

enhancement of STL through a double-plate structure around the mass-air-mass resonance 

frequency is presented by Mao [47] using electromagnetic shunt damper (EMSD). Wang et al. [48] 

analyzed the effect of the external mean flow on the STL of a metamaterial plate submerged in 

moving fluids. Based on the TSDT and Rayleigh integral, Gunasekaran et al. [49] investigated the 

vibroacoustic behavior of FGM graphene reinforced composite plate subjected to the nonuniform 

edge loads. Ghassabi and Talebitooti [50] applied three-dimensional (3D) theory of elasticity to 

study the acoustic response of MEE shell structure.  

Despite the growing attention to different aspects of single or double-walled plates with respect 

to their noise transmission, the authors found no relevant study on the STL of a finite double-

walled simply supported sandwich PFGM-MEE plate under the action of harmonic plane sound 

waves in the presence of external mean flow based on the assumptions of TSDT. The current 

https://www.sciencedirect.com/science/article/pii/S0263822318330289#!
https://www.sciencedirect.com/topics/materials-science/helium
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Hasheminejad%2C+Seyyed+M
https://www.sciencedirect.com/science/article/abs/pii/S099775382100036X#!
https://www.sciencedirect.com/topics/engineering/composite-plate
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research tries to cover this gap and provide insightful explanations on the behavior of such 

structures. The material characteristics of PFGM core layer change slowly through the thickness 

via power-law scheme. Using Hamilton’s principle and TSDT, the 

coupled vibroacoustic equations are derived. One of the methods to solve the derived 

vibroacoustic equations is the sound velocity potential approach. This method is employed here to 

solve the coupled equations of the considered double-walled plate with the equations of acoustic 

cavity included. 

 

2. Preliminary formulations 

The problem schematic is displayed in Fig. 1. One should note the employed Cartesian 

coordinates defined for the double-walled rectangular sandwich MEE (𝑎 × 𝑏) plate encompassing 

the acoustic cavity baffled in a wall of infinite dimensions. Also, a plane sound wave of time-

harmonic nature, with the azimuth angle 0° ≤ 𝛼 ≤ 360° and elevation angle 0° ≤ 𝛽 ≤ 90°, 
impinges the top surface of upper MEE plate. It is supposed that each sandwich MEE plate is 

composed of two identical BaTiO3-CoFe2O4 piezomagnetic layers with uniform thickness ℎm 

and PFGM core layer with uniform thickness ℎc. Furthermore, each MEE plate is subjected to 

electric Υ(𝑥, 𝑦, 𝑧, 𝑡) and magnetic ψ(𝑥, 𝑦, 𝑧, 𝑡) potentials. As can be seen, the acoustic cavity depth 

is denoted with the symbol 𝐿. As can be seen, an external mean flow passes in the incident field 
with a constant velocity 𝑉.  

2.1. Constitutive relations 

To derive the dynamic equations governing the motion, based on the TSDT which considers 

both rotary inertia and shear deformation in the transverse direction, the classical displacement 

field (𝑈, 𝑉,𝑊) in Cartesian coordinates for each sandwich MEE plate is employed in the form [51] 𝑈𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0𝑖(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑥𝑖(𝑥, 𝑦, 𝑡) − 4𝑧33ℎ2 (𝜃𝑥𝑖(𝑥, 𝑦, 𝑡) + 𝜕𝑊0𝑖(𝑥,𝑦,𝑡)𝜕𝑥 ),  
𝑉𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0𝑖(𝑥, 𝑦, 𝑡) + 𝑧𝜃𝑦𝑖(𝑥, 𝑦, 𝑡) − 4𝑧33ℎ2 (𝜃𝑦𝑖(𝑥, 𝑦, 𝑡) + 𝜕𝑊0𝑖(𝑥,𝑦,𝑡)𝜕𝑦 ),  
𝑊𝑖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑊0𝑖(𝑥, 𝑦, 𝑡),  

 

 

(1) 

where 𝑖 = 1,2,  in plane deflections of the mid-surface along 𝑥 and 𝑦 directions presented with 𝑢0 

and 𝑣0, respectively. Furthermore 𝜃𝑦 and 𝜃𝑥 are the rotations of the middle plane along 𝑥 and 𝑦 

directions, respectively, and 𝑤 denotes the lateral plate displacement. Regarding the linear strain-

displacement relation, the normal (𝜀𝑥𝑥, 𝜀𝑦𝑦) and shear (𝛾𝑥𝑧, 𝛾𝑦𝑧 , 𝛾𝑥𝑦) strain components of each 

sandwich MEE plate are defined as  
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𝜀𝑥𝑥𝑖 = 𝜕𝑢0𝑖𝜕𝑥 + 𝑧 𝜕𝜃𝑥𝑖𝜕𝑥 − 𝐶1𝑧3 (𝜕𝜃𝑥𝑖𝜕𝑥 + 𝜕2𝑊0𝑖𝜕𝑥2 ), 𝜀𝑦𝑦𝑖 = 𝜕𝑣0𝑖𝜕𝑦 + 𝑧 𝜕𝜃𝑦𝜕𝑦 − 𝐶1𝑧3 (𝜕𝜃𝑦𝜕𝑦 + 𝜕2𝑊0𝑖𝜕𝑦2 ),  𝛾𝑥𝑦𝑖 = 𝜕𝑢0𝑖𝜕𝑦 + 𝜕𝑣0𝑖𝜕𝑥 + 𝑧 (𝜕𝜃𝑥𝑖𝜕𝑦 + 𝜕𝜃𝑦𝑖𝜕𝑥 ) − 𝐶1𝑧3 (𝜕𝜃𝑥𝑖𝜕𝑦 + 𝜕𝜃𝑦𝑖𝜕𝑥 + 2𝜕2𝑊0𝑖𝜕𝑥𝜕𝑦 ) , 𝛾𝑥𝑧𝑖 = (1 − 3𝐶1𝑧2) (𝜃𝑥𝑖 + 𝜕𝑊0𝑖𝜕𝑥 ) , 
𝛾𝑦𝑧 = (1 − 3𝐶1𝑧2) (𝜃𝑦𝑖 + 𝜕𝑊0𝑖𝜕𝑦 ) 

 

(2) 

where 𝑖 = 1,2 and 𝐶1 = 43ℎ2. The classical constitutive stress-strain relations including normal (𝜎𝑥𝑥, 𝜎𝑦𝑦) and shear (𝜏𝑥𝑧 , 𝜏𝑦𝑧 , 𝜏𝑥𝑦) stress components for the PFGM core layer in each sandwich 

plate are presented as  

{  
  𝜎𝑥𝑥𝑖𝜎𝑦𝑦𝑖𝜏𝑦𝑧𝑖𝜏𝑥𝑧𝑖𝜏𝑥𝑦𝑖}  

  
PFGM

= [  
   𝑄11(𝑧) 𝑄12(𝑧) 0 0 0𝑄12(𝑧) 𝑄22(𝑧) 0 0 00 0 𝑄66(𝑧) 0 00 0 0 𝑄44(𝑧) 00 0 0 0 𝑄55(𝑧)]  

   
PFGM{  

  𝜀𝑥𝑥𝑖𝜀𝑦𝑦𝑖𝛾𝑦𝑧𝑖𝛾𝑥𝑧𝑖𝛾𝑥𝑦𝑖}  
  ,   

𝑄11 = 𝐸(𝑧)1−𝜗2(𝑧) , 𝑄22 = 𝐸(𝑧)1−𝜗2(𝑧) , 𝑄12 = 𝜗(𝑧)𝐸(𝑧)1−𝜗2(𝑧) , 𝑄66 = 𝐺12(𝑧), 𝑄44 = 𝐺23(𝑧), 𝑄55 = 𝐺13(𝑧). 

 

 

(3) 

where 𝑖 = 1,2. 𝐸 and 𝜗 refer to Young modulus and Poisson’s ratio, respectively. To achieve FG-

like properties, the bottom and top surfaces of the core layer are purely made from metal and 

ceramic, respectively. As already described, three porosity distribution patterns are considered for 

this study. Accordingly, the corresponding values of elastic modulus, mass density and Poisson’s 
ratio based on the rule of mixture with three different types of uneven porosity distributions are 

described as [52] 

Type A: 𝐸(𝑧) = (𝐸c − 𝐸m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝐸m − (1 − 𝑒−0.5𝜁)(𝐸c + 𝐸m)(1 − 2 |𝑧| ℎc⁄ ), 𝜌(𝑧) = (𝜌c − 𝜌m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝜌m − (1 − 𝑒−0.5𝜁)(𝜌c + 𝜌m)(1 − 2 |𝑧| ℎc⁄ ), 𝜗(𝑧) = (𝜗c − 𝜗m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝜗m − (1 − 𝑒−0.5𝜁)(𝜗c + 𝜗m)(1 − 2 |𝑧| ℎc⁄ ), 
 

(4) 

Type B: 𝐸(𝑧) = (𝐸c − 𝐸m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝐸m − log(1 + 0.5𝜁)(𝐸c + 𝐸m)(1 − 2 |𝑧| ℎ⁄ ),  
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𝜌(𝑧) = (𝜌c − 𝜌m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝜌m − log(1 + 0.5𝜁)(𝜌c + 𝜌m)(1 − 2 |𝑧| ℎ⁄ ), 𝜗(𝑧) = (𝜗c − 𝜗m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝜗m − log(1 + 0.5𝜁)(𝜗c + 𝜗m)(1 − 2 |𝑧| ℎ⁄ )  (5) 

         Type C: 𝐸(𝑧) = (𝐸c − 𝐸m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝐸m − 0.5𝜁(𝐸c + 𝐸m), 𝜌(𝑧) = (𝜌c − 𝜌m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝜌m − 0.5𝜁(𝜌c + 𝜌m), 𝜗(𝑧) = (𝜗c − 𝜗m)(𝑧 ℎ⁄ + 0.5)𝑝 + 𝜗m − 0.5𝜁(𝜗c + 𝜗m), 
 

(6) 

in which m and c signify, respectively, metal and ceramic phases. Also, 𝜌 is the mass density. The 

always-positive gradient index (𝑝) is used in this study to determine the changes of a specific 

property in the thickness direction. The greater the gradient index, the more metallic the structure. 

Furthermore, 𝜁 expresses the porosity coefficient. It is noteworthy that for each MEE plate, the 

basic relations including electric displacement and magnetic induction, and stress tensor can be 

expressed as [53] 

{  
  𝜎𝑥𝑥𝑖𝜎𝑦𝑦𝑖𝜏𝑦𝑧𝑖𝜏𝑥𝑧𝑖𝜏𝑥𝑦𝑖}  

  
m
= [  
  𝑐11 𝑐12 0 0 0𝑐12 𝑐22 0 0 00 0 𝑐44 0 00 0 0 𝑐55 00 0 0 0 𝑐66]  

  
{  
  𝜀𝑥𝑥𝑖𝜀𝑦𝑦𝑖𝛾𝑦𝑧𝑖𝛾𝑥𝑧𝑖𝛾𝑥𝑦𝑖}  

  − [  
  0 0 𝑒310 0 𝑒320 𝑒24 0𝑒15 0 00 0 0 ]  

  {Ε𝑥𝑖Ε𝑦𝑖Ε𝑧𝑖} −

[  
  0 0 𝑓310 0 𝑓320 𝑓24 0𝑓15 0 00 0 0 ]  

  {ℋ𝑥𝑖ℋ𝑦𝑖ℋ𝑧𝑖},  
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{𝐷𝑥𝑖𝐷𝑦𝑖𝐷𝑧𝑖} = [  
  0 0 𝑒310 0 𝑒320 𝑒24 0𝑒15 0 00 0 0 ]  

  𝑇
{  
  𝜀𝑥𝑥𝑖𝜀𝑦𝑦𝑖𝛾𝑦𝑧𝑖𝛾𝑥𝑧𝑖𝛾𝑥𝑦𝑖}  

  + [𝜅11 0 00 𝜅22 00 0 𝜅33] {Ε𝑥𝑖Ε𝑦𝑖Ε𝑧𝑖} +
[𝜇11 0 00 𝜇22 00 0 𝜇33] {ℋ𝑥𝑖ℋ𝑦𝑖ℋ𝑧𝑖},  
{𝐵𝑥𝑖𝐵𝑦𝑖𝐵𝑧𝑖} = [  

  0 0 𝑓310 0 𝑓320 𝑓24 0𝑓15 0 00 0 0 ]  
  𝑇
{  
  𝜀𝑥𝑥𝑖𝜀𝑦𝑦𝑖𝛾𝑦𝑧𝑖𝛾𝑥𝑧𝑖𝛾𝑥𝑦𝑖}  

  + [𝜇11 0 00 𝜇22 00 0 𝜇33] {Ε𝑥𝑖Ε𝑦𝑖Ε𝑧𝑖} +
[𝛾11 0 00 𝛾22 00 0 𝛾33] {ℋ𝑥𝑖ℋ𝑦𝑖ℋ𝑧𝑖},  

 

 

 

(7) 

where 𝑖 = 1,2. Furthermore, [𝐁] and [𝐃] indicate the magnetic induction and electric 

displacement, respectively. Furthermore, [𝜸], [𝝁], [𝜿], [𝒇], [𝒆], and [𝒄] are magnetic, 

magnetoelectric, dielectric, piezomagnetic, piezoelectric, and the elastic constant matrices, 

respectively. Also, the magnetic and electric fields relating to the magnetic and electric potentials, 

respectively, are demonstrated with [ℋ] and [𝚬]. To satisfy Maxwell’s equations in the proposed 
procedure, two assumptions are made: the magnetic field is the negative gradient of ψ(x, y, z, t) 
and the electric field is the negative gradient of Υ(x, y, z, t). Accordingly, one can write Ε𝑗 = −∂Υ/𝜕𝑗, ℋ𝑗 = −∂Ψ/𝜕𝑗,   (𝑗 = 𝑥, 𝑦, 𝑧).   (8) 

In view of the boundary conditions at upper and bottom surfaces of each MEE layer, it is 

possible to combine linear and cosine variations to explicitly describe the electric and magnetic 

potentials as in [54] 

Υ(𝑥, 𝑦, 𝑧, 𝑡) = −cos {𝜋[𝑧±(ℎc+ℎm2 )]ℎm } Υ̅(𝑥, 𝑦, 𝑡) + 2[𝑧±(ℎc+ℎm2 )]𝜙0ℎm ,   
Ψ(𝑥, 𝑦, 𝑧, 𝑡) = −cos {𝜋[𝑧±(ℎc+ℎm2 )]ℎm } Ψ̅(𝑥, 𝑦, 𝑡) + 2[𝑧±(ℎc+ℎm2 )]𝜓0ℎm ,  

 

(9) 

where 𝜙0 and 𝜓0 denote the determine the initial electric and magnetic potentials on the upper and 

lower surfaces of each MEE layer, respectively. Furthermore, Ψ̅ and Υ̅ refer to the two-dimensional 

magnetic and electric potentials. The vibroacoustic governing equations of motion for double-

walled sandwich MEE plate can be obtained using Hamilton’s principle as follows  
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δ𝜋 = 0, 𝜋 = ∫ (𝐾̅ − 𝑉̅ + 𝑊̅)𝑑𝑡𝑡𝑡0 = 0  (10) 

where 𝑉̅, 𝑊̅ and 𝐾̅ are the virtual strain energy, the work done by external forces (the work applied 

by the incidence sound wave and initial electric and magnetic potentials) and kinetic energy, 

respectively. By taking into account FSDT (Eq. (1)), the kinetic energy for double-walled 

sandwich MEE plate is expressed as  𝐾̅ = ∑ ∫ {∫ 𝜌m−ℎ𝑐/2−ℎm−ℎ𝑐/2 [(𝑈̇𝑖)2 + (𝑉̇𝑖)2 + (𝑊̇𝑖)2] 𝑑𝑧 + ∫ 𝜌ℎ𝑐/2−ℎ𝑐/2 [(𝑈̇𝑖)2 + (𝑉̇𝑖)2 +𝐴𝑖2𝑖=1(𝑊̇𝑖)2] dz + ∫ 𝜌mℎm+ℎ𝑐/2−ℎ𝑐/2 [(𝑈̇𝑖)2 + (𝑉̇𝑖)2 + (𝑊̇𝑖)2] dz} d𝐴𝑖 ,  
(11) 

where 𝜌m is the mass density of each MEE layer, and 𝐴 demonstrates the of cross-sectional area. 

The strain energy double-walled sandwich MEE plate is presented as 𝑉̅ = ∑ ∫ {∫ (𝜎𝑥𝑥𝑖𝜀𝑥𝑥𝑖 + 𝜎𝑦𝑦𝑖𝜀𝑦𝑦𝑖 + 𝜏𝑦𝑧𝑖𝛾𝑦𝑧𝑖 + 𝜏𝑥𝑧𝑖𝛾𝑥𝑧𝑖 + 𝜏𝑥𝑦𝑖𝛾𝑥𝑦𝑖 −−ℎ𝑐/2−ℎm−ℎ𝑐/2𝐴𝑖2𝑖=1𝐷𝑥𝑖Ε𝑥𝑖 − 𝐷𝑦𝑖Ε𝑦𝑖 − 𝐷𝑧𝑖Ε𝑧𝑖 − 𝐵𝑥𝑖ℋ𝑥𝑖 − 𝐵𝑦𝑖ℋ𝑦𝑖 − 𝐵𝑧𝑖ℋ𝑧𝑖)m𝑑𝑧 + ∫ (𝜎𝑥𝑥𝑖𝜀𝑥𝑥𝑖 +ℎ𝑐/2−ℎ𝑐/2𝜎𝑦𝑦𝑖𝜀𝑦𝑦𝑖 + 𝜏𝑦𝑧𝑖𝛾𝑦𝑧𝑖 + 𝜏𝑥𝑧𝑖𝛾𝑥𝑧𝑖 + 𝜏𝑥𝑦𝑖𝛾𝑥𝑦𝑖) d𝑧 + ∫ (𝜎𝑥𝑥𝑖𝜀𝑥𝑥𝑖 + 𝜎𝑦𝑦𝑖𝜀𝑦𝑦𝑖 +ℎm+ℎ𝑐/2−ℎ𝑐/2𝜏𝑦𝑧𝑖𝛾𝑦𝑧𝑖 + 𝜏𝑥𝑧𝑖𝛾𝑥𝑧𝑖 + 𝜏𝑥𝑦𝑖𝛾𝑥𝑦𝑖 − 𝐷𝑥𝑖Ε𝑥𝑖 −𝐷𝑦𝑖Ε𝑦𝑖 − 𝐷𝑧𝑖Ε𝑧𝑖 − 𝐵𝑥𝑖ℋ𝑥𝑖 − 𝐵𝑦𝑖ℋ𝑦𝑖 −𝐵𝑧𝑖ℋ𝑧𝑖)m d𝑧} d𝐴𝑖 .  

 

 

(12) 

The work of nonconservative forces, based on the sound velocity potential, is defined as 𝑊̅ = ∫ {𝑗𝜔𝜌0(Γ1 − Γ2)𝑊01 + (𝑁𝐸 + 𝑁𝑀) [(𝜕𝑊01𝜕𝑥 )2 + (𝜕𝑊01𝜕𝑦 )2]} d𝐴1 +𝐴1∫ {𝑗𝜔𝜌0(Γ2 − Γ3)𝑊02 + (𝑁𝐸 + 𝑁𝑀) [(𝜕𝑊02𝜕𝑥 )2 + (𝜕𝑊02𝜕𝑦 )2]} d𝐴2𝐴2 ,  
(13) 

where 𝑁𝐸 = ∫ 2−ℎ𝑐/2−ℎm−ℎ𝑐/2 𝑒31 𝜙0/ℎmd𝑧 + ∫ 2ℎm+ℎ𝑐/2ℎ𝑐/2 𝑒31 𝜙0/ℎmd𝑧 and 𝑁𝑀 =∫ 2−ℎ𝑐/2−ℎm−ℎ𝑐/2 𝑓31𝜓0/ℎmd𝑧 + ∫ 2ℎm+ℎ𝑐/2ℎ𝑐/2 𝑓31 𝜓0/ℎmd𝑧. Also, 𝜔 is the angular frequency and 𝜌0 

expresses air density. Furthermore Γ1, Γ2, and Γ3 express the velocity potentials in the sound 

incident area, acoustic cavity, and the transmitted acoustic area. The next step is to find the velocity 

potential. To this aim, the sound waves of any magnitude (positive and negative) are superposed 

in each zone. The results is written as [55] Γ1(𝑥, 𝑦, 𝑧; 𝑡) = 𝐼𝑒−𝑗(𝑘1𝑥𝑥+𝑘1𝑦𝑦+𝑘1𝑧𝑧−ω𝑡) + 𝑇1𝑒−𝑗(𝑘1𝑥𝑥+𝑘1𝑦𝑦−𝑘1𝑧𝑧−𝜔𝑡) , Γ2(𝑥, 𝑦, 𝑧; 𝑡) = 𝑇2𝑒−𝑗(𝑘2𝑥𝑥+𝑘2𝑦𝑦+𝑘2𝑧𝑧−𝜔𝑡) + 𝑇3𝑒−𝑗(𝑘2𝑥𝑥+𝑘2𝑦𝑦−𝑘2𝑧𝑧−𝜔𝑡), 
 

(14) 
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Γ3(𝑥, 𝑦, 𝑧; 𝑡) = 𝑇4𝑒−𝑗(𝑘3𝑥𝑥+𝑘3𝑦𝑦+𝑘3𝑧𝑧−𝜔𝑡)  
in which 𝐼 refers to the incident sound amplitude and 𝑇1 is the unknown modal coefficient of 

reflected sound wave in the negative-going incident region. Also 𝑇2 and 𝑇3, respectively, denote 

the unknown modal coefficients related with positive-going acoustic cavity and negative-going 

acoustic cavity. Furthermore, the unknown modal coefficient in positive-going transmitted wave 

is expressed with 𝑇4 and 𝑗 = √−1, and 𝑘1𝑥 = 𝑘1sin𝛽1cos𝛼, 𝑘1𝑦 = 𝑘1sin𝛽1sin𝛼, 𝑘1𝑧 = 𝑘1cos𝛽1, 𝑘2𝑥 = 𝑘2sin𝛽2cos𝛼, 𝑘2𝑦 = 𝑘2sin𝛽2sin𝛼, 𝑘2𝑧 = 𝑘2cos𝛽2, 𝑘3𝑥 = 𝑘3sin𝛽3cos𝛼, 𝑘3𝑦 = 𝑘3sin𝛽3sin𝛼, 𝑘3𝑧 = 𝑘3cos𝛽3.  

 

(15) 

where 𝑘1 = ω𝑐0(1+𝑀sin𝛽1cos𝛼) , 𝑘2 = 𝑘3 = ω𝑐0 are the air acoustic wavenumbers. Furthermore, 𝑐0 

states the air sound velocity and 𝑀 = 𝑉𝑐0 refers to the Mach number of the external flow. Moreover, 

in the acoustic cavity and the transmitted fluid region, the directions of sound propagation are as 

[55] 𝛽2 = arcsin ( sin𝛽11+𝑀sin𝛽1cos𝛼) , 𝛽3 = arcsin ( sin𝛽11+𝑀sin𝛽1cos𝛼)  (16) 

Next, substituting Eqs. (11), (12), and (13) into Hamilton’s principle (Eq. 10), after performing 

the required integration by parts in time and space, one ultimately obtains the general vibroacoustic 

equations of motion for the top and bottom sandwich MEE plates as 𝛿𝑢0𝑖 : 𝜕𝑁𝑥𝑥𝑖𝜕𝑥 + 𝜕𝑁𝑥𝑦𝑖𝜕𝑦 = 𝐼0𝑢0𝑖.. + 𝐼1𝜃𝑥𝑖.. − 𝐼3𝐶1 𝜕𝑊0𝑖..𝜕𝑥 ,  
𝛿𝑣0𝑖 : 𝜕𝑁𝑥𝑦𝑖𝜕𝑥 + 𝜕𝑁𝑦𝑦𝑖𝜕𝑦 = 𝐼0𝑣0𝑖.. + 𝐼1𝜃𝑦𝑖.. − 𝐼3𝐶1 𝜕𝑊0𝑖..𝜕𝑦  , 

𝛿𝑊0𝑖 : 𝜕𝑄𝑥𝑧𝑖𝜕𝑥 + 𝜕𝑄𝑦𝑧𝑖𝜕𝑦 − 3𝐶1 (𝜕𝑅𝑥𝑧𝑖𝜕𝑥 + 𝜕𝑅𝑦𝑧𝑖𝜕𝑦 ) + 𝐶1 (𝜕2𝑃𝑥𝑥𝑖𝜕𝑥2 + 2 𝜕2𝑃𝑥𝑦𝑖𝜕𝑥𝜕𝑦 + 𝜕2𝑃𝑦𝑦𝑖𝜕𝑦2 ) = 𝑞𝑖 +𝐼0𝑊0𝑖.. + 𝐼3𝐶1 (𝜕𝑢0𝑖..𝜕𝑥 + 𝜕𝑉0𝑖..𝜕𝑦 ) − 𝐼6𝐶12 (𝜕2𝑊0𝑖..𝜕𝑥2 + 𝜕2𝑊0𝑖..𝜕𝑦2 ) + 𝐼4𝐶1 (𝜕𝜃̈𝑥𝑖𝜕𝑥 + 𝜕𝜃𝑦𝑖..𝜕𝑦 ) − (𝑁𝐸 +𝑁𝑀) (𝜕2𝑊0𝑖𝜕𝑥2 + 𝜕2𝑊0𝑖𝜕𝑦2 ), 𝛿𝜃𝑥𝑖 : 𝜕𝑀𝑥𝑥𝑖𝜕𝑥 + 𝜕𝑀𝑥𝑦𝑖𝜕𝑦 − 𝐶1 (𝜕𝑃𝑥𝑥𝑖𝜕𝑥 + 𝜕𝑃𝑥𝑦𝑖𝜕𝑦 ) − 𝑄𝑥𝑧𝑖 + 3𝐶1𝑅𝑥𝑧𝑖 = 𝐼1𝑢0𝑖.. + 𝐼2𝜃𝑥𝑖.. −𝐶1𝐼4 𝜕𝑊0𝑖..𝜕𝑥  , 

 

 

 

(17) 
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𝛿𝜃𝑦𝑖 : 𝜕𝑀𝑦𝑦𝑖𝜕𝑦 + 𝜕𝑀𝑥𝑦𝑖𝜕𝑥 − 𝐶1 (𝜕𝑃𝑦𝑦𝑖𝜕𝑦 + 𝜕𝑃𝑥𝑦𝑖𝜕𝑥 ) − 𝑄𝑦𝑧𝑖 + 3𝐶1𝑅𝑦𝑧𝑖 = 𝐼1𝑣0𝑖.. + 𝐼2𝜃𝑦𝑖.. −𝐶1𝐼4 𝜕𝑊0𝑖..𝜕𝑦  , 

𝛿Υ̅𝑖 : ∫ (𝜕𝐷𝑥𝑖𝜕𝑥 cos {𝜋[𝑧+(ℎc+ℎm2 )]ℎm } + 𝜕𝐷𝑦𝑖𝜕𝑦 cos {𝜋[𝑧+(ℎc+ℎm2 )]ℎm } +−ℎ𝑐/2−ℎm−ℎ𝑐/2
𝜋ℎm𝐷𝑧𝑖 sin {𝜋[𝑧+(ℎc+ℎm2 )]ℎm })d𝑧 + ∫ (𝜕𝐷𝑥𝑖𝜕𝑥 cos {𝜋[𝑧−(ℎc+ℎm2 )]ℎm } +ℎm+ℎ𝑐/2ℎ𝑐/2
𝜕𝐷𝑦𝑖𝜕𝑦 cos {𝜋[𝑧−(ℎc+ℎm2 )]ℎm } + 𝜋ℎm𝐷𝑧𝑖 sin {𝜋[𝑧−(ℎc+ℎm2 )]ℎm }) = 0,  
𝛿Ψ̅𝑖 : ∫ (𝜕𝐵𝑥𝑖𝜕𝑥 cos {𝜋[𝑧+(ℎc+ℎm2 )]ℎm } + 𝜕𝐵𝑦𝑖𝜕𝑦 cos {𝜋[𝑧+(ℎc+ℎm2 )]ℎm } +−ℎ𝑐/2−ℎm−ℎ𝑐/2
𝜋ℎm 𝐵𝑧𝑖 sin {𝜋[𝑧+(ℎc+ℎm2 )]ℎm })d𝑧 + ∫ (𝜕𝐵𝑥𝑖𝜕𝑥 cos {𝜋[𝑧−(ℎc+ℎm2 )]ℎm } +ℎm+ℎ𝑐/2ℎ𝑐/2
𝜕𝐵𝑦𝑖𝜕𝑦 cos {𝜋[𝑧−(ℎc+ℎm2 )]ℎm } + 𝜋ℎm 𝐵𝑧𝑖 sin {𝜋[𝑧−(ℎc+ℎm2 )]ℎm }) = 0,  

where 𝑖 = 1,2 and 𝑞1 = 𝑗𝜔𝜌0(Γ1 − Γ2), 𝑞2 = 𝑗𝜔𝜌0(Γ2 − Γ3). Furthermore, the resultant 

momentum 𝑁𝑥𝑥, 𝑁𝑥𝑦, 𝑁𝑦𝑦 , 𝑀𝑥𝑥, 𝑀𝑥𝑦, 𝑀𝑦𝑦, 𝑄𝑥𝑧, 𝑄𝑦𝑧 and mass inertia terms 𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼6 are 

written as  {𝑁𝑥𝑥𝑖, 𝑁𝑦𝑦𝑖, 𝑁𝑥𝑦𝑖 } = ∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}m𝑑𝑧−ℎ𝑐/2−ℎm−ℎ𝑐/2 +∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}PFGM𝑑𝑧ℎ𝑐/2−ℎ𝑐/2 + ∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖 , 𝜏𝑥𝑦𝑖}m𝑑𝑧ℎ𝑐/2+ℎmℎ𝑐/2  ,  
 {𝑀𝑥𝑥𝑖, 𝑀𝑦𝑦𝑖 , 𝑀𝑥𝑦𝑖 } = ∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}m𝑧𝑑𝑧−ℎ𝑐/2−ℎm−ℎ𝑐/2 +∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}PFGM𝑧𝑑𝑧ℎ𝑐/2−ℎ𝑐/2 + ∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}m𝑧𝑑𝑧ℎ𝑐/2+ℎmℎ𝑐/2  , 

{𝑃𝑥𝑥𝑖, 𝑃𝑦𝑦𝑖 , 𝑃𝑥𝑦𝑖 } = ∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}m𝑧3𝑑𝑧−ℎ𝑐/2−ℎm−ℎ𝑐/2 +∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}PFGM𝑧3𝑑𝑧ℎ𝑐/2−ℎ𝑐/2 + ∫ {𝜎𝑥𝑥𝑖, 𝜎𝑦𝑦𝑖, 𝜏𝑥𝑦𝑖}m𝑧3𝑑𝑧ℎ𝑐/2+ℎmℎ𝑐/2  , 

{𝑄𝑥𝑧𝑖, 𝑄𝑦𝑧𝑖 } = [∫ {𝜏𝑥𝑧𝑖, 𝜏𝑦𝑧𝑖}m𝑑𝑧−ℎ𝑐/2−ℎm−ℎ𝑐/2 + ∫ {𝜏𝑥𝑧𝑖, 𝜏𝑦𝑧𝑖}PFGM𝑑𝑧ℎ𝑐/2−ℎ𝑐/2 +∫ {𝜏𝑥𝑧𝑖, 𝜏𝑦𝑧𝑖}m𝑑𝑧ℎ𝑐/2+ℎmℎ𝑐/2 ] , 

 

 

 

(18) 
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{𝑅𝑥𝑧𝑖, 𝑅𝑦𝑧𝑖 } = [∫ {𝜏𝑥𝑧𝑖, 𝜏𝑦𝑧𝑖}m𝑧2𝑑𝑧−ℎ𝑐/2−ℎm−ℎ𝑐/2 + ∫ {𝜏𝑥𝑧𝑖, 𝜏𝑦𝑧𝑖}PFGM𝑧2𝑑𝑧ℎ𝑐/2−ℎ𝑐/2 +∫ {𝜏𝑥𝑧𝑖, 𝜏𝑦𝑧𝑖}m𝑧2𝑑𝑧ℎ𝑐/2+ℎmℎ𝑐/2 ]  
{𝐼0, 𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼6} = ∫ 𝜌m{1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6}𝑑𝑧−ℎ𝑐/2−ℎm−ℎ𝑐/2 +∫ 𝜌(𝑧){1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6}PFGM𝑑𝑧ℎ𝑐/2−ℎ𝑐/2 + ∫ 𝜌m{1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6}𝑑𝑧ℎ𝑐/2+ℎmℎ𝑐/2 ,  𝐼1 = 𝐼1 − 𝐼3𝐶1, 𝐼2 = 𝐼2 − 2𝐶1𝐼4 + 𝐶12𝐼6, 𝐼4 = 𝐼4 − 𝐶1𝐼6. 

where 𝑖 = 1,2. Finally, substituting Eq. (18) (with respect to Eqs. (3) and (4)) into Eq. (17), the 

equilibrium equation in terms of displacement is derived and detailed in Appendix A.  

To analytically solving the governing equation of motion (A1-A7), the boundary conditions of 

all four edges of each sandwich MEE plate are supposed to be simply supported. Therefore, the 

displacement and moment conditions are presented as 𝑢0𝑖(𝑥, 0, 𝑡) = 𝑢0𝑖(𝑥, 𝑏, 𝑡) = 𝑣0𝑖(0, 𝑦, 𝑡) = 𝑣0𝑖(𝑎, 𝑦, 𝑡) = 0, 𝑊0𝑖(𝑥, 0, 𝑡) = 𝑊0𝑖(𝑥, 𝑏, 𝑡) = 𝑊0𝑖(0, 𝑦, 𝑡) = 𝑊0𝑖(𝑎, 𝑦, 𝑡) = 0,  𝜃𝑥𝑖(𝑥, 0, 𝑡) = 𝜃𝑥𝑖(𝑥, 𝑏, 𝑡) = 𝜃𝑦𝑖(0, 𝑦, 𝑡) = 𝜃𝑦𝑖(𝑎, 𝑦, 𝑡) = 0,  Υ̅𝑖(𝑥, 0, 𝜏) = Υ̅𝑖(𝑥, 𝑏, 𝑡) = Ψ̅𝑖(0, 𝑦, 𝑡) = Ψ̅𝑖(𝑎, 𝑦, 𝑡) = 0,  Υ̅𝑖(0, 𝑦, 𝜏) = Υ̅𝑖(𝑎, 𝑦, 𝑡) = Ψ̅𝑖(𝑥, 0, 𝑡) = Ψ̅𝑖(𝑥, 𝑏, 𝑡) = 0,  𝑀𝑥𝑥𝑖(0, 𝑦, 𝑡) = 𝑀𝑥𝑥𝑖(𝑎, 𝑦, 𝑡) = 𝑀𝑦𝑦𝑖(𝑥, 0, 𝑡) = 𝑀𝑦𝑦𝑖(𝑥, 𝑏, 𝑡) = 0, 𝑃𝑥𝑥𝑖(0, 𝑦, 𝑡) = 𝑃𝑥𝑥𝑖(𝑎, 𝑦, 𝑡) = 𝑃𝑦𝑦𝑖(𝑥, 0, 𝑡) = 𝑃𝑦𝑦𝑖(𝑥, 𝑏, 𝑡) = 0, 

 

 

(19) 

where 𝑖 = 1,2. To satisfy simply supported boundary condition, based on Navier-solution 

approach, the following deflection components for each sandwich MEE plate are defined  {𝑢0𝑖, 𝜃𝑥𝑖  } = ∑ ∑ cos(𝑚𝜋𝑥/𝑎)∞𝑛=1∞𝑚=1 sin(𝑛𝜋𝑦/𝑏){𝑢̃𝑖, 𝜃̃𝑥𝑖}𝑒𝑗𝜔𝑡 , {𝑣0𝑖 , 𝜃𝑦𝑖  } = ∑ ∑ sin(𝑚𝜋𝑥/𝑎)∞𝑛=1∞𝑚=1 cos(𝑛𝜋𝑦/𝑏){𝑣̃𝑖, 𝜃̃𝑦𝑖}𝑒𝑗𝜔𝑡 , {𝑊0𝑖, Υ̅𝑖, Ψ̅𝑖} = ∑ ∑ sin(𝑚𝜋𝑥/𝑎)∞𝑛=1∞𝑚=1 sin(𝑛𝜋𝑦/𝑏){𝑤̃𝑖, Υ̃𝑖, Ψ̃𝑖}𝑒𝑗𝜔𝑡,  
 

(20) 

where 𝑖 = 1,2 and 𝑚 and 𝑛 are, respectively, the half wave numbers along x and y directions. 

Furthermore, 𝑢̃𝑖 , 𝜃̃𝑥𝑖 , 𝑣̃𝑖 , 𝜃̃𝑦𝑖 , 𝑤̃𝑖, Υ̃𝑖, Ψ̃𝑖 signify the unknown modal coefficients related to the upper 

and bottom sandwich MEE plates, respectively.  

2.2. Acoustic model 
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One can define the velocity potential at this stage for the three acoustic zones (Γ1: incident zone, Γ2: enclosure, and Γ3: transmission zone) using the transverse modal function 𝐴𝑚𝑛 =sin(𝑚𝜋𝑥/𝑎 )sin(𝑛𝜋𝑦/𝑏) with respect to Eq. (14) for the sandwich panel according to [55] Γ1(𝑥, 𝑦, 𝑧; 𝑡) = ∑ ∑ 𝐼𝑚𝑛𝐴𝑚𝑛(𝑥, 𝑦)𝑒−𝑗(𝑘1𝑧𝑧−𝜔𝑡)∞𝑛=1∞𝑚=1 +∑ ∑ 𝑇1𝐴𝑚𝑛(𝑥, 𝑦)𝑒−𝑗(−𝑘1𝑧𝑧−𝜔𝑡)∞𝑛=1∞𝑚=1 , Γ1(𝑥, 𝑦, 𝑧; 𝑡) = ∑ ∑ 𝑇2𝐴𝑚𝑛(𝑥, 𝑦)𝑒−𝑗(𝑘2𝑧𝑧−𝜔𝑡)∞𝑛=1∞𝑚=1 +∑ ∑ 𝑇3𝐴𝑚𝑛(𝑥, 𝑦)𝑒−𝑗(−𝑘2𝑧𝑧−𝜔𝑡)∞𝑛=1∞𝑚=1 , Γ1(𝑥, 𝑦, 𝑧; 𝑡) = ∑ ∑ 𝑇4𝐴𝑚𝑛(𝑥, 𝑦)𝑒−𝑗(𝑘3𝑧𝑧−𝜔𝑡)∞𝑛=1∞𝑚=1   

 

(21) 

To describe the modal amplitude of the plate corresponding to impingent wave, one should 

exploit the ordinary orthogonality equations of modal functions. The details of this procedure are 

expressed as 𝐼𝑚𝑛 = 4(𝐼0/𝑎𝑏) ∫ ∫ 𝑒−𝑗(𝑘1𝑥𝑥+𝑘1𝑦𝑦)sin(𝑚𝜋𝑥/𝑎)sin(𝑛𝜋𝑦/𝑏)d𝑦d𝑥𝑏0𝑎0 , which 𝐼0 

denotes the amplitude of incident wave.  

To determine the coefficients (𝑇1, 𝑇2, 𝑇3, 𝑇4), it is imperative to concurrently satisfy the 

continuity conditions for the normal velocity components at the boundary of fluid and structure 

for the top and bottom surfaces of each sandwich MEE plate as 𝜌0𝑗𝜔 𝜕Γ1𝜕𝑧 |𝑧 = 𝐿 + 2ℎm + ℎc = 𝜌0 ( 𝜕𝜕𝑡 + 𝑉 𝜕𝜕𝑥)2𝑊01,       𝜌0𝑗𝜔 𝜕Γ2𝜕𝑧 |𝑧 = 𝐿 = 𝜌0 𝜕2𝑊01𝜕𝑡2 , 

𝜌0𝑗𝜔 𝜕Γ2𝜕𝑧 |𝑧 = 0 = 𝜌0 𝜕2𝑊02𝜕𝑡2  ,       𝜌0𝑗𝜔 𝜕Γ3𝜕𝑧 |𝑧 = −(2ℎm + ℎc) = 𝜌0 𝜕2𝑊02𝜕𝑡2 . 
(22) 

Substituting equations (20) and (21) in equation (22) yields the next important equations: 𝑇1 = 𝐼𝑚𝑛𝑒−2𝑗𝑘1𝑧(𝐿+2ℎm+ℎc) − (𝜔 − 𝑉𝑘1𝑥)2 𝑤̃1𝑒−𝑗𝑘1𝑧(𝐿+2ℎm+ℎc)𝑘1𝑥𝑘1𝑧  , 𝑇2 =𝜔 (𝑤̃1−𝑤̃2𝑒𝑗𝑘2𝑧𝐿)𝑘2𝑧(𝑒−𝑗𝑘2𝑧𝐿−𝑒𝑗𝑘2𝑧𝐿) ,  𝑇3 = 𝜔 (𝑤̃1−𝑤̃2𝑒−𝑗𝑘2𝑧𝐿)𝑘2𝑧(𝑒−𝑗𝑘2𝑧𝐿−𝑒𝑗𝑘2𝑧𝐿) ,  𝑇4 = 𝜔 𝑤̃2𝑒−𝑗𝑘3𝑧(2ℎm+ℎc)𝑘3𝑧 .  (23) 

To derive the matrix format of the equilibrium equations, one should implement Eqs. (20)–(21) 

in the developed governing relations described in (A1-A7). The results are presented here as in 
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[  
   
   
   
   
 ℒ1,1 ℒ1,2 ℒ1,3 ℒ1,4 ℒ1,5 ℒ1,6 ℒ1,7 0 0 0 0 0 0 0ℒ2,1 ℒ2,2 ℒ2,3 ℒ2,4 ℒ2,5 ℒ2,6 ℒ2,7 0 0 0 0 0 0 0ℒ3,1 ℒ3,2 ℒ3,3 ℒ3,4 ℒ3,5 ℒ3,6 ℒ3,7 0 0 ℒ3,10 0 0 0 0ℒ4,1 ℒ4,2 ℒ4,3 ℒ4,4 ℒ4,5 ℒ4,6 ℒ4,7 0 0 0 0 0 0 0ℒ5,1 ℒ5,2 ℒ5,3 ℒ5,4 ℒ5,5 ℒ5,6 ℒ5,7 0 0 0 0 0 0 0ℒ6,1 ℒ6,2 ℒ6,3 ℒ6,4 ℒ6,5 ℒ6,6 ℒ6,7 0 0 0 0 0 0 0ℒ7,1 ℒ7,2 ℒ7,3 ℒ7,4 ℒ7,5 ℒ7,6 ℒ7,7 0 0 0 0 0 0 00 0 0 0 0 0 0 ℒ8,8 ℒ8,9 ℒ8,10 ℒ8,11 ℒ8,12 ℒ8,13 ℒ8,140 0 0 0 0 0 0 ℒ9,8 ℒ9,9 ℒ9,10 ℒ9,11 ℒ9,12 ℒ9,13 ℒ9,140 0 ℒ10,3 0 0 0 0 ℒ10,8 ℒ10,9 ℒ10,10 ℒ10,11 ℒ10,12 ℒ10,13 ℒ10,140 0 0 0 0 0 0 ℒ11,8 ℒ11,9 ℒ11,10 ℒ11,11 ℒ11,12 ℒ11,13 ℒ11,140 0 0 0 0 0 0 ℒ12,8 ℒ12,9 ℒ12,10 ℒ12,11 ℒ12,12 ℒ12,13 ℒ12,140 0 0 0 0 0 0 ℒ13,8 ℒ13,9 ℒ13,10 ℒ13,11 ℒ13,12 ℒ13,13 ℒ13,140 0 0 0 0 0 0 ℒ14,8 ℒ14,9 ℒ14,10 ℒ14,11 ℒ14,12 ℒ14,13 ℒ14,14]  

   
   
   
   
 

[  
   
   
   
   
  𝑢̃1𝑣̃1𝑤̃1𝜃̃𝑥1𝜃̃𝑦1Υ̃1Ψ̃1𝑢̃2𝑣̃2𝑤̃2𝜃̃𝑥2𝜃̃𝑦2Υ̃2Ψ̃2 ]  

   
   
   
   
  

=

[  
   
   
   
  00𝐹00000000000]  
   
   
   
  
   

             (24) 

where ℒ𝑖,𝑗 and 𝐹 are expressed in Appendix B.  

2.3. STL formulation 

Inversing the power transmission coefficient, actually yields a highly-used quantity known as 

sound transmission loss or STL usually described in dB. Regarding the double-panel domain, one 

can obtain [46] 𝑆𝑇𝐿 = 10𝑙𝑜𝑔10 (∑ ∑ |𝐼𝑚𝑛+𝑇1|2∞𝑛=1∞𝑚=1∑ ∑ |𝑇4|2∞𝑛=1∞𝑚=1 ),    (25) 

3. Numeric investigation 

The numerical findings are provided here. Before presenting them, however, it is best to 

compare sample results to the available data in certain studies. However, Table 1 lists different 

parameters employed hereafter (not including the verification part). 

3.1. Convergence checking 

As delineated earlier, owing to the use of double Fourier series as the employed solution 

approach, one needs to select an adequate number of modes for the series to attain an accurate 

answer. To guarantee such a condition, a trial-and-error scheme is implemented. For this purpose, 

the values of m and n are augmented and the stability in the estimated STL is examined. For a 

normal impingent sound wave, and type C of the porosity configurations, and different 

frequencies, Fig. 2 demonstrates the convergence of obtained STL in the double-walled sandwich 

MEE square plate when 𝑎 = 𝑏 = 0.8m, 𝐿 = 3cm, ℎm = 0.5mm, ℎc = 1mm,𝛽1 = 30°, 𝜙0 =0, 𝜓0 = 0, 𝑒0 = 0.1,𝑀 = 0, 𝑝 = 1. As evident in the figure, 1600 terms (m = 40 and n = 40) appear 

to secure the convergence of results.  
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3.2. Verification study 

A series of comparisons are made here to show whether the developed procedure is accurate 

enough. 

As a first verification study, by disregarding the properties of PFGM core in their respective 

systems, the first nondimensional natural frequency (𝜔̃11 = 𝜔11𝑎2√𝜌m/𝑐11 ) of a rectangular 

MEE plate for different aspect ratios are obtained in Table 2, which are then compared and 

validated against the results reported in Refs. [56,57].  

In another comparison investigation, by neglecting MEE layers, sound wave, porosity, the 

variation of the first three dimensionless natural frequencies of the FGM plate (𝑎 ⁄ 𝑏 = 1, 𝑎 =10ℎ) are calculated based on the present model and then compared with the results of Ref. [58] as 

presented in Table 3. The comparison made in this table indicates that the current results are in 

good agreement with analytical predictions of Ref. [58]. 

Finally, by eliminating MEE layers, for the normal incident sound (𝛽1 = 0°), the STL through 

double-walled elastic square plate is obtained by the presented formulation and is compared with 

those predicted based CPT by Ref. [59] in Fig. 3 when 𝐸 = 70𝐺𝑃𝑎, 𝜌 = 2700Kg/m3 , 𝜗 =0.3, 𝑎 = 𝑏 = 0.3m, 𝐿 = 80mm, ℎc = 1mm. It is observed that an acceptable agreement exists 

between the results.  

3.3.Main results 

The proper understanding of the impacts of effective parameters on the STL in the double-

walled sandwich MEE-PFGM plate is realized here using a series of numerical studies. The 

considered quantities include plate and cavity dimensions, initial magnetic and electric potentials, 

elevation angle.  

Fig. 4. depicts the STL curves against the frequency interval through single/double-walled 

sandwich MEE-PFGM plate of finite/infinite extent for when 𝑎 = 𝑏 = 0.8m, 𝐿 = 3cm, ℎm =0.5mm, ℎc = 1mm,𝛽1 = 30°, 𝜙0 = 0,𝜓0 = 0, 𝑒0 = 0.1,𝑀 = 0, 𝑝 = 1. It should be noted that the 

“mass-air-mass” resonance dip (fm) in Fig. 4 is marked which is a unique phenomenon owned by 

the double-panel system and can be approximately predicted by the formula [53] fm = (1/2𝜋𝑐𝑜𝑠𝛽2){(𝜌0 𝑐02 [(𝐼0 )𝑝𝑙𝑎𝑡𝑒1 + (𝐼0)𝑝𝑙𝑎𝑒2])/𝐿[(𝐼0)𝑝𝑙𝑎𝑡𝑒1 × (𝐼0 )𝑝𝑙𝑎𝑡𝑒2 ] }1/2.  (26) 

One should note that the condition for mass-air-mass resonance is the resonance of two MEE-

PFGM panels over the stiffness of the splitting layer of air, resulting in a frequency interval of 

unsatisfactory STL. Furthermore, at higher frequencies, the resonance dips indicated with fs are 

the related to the standing-wave resonance phenomenon (i.e. fs = 𝑖𝑐02𝐿𝑠𝑖𝑛 𝛽2) that happen when “the 

distance difference between the routes that the two intervening waves pass through is the multiple 

of the half wavelength of the incidence sound wave” [45]. It can be observed that the number of 
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resonances of the finite double plate partitions surpasses that of the finite single plate. This is 

attributed to the effects of acoustic cavity between the two plates. In addition, the dips prior to 

“mass-air-mass” resonance represent the system natural frequencies which are the same for double 

and single panels irrespective of the acoustic cavity. It is also of central importance that greater 

plate dimensions result in smoother STL response such that the number of dips/peaks reaches a 

minimum. Also, Regarding the STL-frequency plot of the double plate with infinite dimensions, 

an upper bound for the partitions of finite size is dictated after the “mass-air-mass” resonance dip, 

as the panel mode-dominated STL disappears for this special case. Nonetheless, for frequencies 

smaller than the “mass-air-mass” resonance dip, the noise-cancellation efficiency of the structure 

with infinite dimensions is not up to par compared to the finite system. This is a direct result of 

boundary constraints. 

Fig. 5 indicates the variations of the STL across the sandwich double MEE-PFGM plate versus 

different values of the material gradient index for type C of the porosity configurations when 𝑎 =𝑏 = 0.8m, 𝐿 = 3cm, ℎm = 0.5mm, ℎc = 1mm,𝛽1 = 30°, 𝜙0 = 0,𝜓0 = 0, 𝑒0 = 0.1,𝑀 = 0. As a 

result, the change from ceramic to metallic state, which indicates a growth in FGM index and a 

decrease in stiffness, reduces the dimensionless natural frequency. Furthermore, before the “mass-

air-mass” resonance dip, an increase in the material gradient index improves the STL performance. 

Moreover, by increasing the material gradient index, the location of the “mass-air-mass” resonance 

dip shifts downward which is linked to the increased equivalent mass density (see equation (26)).  

Figure 6a and b describes the effects of different porosity coefficients for all types of porosity 

distribution on the variation of STL through double-walled sandwich MEE-PFGM plate when 𝑎 =𝑏 = 0.8m, 𝐿 = 3cm, ℎm = 0.5mm, ℎc = 1mm,𝛽1 = 30°, 𝜙0 = 0,𝜓0 = 0,𝑀 = 0, 𝑝 =1. However, it can be observed that with increasing porosity coefficient, STL curves of the system 

decreases in all cases of porosity distributions. This behavior is attributed to the reduction in 

structural stiffness of the system with increasing porosity. However, 

it seems that different porosity configurations have a little effect on the changes of the STL.  

The influence of the external flow Mach number on the STL through the sandwich double 

MEE-PFGM plate for type C of the porosity configurations is displayed in Fig. 7 when 𝑎 = 𝑏 =0.8m, 𝐿 = 3cm, ℎm = 0.5mm, ℎc = 1mm, 𝛽1 = 30°, 𝜙0 = 0,𝜓0 = 0, 𝑒0 = 0.1. It can be 

observed that by increasing the external flow Mach number, the STL value significantly improves 

in the resonances. This behavior is due to this fact that a convective fluid loading is exerted on the 

structure because of the presence of external mean flow, which decreases the sound energy 

transmitted through the panel system and increases the sound energy reflected.  

Fig. 8 displays the effects of the external electric potential on the changes of STL across double-

walled sandwich MEE-PFGM plate for type C of the porosity configurations when 𝑎 = 𝑏 =0.8m, 𝐿 = 3cm, ℎm = 0.5mm, ℎc = 1mm, 𝛽1 = 30°, 𝜓0 = 0, 𝑒0 = 0.1,𝑀 = 0. Notably, 

soundproofing efficiency can be enhanced by increasing the external voltage. This is particularly 
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true for low-frequency intervals of “mass-air-mass” resonance. Furthermore, as can be expected 

the, the location of “mass-air-mass” resonance is independent of applied electric potential.  

In order to study the effect of external magnetic potential on the STL curves of double-walled 

sandwich MEE-PFGM plate, Fig. 9 is presented for type C of the porosity configurations when 𝑎 = 𝑏 = 0.8m, 𝐿 = 3cm, ℎm = 0.5mm, ℎc = 1mm,𝛽1 = 30°, 𝜙0 = 0,𝑀 = 0, 𝑒0 = 0.1. As can 

be seen, the values of ST can be enhanced by increasing the external magnetic potential specially 

before “mass-air-mass” resonance dip. This is particularly true for low-frequency intervals of 

“mass-air-mass” resonance. Furthermore, as can be expected the, the location of “mass-air-mass” 
resonance is independent of initial magnetic potential. A careful examination of this figure reveals 

that the effect of external magnetic potential on the improvement of STL is more significant than 

that of electric voltage. 

Depicted in Fig. 10 is the influence of air cavity depth on the STL curves of double-walled 

sandwich MEE-PFGM plate for type C of the porosity configurations when 𝑎 = 𝑏 = 0.8m, 𝐿 =3cm, ℎm = 0.5mm, ℎc = 1mm,𝛽1 = 30°, 𝜓0 = 0,𝜙0 = 0,𝑀 = 0, 𝑒0 = 0.1. As previously 

expressed, the acoustic cavity has no effect on the resonances of double plate in the frequency 

region prior to “mass-air-mass” resonance. Adding to the depth of air cavity significantly alters 

the behavior of STL with respect to frequency. For those frequencies greater than the “mass-air-

mass” resonance, one observes that greater depths are accompanied with higher STLs. The “mass-

air-mass” resonance dips tend to move downwards as the air cavity deepens. This behavior is 

explained by the smaller equivalent stiffness associated with cavities. 

Fig. 11 indicates the variations of STL double-walled sandwich MEE-PFGM plate for different 

values of elevation angle and type C of the porosity configurations when 𝑎 = 𝑏 = 0.8m, 𝐿 =3cm, ℎm = 0.5mm, ℎc = 1mm,𝜓0 = 0,𝜙0 = 0,𝑀 = 0, 𝑒0 = 0.1. The direct relationship 

between the elevation angle and the “mass-air-mass” resonance is also observed here. Reduced 

values of the elevation angle of impingent sound waves arguably improve the noise-cancellation 

of the studied system for all frequencies. Also noteworthy is that a large elevation angle for an 

incoming sound wave leads to its easier transmission through the double-walled sandwich plate. 

In addition, since the plate mode is shown to be independent of impingent elevation angle, dips 

prior to the “mass-air-mass” resonance remains constant with respect to elevation angle. 

Fig. 12 exhibits the effects of sandwich MEE-PFGM plate thickness on STL curves for type C 

of the porosity configurations when 𝑎 = 𝑏 = 0.8m, 𝐿 = 3cm, 𝛽1 = 30°, 𝜓0 = 0, 𝜙0 = 0,𝑀 =0, 𝑒0 = 0.1. Clearly, the noise-cancellation behavior of the plate is highly affected by the ratio of 

sandwich plate thickness. As expected from the mass law, the STL improves from both the 

increased thickness of single panel and the coupling impacts of air cavity, with the latter playing a 

more prominent role. Furthermore, the declining move of “mass-air-mass” resonance with growing 

thickness originates from the higher plate surface density.  
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4. Conclusions 

The Third-order shear deformation theory and three cases of uneven porosity distribution pattern 

are applied to study the sound transmission loss through the air-filled double-walled sandwich 

magneto-electro-elastic plate with porous functionally graded material core layer subjected to the 

initial external electric and magnetic potentials, and external mean airflow. The material 

characteristics of PFGM core layer change slowly through the thickness via power-law scheme. 

The coupled vibroacoustic governing equations are obtained using Hamilton’s principle in 

conjunction with the normal fluid/structure velocity components. The effects of different 

significant parameters on the sound transmission loss of the structure over certain frequency 

intervals, particularly the important region of “mass-air-mass” resonance, are investigated. Some 

of the most important results of this study are listed in the following. 

 The values of ST can be enhanced by increasing the external electric and magnetic 

potentials specially before “mass-air-mass” resonance dip. 

 By increasing the external flow Mach number, the STL value significantly improves in the 

resonances. 

 With increasing porosity coefficient, STL values of the system decreases in all cases of 

porosity distributions. 

 Before the “mass-air-mass” resonance dip, an increase in the material gradient index 

improves the STL performance 

 STL improves from both the increased thickness of single panel and the coupling impacts 

of air cavity, with the latter playing a more prominent role. 

 The “mass-air-mass” resonance dips tend to move downwards as the air cavity deepens. 

This behavior is explained by the smaller equivalent stiffness associated with cavities. 
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 Table caption 

Table 1. Material properties of the MEE-PFGM plate and acoustic medium. 

Table 2. Comparison of dimensionless natural frequency of a MEE plate. 

Table 3. Comparison of dimensionless natural frequency of a FGM plate. 

. 

Figure Caption 

Fig. 1. The schematic of double-walled MEE-PFGM plate under incidence wave and external mean airflow. 

Fig. 2. Mode convergence diagram for double-walled MEE-PFGM plate. 

Fig. 3. Comparison study of STL curves for double-walled elastic plate. 

Fig. 4. The variations of STL through single/double-walled MEE-PFGM plate versus plate dimensions. 

Fig. 5. Effect of the material gradient index on the STL through double-walled MEE-PFGM plate. 

Fig. 6. The STL of double-walled MEE-PFGM plate (a): against the porosity distribution models; (b) against the 

porosity coefficient. 

Fig. 7. The effect of the external flow Mach number on the STL of double-walled MEE-PFGM plate. 

Fig. 8. The effect of the external electric potential on the changes of STL through double-walled MEE-PFGM plate. 

Fig. 9. The effect of the external magnetic potential on the changes of STL through double-walled MEE-PFGM plate. 

Fig. 10. The effect of the air cavity depth on STL curves of double-walled MEE-PFGM plate.  

Fig. 11. The effect of elevation angle on STL curves of double-walled MEE-PFGM plate. 

Fig. 12. The effect of sandwich MEE-PFGM plate thickness on the variations of STL. 
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Table 1. Material properties of the MEE-PFGM plate and acoustic medium. BaTiO3 − CoFe2O4 Properties (MEE Layer) 𝑐11 = 226, 𝑐12 = 125, 𝑐22 = 226, 𝑐44 = 44.2, 𝑐55 = 44.2, 𝑐66 = 51 
Elastic (GPa) 𝑒31 = −2.2, 𝑒32 = −2.2, 𝑒24 = 5.8, 𝑒15 = 5.8 
Piezoelectric (C m−2) 𝜅11 = 5.64, 𝜅22 = 5.64,  𝜅33 = 6.35 
Dielectric (10−9C V−1 m−1)  𝑓31 = 290.1, 𝑒32 = 290.1, 𝑒24 = 275, 𝑒15 = 275 
Piezomagnetic (N A−1 m−1) 𝜇11 = 5.367, 𝜇11 = 5.367, 𝜇33 = 2737.5 
Magnetoelectric (10−12N S V−1 C−1) 𝛾11 = −297, 𝛾22 = −297, 𝛾33 = 83.5 
Magnetic (10−6N s2 C−2 )  𝜌m = 5550 Mass density (Kg m−3) 
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SUS304 (metal) Si3N4 (ceramic) Properties (FGM Core) 𝐸 = 201.4 𝐸 = 348.43 Elastic (GPa) 𝜗 = 0.3 𝜗 = 0.3 Poisson’s Ratio 𝜌 = 8166 𝜌 = 2370 Mass density (Kg m−3) 

Air Properties (Acoustic medium) 𝑐0 = 343 Sound Speed (m s−1) 𝜌0 = 1.21 Mass density (Kg m−3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison of dimensionless natural frequency of a MEE plate. 
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Table 3. Comparison of dimensionless natural frequency of a FGM plate. 

 

 

 

 

Aspect Ratio (a/b) Present (FSDA) Ref. [56] (HSDT) Ref. [57] (CPT) 

0.5 0.342 0.343 0.366 

1 0.531 0.535 0.585 

2 1.236 1.233 1.463 
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p Study ω1 ω2 ω3 

0 

 

2 

 

present 0.092 0.221 0.338 

Ref. [50] 0.093 0.222 0.341 

present 0.049 0.116 0.177 

Ref. [50] 0.049 0.116 0.178 
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Fig. 1. The schematic of double-walled MEE-PFGM plate under incidence wave and external mean airflow. 
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Fig. 2. Mode convergence diagram for double-walled MEE-PFGM plate. 
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Fig. 3. Comparison study of STL curves for double-walled elastic plate. 
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Fig. 4. The variations of STL through single/double-walled MEE-PFGM plate versus plate dimensions. 
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Fig. 5. Effect of the material gradient index on the STL through double-walled MEE-PFGM plate. 
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Fig. 6. The STL of double-walled MEE-PFGM plate (a): against the porosity distribution models; (b) against the 

porosity coefficient. 
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Fig. 7. The effect of the external flow Mach number on the STL of double-walled MEE-PFGM plate. 
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Fig. 8. The effect of the external electric potential on the changes of STL through double-walled MEE-PFGM plate. 
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Fig. 9. The effect of the external magnetic potential on the changes of STL through double-walled MEE-PFGM 

plate. 
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Fig. 10. The effect of the air cavity depth on STL curves of double-walled MEE-PFGM plate. 
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Fig. 11. The effect of elevation angle on STL curves of double-walled MEE-PFGM plate. 
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Fig. 12. The effect of sandwich MEE-PFGM plate thickness on the variations of STL 
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