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ABSTRACT

Prospective customers are becoming more concerned about safety and comfort as the automobile industry swings toward

Automated Vehicles (AVs). A comprehensive evaluation of recent AVs collision data indicates that modern automated driving

systems are prone to rear-end collisions, usually leading to multiple vehicle collisions. Moreover, most investigations into

severe traffic conditions are confined to single-vehicle collisions. This work reviewed diverse techniques of existing literature

to provide planning procedures for Multiple Vehicle Cooperation and Collision Avoidance (MVCCA) strategies in AVs while

also considering their performance and social impact viewpoints. Firstly, we investigate and tabulate the existing MVCCA

techniques associated with single-vehicle collision avoidance perspectives. Then, current achievements are extensively

evaluated, challenges and flows are identified, and remedies are intelligently formed to exploit a taxonomy. This paper also

aims to give readers a AI-enable conceptual framework, a decision-making model with a concrete structure of the training

network settings to bridge the gaps between current investigations. These findings are intended to shed insight on the benefits

of the greater efficiency of AVs set-up for academics and policymakers. Finally, the open research issues discussed in this

article will pave the way for the actual implementation of driver-less automated traffic systems.

keywords: Automated Vehicles, Safety, Comfort, Taxonomy, Conceptual Framework, Multiple Vehicle Collision, Vehicle
control.

1 Introduction

Over the last decade, the community of scientists has been paying close attention to research into sustainable technologies,
artificial intelligence, and smart city. This trend will continue in the coming years, according to1. One area of intensive
investigation has been carried out in public transportation service, whereas the automotive industry is heading towards automated
vehicles (AVs) intending to boost road safety. Several studies have found that 94% of road accidents occur because of the errors
of human drivers2, 3. Recent AVs collisions during testing, on the other hand, highlight the need for more rigorous risk analysis.
The United Nations has targeted a 50% decline in road fatalities by 2020, and we passed the timeline but it remains a dream.
Modern scientists want to transfer all driving tasks from humans to machines because the majority of traffic collisions (94%)
are caused by human error. It is already proven that replacing 90% of human-driven automobiles on the road with AVs can save
50% of travel time and prevent 74% traffic collisions4.

Highway traffic incidents cause delays and extra safety concerns in the form of secondary collisions. The term multiple

collision refers to a collision that involves up to n vehicles in the first collision. In altogether, these multiple collisions projected
almost 20% of all traffic collisions and 18% of the deaths on United States motorways5. Furthermore, multiple collisions were
responsible for up to 50% of urban traffic congestion6. Because of highway conditions, rear-end crashes accounted for 42.7%
of all accidents that usually lead to Multiple Vehicle Collisions (MVCs)7. Through an extensive evaluation of recent AVs
crash data, we found a crucial indication that the AVs systems are mostly prone to rear-end collisions, the leading cause to
happening chain crashes or crashes among multiple vehicles8. Additionally, as the transportation community moves from an era
of data-scarce to a generation of data-rich, a standard methodological shift from physics-based methods to artificial intelligence



techniques is urgently needed to forecast the transportation dynamics of vehicles operating adjacent to human-driven vehicles
and help socially optimise policy making9.

Research on MVCs in AVs highlights the need to follow the evaluation of the consequences of a collision10. In contrast,
existing research is dedicated to three viewpoints: (1) identifying multiple collisions11, (2) analyzing multiple collisions’
characteristics12, and (3) multiple collisions’ risk modelling13. Collision avoidance in high volume vehicle velocity, which leads
to MVCs, is considered a high non-linearity vehicle force that demands an optimal motion planning strategy. The current control
strategies are validated only at low and medium velocity; a reliable validated strategy is essential for high-speed situations14.
Regrettably, the continuous AVs research focused solely on collision avoidance strategies for two consecutive vehicles and
ignoring the MVCs aspects. The potential researchers create several review articles, and we discuss and compare some of those
reviews and journals with our survey focused on the aspects mentioned above. Table 1 represents the comparison of those
aspects.

However, more intensive research is essential for highlighting those principles of examining accidents and preventing chain
collisions, which represent the generating mechanism of a traffic accident15. In support of this argument, the safety framework
of driving action should be built from the viewpoint of the chain collision. The combined potential concerns of MVCs are
illustrated by Figure 1 in four phases: the first phase is the regular driving presentation; the second phase is the pre-crash
situation associated with the point of no return; the third phase presents the first crash situation; and finally, the fourth phase is
the illustration of MVCs induced by the first collision.

Table 1. Comparison of Autonomous Vehicle Collision (Single & Multiple vehicle) Avoidance Related Survey Papers.

Survey Coverage
Ref SP CC TA DM VC DS CI SVC MVC CS
16 ✓ ✓ ✓ ✓ ✓ ✓

17 ✓ ✓ ✓ ✓ ✓ ✓

18 ✓ ✓ ✓ ✓ ✓ ✓ ✓

19 ✓ ✓ ✓ ✓ ✓ ✓

20 ✓ ✓ ✓ ✓ ✓ ✓

21 ✓ ✓ ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SP = Sensing & Perception, CC = Communication & Cooperation, TA = Threat Assessment, DM = Decision Making, VC

= Vehicle Control, DS = Database & Software, CI = Challenges and Issues, SVCA = Single Vehicle Collision Avoidance,

MVCA = Multiple Vehicle Collision Avoidance, CS = Conceptual Solution.

Considering all the difficulties mentioned above, numerous scientists are extensively involved in constructing effective
models of AVs for effective collision avoidance strategies.22 sated the control features of AVs in their survey.23 investigated
the intersections and combining and merging methods of highway on-Ramps.24 surveyed the control methods of urban traffic
signals. Focusing on the distributed control mechanisms depends on the dynamical modelling of AVs25 made extensive
discussions.26 discussed motion control, focusing on the cooperative longitudinal motion of multiple vehicles.

During a combined approach, different strategies were suggested that focus on improving certain areas or considering
all difficulties. As a result, it is necessary to compile all available works in order to gain a thorough understanding of the
progress of research in this field. To the best of our knowledge, no similar form of in-depth analysis carried out thus far in the
literature. Therefore, a comprehensive taxonomy is demonstrated in this article that differentiates the techniques, methods, and
technology offered to date for effective autonomous driving strategies for SVCA (Single Vehicle Collision Avoidance) and
MVCA (Multiple Vehicle Collision Avoidance). Subsequently, we review the relevant literature to demonstrate the key ideas of
each current study. Essentially, the purpose of this study is to inspire readers to recognize current research breakthroughs in this
domain and identify unsolved concerns. Finally, in an AVs system, we offer a conceptual framework of an MVCCA strategy to
create an optimal solution.

The followings are the concrete contents of the contributions in this paper:

1. The comprehensive analysis identifies and segments the chain events of collisions associated with MVCs. Both SVCA and
MVCA perspectives are reviewed objectively, and a taxonomy consolidates all potential approaches into a single-window
for convenience.

2. Recent technologies and protocols are being investigated to determine realistic automated driving decisions and construct
the optimal cooperative decision-making method. According to their performance matrix, the practical difficulties and
issues are presented in-depth.
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Figure 1. Multiple Vehicle Collisions Illustration in Four Phases.

3. This study offers a future research direction by proposing a AI-enable conceptual framework for MVCCA in AVs. The
proposed framework closely scrutinizes five aspects of AVs to guarantee adequate driving strategies. Learning-based
monitoring, controlling, and preservation with highlighted applications are also offered in the intended framework to
unlock the potential of AVs as standalone MVCCA strategies.

4. An extensive review has shown the existing challenges, including the design issues of optimum decision-making and
technical matters regarding essential performance aspects of collision avoidance among multiple vehicles, In this context,
we proposed a deep reinforcement learning based decision-making model to control multiple vehicles in multi-agent
traffic environment to perform the best action-state map for our automated agents. The proposed model will work to
reform the computational aspects of collision avoidance technique optimization according to our proposed framework.

5. Finally, the open research issues are sketched out to allow future research direction on existing works and potential
research domain.

As the paper highlights a comprehensive overview of specific topics relevant to the development of the conceptual
framework, it enables readers to uncover these topics. The rest of the paper is often adorned with some sections. Section 2

presents an overview of the AVs and collision segmentation. In Section 3, the challenges and issues of avoidance MVCs in AVs
are extensively illustrated. The section 4 represent a Taxonomy of MVCCA and under this taxonomy in section 5, a spacious
AI-enable conceptual framework deployed for MVCCA in AVs. Priceless future research indications are synchronising in
section6 to give the respected researchers the future challenges. Finally, section 7 concludes the paper by revealing the article’s
contribution.

2 Overview of MVCCA

The leading subject in automotive science in recent years has been AVs27, 28. Millions of lives are likely to be saved soon,
considering the remarkable statistics showing that the number of casualties in road accidents has been 1.2 million a year in the
last ten years29. Furthermore, it will optimize traffic and reduce travel times significantly. Demonstrating the multiple vehicle
cooperation and collision sequences, an overflow is presented in figure 2. A ray of hope is worth mentioning that the strong gain
is self-evident in developing stable AVs. However, their implementation is a major challenge for both the rule-based control
and data-driven decision-making science communities. Readers are encouraged to refer to30, 31 for the appropriate analysis of
key technologies for assistance systems for collision prevention. Multiple business giants in different countries are currently
working on the production of AVs. The authors of32 briefly described the data on the growth of each country in AVs design
and the challenges facing by those countries. AVs production in the initial days entails numerous studies and problems. A
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Figure 2. The Overview Flow of MVCCA in AVs.

real-world AVs are never 100% sure what the things, road boundaries, lanes, rules, signals, etc., are in a situation. Instead, it
has a level of confidence or degree of certainty about all these aspects33.

2.1 AVs Fundamentals

In the modern transportation world, autonomous systems have been activated to avoid 94 percent of human driver error road
accidents34. The AVs are a special kind of device that can sense its surroundings and operate without human interference.
Figure 3a is the cognitive presentation of AVs basics and the elaborate discussion on automation level of AVs readers could be
referred to35. The mass production of tools relevant to AVs is approaching thanks to rapid advancements in AVs technologies,
particularly the recent advancements in LiDAR, GPUs, and learning control strategies32. Many business giants such as Waymo
and GM-affiliated automotive and IT firms are working hard to get their advanced self-driving cars onto public roads as soon as
possible. The leading peril of optimal performance in AVs technologies is traffic collisions. Thus, the mechanism for accident
prevention must be capable of controlling all types of threats during automated navigation, with the progress of the production
of AVs. Figure 3b depicts the complexity and speed of numerous driving conditions.

2.2 n-number AVs

To date, most of the current research has perhaps concentrated unexpectedly on two polar scenarios, in which either one AV is
travelling on a highway in an environment dense with human drivers or an AV network with minimal interaction with human
operated participants. The much more realistic but challenging transformation between these two scenarios has received much
less attention. But it is this very hybrid human-machinery space, now known as mixed autonomy, which merits our collective
interest.36 divided this transformation into 4 stages, the CVs stage: pure conventional vehicles (CVs), the CVs-dominated stage,
the AVs dominated stage, and the pure AVs stage. The latter 3 stages are the subject of this article. The difficulty of modelling
for each step is shown in Figure 4. The CVs dominated and AVs dominated stages, that is, mixed autonomy, are very difficult to
chart. An understudied process is the unknown and complicated interactions among different vehicle types. The following
concepts further split the relative proportion of AVs and CVs into mixed autonomy (indicated in road map in Figure 4):

1. 1st stage: 1 AV + 1 CV (one AV has one CVs interaction).

2. 2nd stage: n AV + m CVs (Multiple AVs travels a CVs dominated traffic environment).

3. 3rd stage: m AVs + n CVs (multiple AVs interact with n CVs in the AVs dominated traffic environment).

4. 4th stage: n AVs (a demand for pure AVs) with replacing all vehicles with AVs. (AVs communicate with each other
accordingly).
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Figure 4, a block-dotted box is included in the group associated with each step. The objective of the transport community is
to model first a pure CVs, then a model which is dominated by CVs, and finally pure AVs dominated36. However, researchers
are more concerned with the step of the CVs dominated operation, in which one or a few AVs navigate the traffic environment.

2.3 Spectrum Analysis of Collision in AVs

Most of the current automated driving research goes far beyond the control of a single vehicle. But in reality, decision-making
in crucial scenarios and the initiation of strong sensors, cooperative communications networks, and embedded systems have
created extensive concern about how to solve the problem of multiple automated vehicles’ cooperative control. The problems of
vehicle control by motion planning for a single automated vehicle are usually divided into three segments: 1) the stabilization of
points, 2) tracking trajectory, and 3) the path following37. For multiple vehicles, formulating a cooperative trajectory generation
strategy is the main issue. In particular, a collision-free route is adopted by each vehicle, and all vehicles reach their respective
destinations. Table 2 represents the major aspects of single and multiple vehicle collisions38.

2.4 MVCCA in AVs

As like the conventional traffic system autonomous traffic traffic system also has potential prospective on both the SVCs and
the MVCs. Despite the fact that automakers have focused on creating realistic solutions for AVs to replace human-driven
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Table 2. Major Aspects of SVC and MVC.

Features aspects SVC MVC
Crash severity Less severe then MVC More severe then SVC

Collision types
Static

Very common Very commonDynamic
Uncertain

Cause pattern Defined situations Unpredictable situations
Automated approach Very common Very common
Avoidance techniques Study widely Study marginally
Avoidance algorithms Study widely Study marginally

Single and multi agents
perception

Agents Single Multi agents
Environment Less complicated Very complicated
Private goal Focused Focused
Common goal Not focused Focused

Cooperation driving

Characteristics of
cooperation

Location Agents involved
Interaction Location
Duration Urgency and costs
Preparation time Interaction type
Initiation Duration

Mutuality
Preparation time
Initiation

Examples of cooperative
situations

Lane merge Platooning
Truck overtaking Lane merge

Truck overtaking

vehicles, the most recent solutions are only suitable for single vehicles. On the other hand, road traffic is a dynamic and
interactive system. Such a system necessitates a multifaceted approach to solving the issue since it takes into account not only
the pedestrians and the surrounding road, but also other road users, which may involve multiple participants39.40 investigated
and illustrated a region map of single, double, triple, and multiple vehicle collision conditions regarding sudden slowdown.36

evaluate the steering stability for multiple vehicles in the case of automatic or manual driving, which is restricted for safety. In
fact, MVCs are likely to result from a series of unstable coupled groups of vehicles.

2.4.1 Chain Collision or MVCs Description

MVCs is the ultimate result of a SVC in traffic system. Drivers on highways frequently rely heavily on the vehicle’s tail
brake lights to decide if they have the brake40. This creates potentially dangerous situations when a vehicle follows another
closely, particularly when the ability to see past the vehicle in front of it is limited. The reaction time of the driver between the
occurrence and the frequency of the brake is usually 0.75 to 1.5 seconds39. This guarantees 70mph before any reaction occurs,
and it flies between 75 and 150 f t36. There may be few margins of protection if a short inter-vehicle distance is maintained in
order to prevent accidents during abrupt braking. Furthermore, the successive drivers’ cumulative reaction times in heavy traffic
will lead to a number of secondary accidents and create multiple vehicle accident chains41.

2.4.2 Traffic Situation Ontology

In a cooperative group of vehicles, the perception process of dangerous situations is discussed in42. In the meantime, it has
been accepted that a higher degree of situational understanding is often required in order to provide driver assistance. Vehicles
have to understand the situation they are involved in. This is or will become the basis for numerous implementations, including
advanced crash detection and mitigation systems. The advantage of knowing the scene would allow for automated driving
of more than one vehicle to deal with hazardous situations at high speed in complex inner-city environments or cooperative
manoeuvres if necessary43. Traffic collisions prevent the flow of traffic, block the highway and cause serious congestion.
Sometimes, the blockage causes collisions between vehicles. The accident often causes further collisions and leads to a multiple
vehicle collision.

2.4.3 Scenario I: Highway Unregulated by Sudden Slow Down or Blockages

We consider a typical highway scenario in which n number of vehicles are traveling in parallel, in front of or behind each
other. All vehicles attempt to monitor their own relationship to speed. In this situation, a driver usually relies on the brake light
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Figure 5. Demonstration of MVCs and its Avoidance Technique.

of the car ahead of them to evaluate their own braking action in road emergencies caused by bad weather or misjudgment44.
In low-visibility situations, the behaviour of the traffic is certainly different from that in natural conditions. With the use of
a model of friction-force45, 46, collision among multiple vehicles was investigated in low visibility situations. However, if
the emergency incident is caused by multiple vehicles ahead, then it could be too late to stop the collision by the time the
vehicle brakes immediately ahead. In addition, the combined reaction time of drivers across all the vehicles ahead will further
escalate the situation. Consequently, a single emergency incident may also lead to injuries in multiple chain collisions. Another
aspect is that the driver deploys brake matching to the taillights of the leading vehicle and the rearrangement of friction force,
which strongly depends on the velocity of the vehicle in the traffic situation. The chain collisions can be caused by the first
accident20, 21.

2.4.4 Scenario II: Sudden Lane Change by Highway Obstructed

The first collision caused by sudden lane change can be induced the further collisions and may lead to a MVCs among several
vehicles when a vehicle switches lanes on a two-lane highway from its ego lane to the next lane. If a vehicle enters the second
lane at a high (low) speed in the ego lane or first lane, it can collide with the next lane or second lane into the forward (rear)
vehicle, and the crash can create further collisions47. Another scenario is that the three-lane highway is reduced to a single lane
due to road work to increase heterogeneity or that the leading vehicle comes to a halt unexpectedly due to a blockage44. This
roadwork is announced to all vehicles via road signs. According to these signs, vehicles must slow to 70 km/h and then merge
into a single lane. As a consequence, the situation becomes more complicated, exposing the differences in the controls. The
secondary collisions are typically caused by the first collision and the deep evaluation of this, found in48. Potential readers were
referred to read49–51 to uncover secondary collisions. Figure 5a is the symbolic consequences representation of the MVCs.

2.4.5 Chain Collision Avoidance Techniques

Reviewing the contemporary research works we usually found numerous solutions and protocols SVC but the MVCs prolems
are still sufferd by the lack of concern particularly in the domain of AVs. The traffic situations with multiple vehicles interacting
are difficult in AVs system. Even though if another traffic participant’s rough intent is understood, all participating vehicles
must agree on a cooperative decision which gives a conflict-free trajectory plan, indirectly or explicitly. For each vehicle, the
movement must be secure and comfortable and must accommodate all individual goals and desires52. The standard interval
between these intervals can be determined using the collision free interval for each agent53. When each agent’s velocity is
adjusted in parallel, the velocities in the non-intersecting distance inevitably avoid colliding. This agreement protocol is used
to pick competing speeds in a common interval54. As a navigation query, collision detection and avoidance in agents55 or
multi-agent56–58 scenarios has also been addressed.

Theoretically, chain collisions can be avoided or decreased it’s severity by reducing the time between an emergency
occurrence and the moment when approaching vehicles are told of it. Propagating a vehicle-to-vehicle incident warning alert
is one way to do this. This could make it possible to circumvent the usual chain of drivers responding to the activation of
vehicle brake lights immediately ahead of them and even allow drivers to react to an incident before seeing it. The secondary
collision mitigation strategies discussed in59, 60. Common strategies are employed for MVCCA strategy as Platooning61, Active
Brake Control62, Time-Critical Cooperative Control37, Trajectory Re-planning63. U. Z. A. Hamid et al.63 proposed a avoidance
technique for chain crash in Figure 5b.
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3 Challenges & Issues of MVCCA

For combinations of a hundred plus sensors, communications devices, and actuators to navigate it autonomously, extensive
evaluations will be needed before mass production of AVs. These matters indicate the analysis of the root causes of AVs failures
and finding out the chain events of the potential failures. Obviously, policymakers and researchers are dependent on this kind of
comprehensive evaluation to develop the optimum strategies. Several barriers are likely to challenge the advancement and
execution of sensible driving technologies, particularly the avoidance of collisions among multiple vehicles. The key factors
that could hamper technology adoption before and after its full maturity consist of:

3.1 Mixed Traffic Systems Management

It is proven that technological up gradation is not the outcome of one or two days, but rather the outcomes starting from the
1960s (new models) until now. The same is true for transportation systems. We cannot expect all the road transport systems
to convert to automated systems within a day64. As a result, it is expected that the transition from the shape of a traditional
non-automated vehicle fleet to the shape of an AVs fleet would occur in stages over time. This viewpoint implies that our
AVs-based framework would take into account both AVs and CVs (conventional vehicles) at the same time. According to the
most recent automated vehicle testing findings submitted by AVs testing companies, the majority of AVs involved accidents are
caused by CVs sharing the road with AVs.

3.2 Cooperative Maneuvers for Each Vehicle Safety

Research challenges involve expanding the method to random road geometry and incorporating for each vehicle a plan B

trajectory that ensures that in the case of a crash, e.g., loss of contact, a safe state is reached. Although the measurement of
cooperative behavioural action52, 65 is almost realistic, with a growing number of participants, it does not scale well. In the AVs
traffic system it is more than crucial from the conventional traffic system.

3.3 Multi Agent Robotics Systems

In multi-robot navigation, global path planning and local motion planning play a role in royalty. Autonomous driving is clearly
a multi-agent, dynamic field, with the most difficult challenge being to deploy a collision-free, safe, and robust trajectory
planning for each of the robots from their starting point to the desired destination.In any unexpected critical situation, the
system needs to be capable of re-planning for proper collision avoidance strategy. On the other hand, in multi-agent robot
environments, where the agent learns collision avoidance navigation strategies from the environment, it is more challenging to
deploy the particular capabilities to find collision-free routes and they are well adapted to all kinds of unseen scenarios66.

3.4 Adequate Data for Efficient Learning

Machine learning algorithms are currently learning in a supervised method primarily, and therefore, adequate data is needed for
efficient learning and a robust training process. Despite the fact that automated vehicles have been tested in highly regulated
environments, they often struggle to make the right decisions, sometimes with disastrous consequences. To adapt automated
navigation to all forms of critical driving environments, first defining a deriving mechanism in any certain crucial situation
would benefit the deployment of a robust driving ability in all the particular scenes. The author mentioned some key critical
conditions in67. Robust schemes, such as re-planning and retreating the perspective process, would be built to accomplish safe
and secure planning in the tackle of uncertainties. Erhan, L. et al., reviewed the anomaly recognition in automated vehicle
sensor systems68. Table 3 shows the summery of current available data sets mentioned in Prominent survey papers.

Table 3. Prominent Survey Papers Represented Data-sets with Details Features.

Survey of the Explicate of Environmental Conditions
Ref. Data sets Factors Critical scenarios Challenges to handling
69 ApolloSpace, NightOwls Illuminati- on Shadow, directly facing the sun, Night Light intensity variations.
70 AMUSE, CMU, Oxford RobotCar Weather Snow, rain, fog Difficulty in computer vision-based tasks.

71 ApolloSpace, Berkeley DeepDrive Traffic Conditions
High speed, Multiple collisions, Heavy
traffic flows.

Lack of realistic datasets

72 IDD, CCSAD, Highway Workzones Road conditions Damage, rough surfaces Lack of data
Explicate of Behavioral factors

73 UAH, Argoverse Vehicle’s behaviors Lane change, overtaking, high speed
Real time prediction in multiple partici-
pants

74 JAAD, Daimler pedestrian
Participants and road users’
behaviors

Crossing, wrong direction movements. Lack of datasets
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3.5 Simulator & Simulation Studies

Conducting a better automated system generally requires more and more experiments and reshaping of the systems, and it is
not always possible to use a real automated vehicle. In addition, performing more deep investigations and configurations that
require risky scenarios must be conducted in some type of simulation. Since the 1960s, simulator studies in the automotive
domain have been carried out75.A simulation does not contain any of the actual driving information, meaning that creating
a realistic simulation experience both psychologically and physically remains a challenge. Acquisition of sample, simulator
fatigue, training of simulator, interface designing, requests for take-over, and the secondary tasks of automated and simulated
driving study are examples of these76. Traffic simulator in open-source phase as- SUMO77 MATSim78 in commercial phase
AIMSUN79 PTV Vissim80 Paramics81 VIPS82, network simulator 802.11p/ITS G5 protocols83 OMNeT++84, NS-385, Multi-
Agent Systems(MAS) LightJason86. Potential readers are invited to read the systematic literature review on Agent-Based
Simulation of Autonomous Vehicles87. The authors of88 evaluated the segmented validity checking systems into A) robustness
testing, B) combinatory testing, and C) search based testing methods. In the field of automated driving, there is a need to bridge
the gap between open source software and vehicle hardware, see89 and86 for ITS simulation systems, respectively.
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Figure 6. Taxonomy of MVCCA in AVs.

4 Taxonomy of MVCCA in AVs

In AVs systems MVCCA is more complex task than SVCA and in this section, according to the existing research publications
we developed an extensive taxonomy. The future of automotive safety is generally predicted to be self-driving and highly AVs,
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and potential academics and manufacturers are conducting crash avoidance and AVs research to keep drivers and passengers
safety. The taxonomy is presented by Figure 6 to address different perspectives and methods for forming MVCCA strategies
associated with the SVCA in AVs.

The basics have been categorized based on the literature’s most pressing concerns. To begin, numerous works have been
discovered to allow a vehicle to move on its own, with four basic subsystems typically incorporated: location identification
and navigation system, environmental situation analysis system, motion planning system, and trajectory control system.The
second most prevalent strategy is focused on decision-making model development for vehicle control using physics-based
control theories and the latest learning control methods. This section comprises all of the collision avoidance technologies
proposed by numerous writers. Thirdly, many studies have been found that aim to provide learning control to prevent single
vehicle collisions and adaptive control of single vehicles to optimise the AVs.This segment talks through many forms of
perception, communication, threat assessment, decision-making, and vehicle control approaches applicable to a distinct range
of technologies. Finally, there are a few studies that offer a complete method of MVCCA strategies utilizing a combination of
the five fundamental aspects of the AVs. According to those researches we are going to discuss elaborately in the following
sections.

4.1 Perception
The process of perception is entirely dependent on the domain of sense, and its perfectness is a crucial factor in the AVs system’s
collision avoidance strategies. From the perspective of MVCCA, the fundamental problems are the correct understanding of
the road traffic environment, the identification of possible traffic accidents, and the proposal of alternative driving strategies.
Contemporary object detection and tracking systems such as 3D object detection for automated traffic systems are offered with
a multi-modal 360-degree balancing framework proposed by90. Perfect perception process is dependent on several facts which
is so crucial for MVCCA and we reviewed some articles to determine the focus feature in the perception phase in AVs and it is
shown in Table 4. Now the following sections are the some elaborate discussion about these.

4.1.1 Environment Fusion (EF)

AVs have the power to perform automatic actions and navigate themselves based on their surroundings and pre-programmed
duties91. Based on the environment in which it is operating, AV systems may have varying levels of complexity. Artificial
Intelligence (AI) has fueled the improvement and deployment of AVs in the transportation sector. Fueled by large data from
numerous sensing devices and improved computer resources, AI has come to be a vital component of AVs for understanding
the surrounding environment and creating appropriate choice in motion. For the ultimate objective of self-driving cars,
understanding how AI functions in AV systems is essential91.

4.1.2 Sensor Fusion (SF)

For accurate perception, AVs rely on Sensor Fusion (SF), which requires them to gather input from their surroundings and
extract important knowledge in order to classify data by semantic meaning92 and even anticipate their future states91. To do
this, the perception approach may utilize a single acquisition procedure or several sensors to constantly scan and monitor
the surroundings, much human like vision and other sensations. Collection, filtering, and dealing out of raw data collected
from a variety of sensors are all part of the process. In spite of extensive research into on-road driver assistance schemes and
autonomous driving systems (including self-driving cars), methods established for the organized traffic of city environment may
fail in an off-road setting due to the uncertainty and variety of conditions encountered93. The range, signal features, and detection
conditions of a single sensor make it difficult to detect obstacles94. As a result of this, researchers and technologists are looking
into ways to combine multiple sensors and systems. The typical categories of sensors are Image-based sensors, Range-based
sensors, and Hybrid sensors, while the most important methods of sensing are Classification-based methods,Probability-based
methods, Inference-based methods95.

4.1.3 Localization and mapping (LM)

For almost 25 years, a continuous localization and mapping system has been a hot topic in the community of mobile robotics.
The increasing focus on AVs has accelerated the research attempt with the assistance of automobile manufacturers94. The GNSS
(Global Navigation Satellite System) could be considered a solution to the problem of location; however, it was immediately
demonstrated that this is not sufficient in and of itself95. Even though the accuracy constraints of any classical GNSS System
are raised when ideally positioned base stations are employed with the Kinematic GNSS, namely Real-Time Kinematic GNSS,
availability continues to be a problem in this environment. The use of road infrastructures such as road markings or highway
indications to guide a vehicle into a lane is another fundamental approach to localization and navigation96. These kinds of
approaches, while limiting in their scope as the lateral positioning in the multi-agent traffic environment, are sufficient for
contexts where the route can be clearly seen, such as highways. More complicated situations, particularly multiple vehicle
traffic environments, may not always give enough road data to locate a car accurately. Moreover, longitudinal position precision
is more than crucial in straight, expressway-like situations97.
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4.1.4 Object Refinement (OR)

The quality of a self-driving system’s perception task significantly impacts its performance98. There has been a rise in the
availability of scanners, like LiDAR, which allows for more precise depictions of the vehicle’s surroundings, resulting in
safer systems. The results demonstrate that contemporary real-time object detection arrangements achieve high performance
at the detection rate and the accuracy cost99. Hardware and software advancements are expected to lead to a better balance
between run-time and detection rate Object Refinement (OR)99. However, current real-time OR networks are unsuitable for
high accuracy tasks like AVs visual perception100.

4.1.5 Maneuver Illustration (MI)

The march toward more enhanced driver assistance systems and the advancement of AVs open up new opportunities for the
safety system95. Improved MI methods may be developed due to increased information accessible in the vehicle regarding the
surrounding traffic situations and the path ahead97. These systems will utilise this data for control stability during safety-critical
manoeuvres. In order to reduce the chance of a collision, such a method might adaptively trade-off between regulating the
vehicle’s lateral, longitudinal, and rotational dynamics in order to achieve the best balance.

4.1.6 Vehicle Health Monitoring (VHM)

Many factors contribute to traffic fatalities and injuries, including poor vehicle maintenance, unfit drivers, careless driving, a
lack of driving instruction, and poor decision-making when it comes to adhering to traffic regulations. Legislative bodies are
also to blame for these accidents because they don’t have the proper oversight in place. Developing a centralized intelligent
Vehicle Health Monitoring System (VHMS) appears to be an excellent answer to this situation100.

4.1.7 Cooperative Perception (CP)

The precise localization is critical for navigation tasks in related fields such as AVs and intelligent transportation systems. The
multi-vehicle perception process and control viewpoints are represented in101. Cooperative operations (CO) in multiple vehicle
systems are intended to allow participants to trade sensed obstacles or perceived information with one another in order to
broaden their sensory horizons, hence increasing their situational awareness and safety102. The concept of cooperative and
non-cooperative accident avoidance alert methods for overhauling or lane shifting assist and automatic lane shift is represented
in another study103. Several research areas have looked into cooperative perceptions, incorporating sensor data handling,
wireless networks settings, and implementations of unified perceptions104. Certain researchers have used sensor fusion solutions
to improve the reliability and precision of their data105, 106.67 give a flowchart of the cooperative perception procedure in AVs.

Table 4. Perception Aspects of MVCCA in AVs.

Ref. Features Aspects Pros Cons
EF SF LM OR MI VHM CP SVCA MVCA

91 ✓ ✓ ✓ ✓ ✓ ✓
Presents the methods of sensor fu-
sion.

Not reviewed mixed traffic.

93 ✓ ✓ ✓ ✓ ✓ ✓ Obstacle detection performance. Multi-agent not in consideration.

107 ✓ ✓ ✓ ✓ ✓ ✓
Discussed on algorithms for per-
ception.

Empowered by DL algorithms
only.

94 ✓ ✓ ✓ ✓ ✓ ✓ In off-road environments. Obstacle avoidance methods.
95 ✓ ✓ ✓ ✓ Information-awareness by sensing. Information used for controller.

96 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Discussed on environment percep-
tion.

Only simulation platforms.

97 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Intention recognition. Lane illustrated.
98 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ End-to-end approaches Only software components.

99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Drawbacks of new automated sys-
tems.

Mixed traffic were not checked

100 ✓ ✓ ✓ ✓ ✓ ✓ ✓ AI supported applications. Discussed on sensing systems.
EF = Environment Fusion, SF = Sensor Fusion, LM = Localization and mapping, OR = Object Refinement, MI = Maneuver Illustration, VHM = Vehicle Health Monitoring,

CP = Cooperative Perception, SVCA = Single Vehicle Collision Avoidance, MVCA = Multiple Vehicle Collision Avoidance.

4.2 Communication & Cooperation

The second important fact of MVCCA in AVs mentioned in our taxonomy is the Communication & Cooperation (CC). Over the
past two decades, advances in robotics, navigation, sensing, computer vision, and high-performance computing have stimulated
new automotive innovations, mainly through two streams. Firstly the automation of vehicles, wheres vehicle control functions
autonomously without direct driver inputs (such as steering, throttle, and braking). Secondly, the vehicle connectivity consisting
of different communication technologies108 for vehicles, such as V2V, V2I, and V2P61. Multiple vehicular communication
research109–113 has been conducted to establish efficient and realistic cooperative communication systems. This work is
dedicated to evaluating some existing review and journal papers in this phase by Table 5.112 explored the possible impacts of
vehicle communication and mutual awareness using the Vehicular Ad-hoc Network (VANET) Veins simulator.110 discussed the

11/31



allocation of vehicle communications services through the use of value-anticipating networks.114 reviewed communication
security in a systematic literature review. The next subsections are some details of CC regarding AVs system.

4.2.1 Intra vehicle networking (IVN)

In the AVs’ prospects, the IVN has some viable roles. Improved sensor technologies such as ranging and light detection,
cameras, radar, and other sophisticated sensor technologies ushered in a new age in automated driving115. A consequence
of the inherent constraints of these sensors is that AVs are more likely to make wrong decisions, which can result in fatal
outcomes. At this stage, IVN technologies can compensate for sensor shortcomings and are more dependable, practicable, and
efficient in boosting information interaction, resulting in improved AVs perception and planning skills and enhanced vehicle
control116. Inter-vehicle communication is only possible if significant messages that increase safety can be exchanged quickly
and efficiently. Many technical issues must be addressed to meet this requirement, involving low latency, high reliability, and
guaranteed data rates117.

4.2.2 V2V Communication

In MVCCA, cooperation and communication are essential. Recent developments in hardware, software, and communication
techniques and the creation of diverse functions and standards have enabled the development of new technologies115. Vehicle-to-
vehicle communication (V2V) technologies are now being integrated into automobiles, which can detect the driving behaviours
of other participants. Sensors, communication technologies, and information systems are being unified into vehicles in order to
create connected vehicle networks. In interconnected networks, vehicle-to-vehicle communication (V2V) is being applied to
decrease traffic congestion, increase passenger safety, and effectively control vehicles on highways118. V2V communication
generally delivers real-time traffic road state information (e.g., speed, acceleration, position) concerning the ahead vehicles. As
part of an active traffic managing method, I2V communication, on the other hand, primarily offers information on downstream
traffic circumstances or local speed proposals119.

4.2.3 V2X Communication

Like V2V Communication, Vehicle-to-everything (V2X) communications have potential in MVCCA. It’s also needed for
new Internet-of-Things (IoT) applications, including intelligent transportation systems, self-driving cars, collision avoidance
systems, and so on120. Vehicle IoT faces two major challenges. First, vehicle mobility causes network elements such as
communication nodes, accessible wireless sources, and network intensity to shift spatially. Second, the problem is made
even more complex because the communication network environment is changing over time. Because vehicle IoT systems
incorporate several network nodes and diverse wireless communication techniques, the network situation may change frequently.
As a result, we must create a more intelligent communication system that can self-evolve119.

4.2.4 Driving Behavior

Predicting and planning interactive behaviours in complex traffic situations presents a challenging task116. It’s difficult to
predict and arrange interactive behaviors in complex traffic scenarios. AVs struggle to assess conditions and eventually attain
their own driving aims, particularly in situations involving multiple traffic participants who interact closely. It is complicated
in a multi-participant setting, and typically, AVs suffer from potential driving policies to avoid single-vehicle incidents and
collisions among multiple vehicles120.

4.2.5 Coordination and Reasoning

The road environment, in general, contains a large number of participants. Cooperative multi-agent systems (MAS) are those in
which multiple agents work together to complete tasks or optimize value through interaction121. Because of the interactions
between the agents, the complexity of a multi-agent problem can rapidly increase with the number of agents or their behavioral
sophistication122. Mapping, localization, and motion planning are three interconnected competencies that must be present
for a robot to operate well. A road or route between two entrenched configurations in a cost field must be calculated while
considering mobility constraints, static obstructions, and dynamic obstacles115.

4.2.6 Cooperative Perception Sharing (CPS)

Recently, in cooperative autonomous driving, the Cooperative Perception Sharing (CPS) concept has garnered increasing
attention as a plausible and feasible option to increase autonomous drivings performance (safety, comfort, efficiency)121. There
are two main types of technical approaches: centralized and distributed. Assuming the first scenario is followed, a single driver
is a leader in keeping the other vehicles under control, including coordinating their driving. Each car intends to exchange local
information with others, such as cooperative adaptive cruise control (CACC) and cooperative perception-based autonomous
driving (CPAD)123.
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4.2.7 Platooning

It is possible to use a vehicle platooning strategy in autonomous vehicles, which involves a lead vehicle and a group of vehicles
following it124. Cooperative Adaptive Cruise Control (CACC) governs the movement of the cars in a platoon115. CACC is an
upgrade to Adaptive Cruise Control (ACC) that adds Vehicle-to-Vehicle (V2V) communications and consent to cars to travel
in more compact and stable platoons than ACC permits. Most CACC systems necessitate communication between the next
vehicle and the car in front of the platoon, depending on which is closer. This can be accomplished through the exchange of
data on the vehicles’ longitudinal and lateral control systems (e.g., steering) along with management procedures that monitor
platoon formation, driving maneuvers, and platoon disengagement117. Cooperative Awareness Messages (CAM) are used to
exchange this data across the connected vehicles.

Table 5. Communication & Cooperation for MVCCA in AVs.

Ref. Features Aspects Pros Cons
IN V2V V2X DB CR CPS P SVCA MVCA

115 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Discussed network and communi-
cation.

Not consider the mixed traffic sys-
tem.

116 ✓ ✓ ✓ ✓ ✓ ✓ Cooperative actions investigated.
Consider only lane change situa-
tion.

117 ✓ ✓ ✓ ✓
Technological problems illustra-
tion.

Not discussed cooperative aspects

118 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Evaluate the crucial challenges. Not consider mixed traffic.

119 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Reviewed existing work.
Only as a form of social-AI capa-
bility.

120 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Use cases of communication
In-feasibility of current technolo-
gies.

121 ✓ ✓ ✓ ✓ ✓ ✓
Present a coordination driving pro-
tocol.

With a lane-join situation.

122 ✓ ✓ ✓ ✓ ✓ ✓ Evaluation and framing key facts. Only some aspect of traffic flows.
123 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Multi-vehicle systems. Discussed a car-following model.

124 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Summarization coordination in
AVs

Focused on particular conditions.

IN = Intra vehicle networking, V2V = V2V Communication, V2X = V2X Communication, DB = Driving Behavior, CR = Coordination and Reasoning, CPS = Cooperative

Perception Sharing, P = Platooning, SVCA = Single Vehicle Collision Avoidance, MVCA = Multiple Vehicle Collision Avoidance.

The coordination of multiple autonomous agents raises several real-world issues. These studies use cooperative multi-agent
systems models, whereby agents aim to achieve a common global goal125.

4.3 Threat Assessment

Threat assessment determines the nature of a situation and assists in the secure operation of intelligent vehicles. Due to MVCCA
intended For threat assessment, several critical metrics could be established. It is essential to decide on an appropriate critical
metric for resolving certain driving and navigation issues in various driving situations.126 using an integrated algorithm for
predicting obstacles and estimating the state of a self-driving vehicle.127 claims that the TAS performance will be stimulated by
a decision-making scheme that will define the vehicle’s next plan of action.

Essential Metric128 classified them into five groups: kinematics-based metrics, potential field-based metrics, time-based
metrics, unexpected driving measures-based metrics, and statistics-based metrics.129 listed a large set of data with more than
250,000 kilometres of driving data for estimating the frequency of collisions with EVT (Extreme Value Theory). Vision-based
road safety identification techniques reviewed by130.131 pointed out that automated car systems were first disassembled into
vehicle components and transport infrastructure components to identify the risks. Many reviewers reviewed many pieces of
literature on the tremendous potential of evolving automotive technology for safety and the environment. The table 6 refers to
threat there, and presents the evaluations of some papers focusing on threat assessment as well as potential features and the
upcoming sections are the in depth discussion of some facts mentioned in the proposed taxonomy.

4.3.1 Threats of in-vehicle protocol

Due to the lack of human control, it is critical for AVs to perceive the ambient situations precisely when cruising on the road127.
AVs require a variety of sensors, including GPS, ultrasonic sensors, light detection and ranging (LiDAR), and millimeter-wave
(MMW) radar. Sensors enable AVs to perform tasks such as sensing, obstacle/pedestrian recognition, collision avoidance,
navigation, and more. Given the great reliance on sensors, it’s possible that if they’re blinded, or even intentionally managed,
they’ll produce lethal disasters128. The privacy of in-vehicle network connections, such as the LIN, CAN, or FlexRay, must be
taken into consideration132.

4.3.2 Driving Comfort (DC)

The smoothness and consistency of a path are the two key parameters impacting Driving Comfort (DC) in a multi-agent
autonomous driving technique133. An uneven road may cause occupant discomfort or even wheel slippage, reducing the
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vehicle’s stability. The smoothness factor is gathered at the present planning phase to minimize chain collisions, but it cannot
prevent the construction of a path that is substantially different from a path generated in a prior step134. If the difference
between the current step’s path and the prior step’s path is too great, an abrupt transition will occur. Path consistency must be
examined to avoid this situation129.

4.3.3 Collision Risk Prediction (CRP)

Early detection of dangerous conditions and proactive responses aid in maintaining appropriate safety distances. However,
because of unexpected, unpredictable situational changes, danger maneuvers and crashworthiness persist an important aspect
of vehicle protection, helping to reduce the severity of crashes127. The following are criticality measurements for regular
automated driving. The Time-to-X-Metrics128, such as Time-to-Brake135, Time-to-Collision129, and Time-to-Steer, are probably
the most well-known criticality metrics. Because of their directly relationship to human reaction time, these measurements
are frequently utilized in assisted driving. However, they mainly concentrate on collision avoidance using imprecise motion
forecasts based on constant velocities and do not take into account unpredictable environmental data. Work on a vehicle
cooperative collision avoidance (CCA) approach using the Dedicated Short-Range Communication (DSRC) for the V2V136.
An unique decentralized and cooperative policy for collision-free motion coordinating of non-holonomic AVs was developed in
the study.

4.3.4 Collision Mitigation (CM)

The research direction presented three techniques to single and multiple vehicle collision avoidance, as well as Collision
Mitigation (CM): (a) front collision indication; (b) front collision avoidance by decelerating and navigation; and (c) a
combination of (a) and (b)132. The majority of earlier collision avoidance research did not get an improvement in V2V
communication for multiple-vehicle system coordination. The time delay between sensor recognition and driver/agent reaction
will accrue and spread upstream in a multi-vehicle scheme. If they follow each other closely, which is common on freeways, this
is likely to result in numerous car collisions, especially if the first vehicle does emergency braking137. If the ego agent/vehicle
is too close to the front agent/vehicle, steering may not be effective. Furthermore, if participant vehicles are in both the lanes
left and right, steering could result in a more serious collision (s). A scheme is described as a group of agent vehicles that are
longitudinally connected. If the velocity and distance of two neighbouring vehicles in the same lane satisfy certain parameters,
they are considered linked. Intuitively, if the leading car brakes, the following vehicle must take prompt action to make sure
safety. The time gaps used for realistic road driving are typically 1.4 ∼ 2.1s), although some are as low as (0.4s. As a result,
most vehicles in the same lane are grouped together in some way135.

4.3.5 Dynamic and Static Threat Assessment (DSTA)

Though vehicular localization is required for multi-vehicle collision avoidance, several methods presume flawless sensing and
positioning and instead use global positioning via an overhead tracking camera to avoid local procedures137. However, in order
to conduct local collision avoidance accurately in a realistic environment, a vehicle must be able to estimate its own and other
agents’ and humans’ positions without the use of external tools138. Furthermore, in a real-world setting, multi-vehicle systems
require strategies to deal with uncertainty in their own positions as well as the positions and potential actions of other agents127.

4.3.6 Uncertainty Assessment (UA)

In complex traffic environment, situation assessment is essential for a good vehicle safety method135. An illustration of the
contemporary methods ADAS shows that: i) the human-driving procedure involves Observation, Driver Intention, and Driving
Action sub-modules; and ii) the ADAS procedure contains Detection and Estimating, Threat-assessment, Decision-making,
and Instinct functions135. Indeed, ADAS operations are intended to be an idea of just like the human-driving manner, and
significant progress has been achieved in broadening the variety and difficulty of situations handled today. Nonetheless, in
the presence of several vehicles, a key theoretical difficulty remains how to correctly discern a safe driving behavior from a
hazardous one, highlighting the importance of Uncertainty Assessment (UA) in AVs systems136.

4.3.7 Threat Assessment Strategies (TAS)

As vehicles become more automated, they must be able to analyze risks and evaluate situations in real time. Driver-less vehicles
in this scenario should be able to assess risks in a dynamic environment in order to make informed decisions and adjust their
driving behavior accordingly128. To avoid crashes, we must use a risk estimator that takes into account risk indicators such as
(1) the driver’s state, (2) the conduct of other vehicles, and (3) the weather circumstances134. The Collision Avoidance (CA)
system is one of the most important components of ADAS. Threat assessment, path planning, and TAS are commonly included
in a suitable CA architecture. Using a combination of these methodologies, there are numerous approaches to construct exact
CA architecture129.
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Table 6. Reviewed Up-to-date Papers According SVC and MVC Threat Assessment in AVs.

Ref Features Aspects Pros Cons
Ref TVP DC CRP CM DSTA UA TAS SVCA MVCA

127 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Comprehensive CA system high-
lighted.

Reviewed an introductory idea.

128 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Comparative review of critical met-
rics.

Considering only three typical sce-
narios

132 ✓ ✓ ✓ ✓ ✓ ✓
Continuous real-time risk assess-
ment.

Decision made on incomplete data.

137 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Human-centered risk assessment. Not applicable for motion control.

136 ✓ ✓ ✓ ✓ ✓ ✓
Analysis the effect of warning sys-
tem.

Only in simulation environments.

139 ✓ ✓ ✓ ✓ ✓ ✓ Real-time NL collision prediction. Interaction-aware model.
135 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Identify the harmful situation. Did not solve the problem.

138 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Proposes a proactive cyber-risk
model.

Cyber-risk assessment.

140 ✓ ✓ ✓ ✓ ✓ ✓
Analysis of threat-assessment
methods.

Cover only single-behavior threat.

141 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Survey of existing methods. Study marginally.
TVP = Threats of in vehicle protocol, DC = Driving comfort, CRP = Collision risk prediction, CM = Collision mitigation, DSTA = Dynamic and Static threat assessment, UA

= Uncertainty Assessment, TAS = Threat assessment strategies, SVCA = Single Vehicle Collision Avoidance, MVCA = Multiple Vehicle Collision Avoidance.

4.4 Decision Making

Current autonomous driving system is prone to rear-end collision and its is very typical cause for multiple vehicle collision. An
optimum decision-making strategy is need to prevent this types of collision.142 examine fleet management issues in single and
multi-player transportation networks.143 concentrate in their annual study on recent trends in AVs driving decision-making
planning. This review discussed some of the latest findings related to various areas of AVs decision-making and planning in
Table 7. A valuable review of the decision making and control systems of AV is available at144.

A rigorous mathematical framework , in145 formulates and discusses the optimization algorithm for the solution and
examines the main details of the implementation of the multi-vehicle motion planning problem.126 propose a new way of
thinking in which agents learn collision as a single agent and then avoid multiple collisions by reversing the trained policy.Major
research using quadratic mixed-integer programming (MIQP) has been conducted146, B-splines147, polynomials148,elastic
bands149, and potential fields,150 in route planning strategies151. Contemporary research takes into account the problem of
route planning for a single vehicle when multiple vehicles are present in traffic environment. Following subsections are the
discussion about the decision-making aspects of multiple participants environment in AVs.

4.4.1 Cooperative Motion Planning (CMP)

CMP (Cooperative Motion Planning) for automated cooperative collision avoidance in a multiple-vehicle setting is a possible
future solution to improve traffic safety. This method necessitates a real-time motion analyzer that calculates several cognitive
vehicles’ cooperative moves. Because path planning is a computationally demanding operation, the planner’s computing time
must be balanced against the solution’s efficiency142. Automatic involvement of this support system in dangerous scenarios
involving many vehicles may avoid accidents. Because human drivers have a long response time and few opportunities to
organize their actions with many other drivers, so they are frequently unable to initiate the right actions143. A fundamental
requirement for the designed method is planning cooperative moves that avoid or lessen accidents.

4.4.2 Cooperation and Interaction (CI)

Cooperative Multi-agent Systems (MAS) are processes where several agents work together to solve problems or maximise
utility by interacting. Because of the interactions between the agents, the complexity of a multi-agent issue can rapidly increase
as the number of agents or their behavioural sophistication increases. Because of the difficulty in programming solutions to
MAS problems, machine learning approaches to facilitate the search and optimization process are gaining popularity. Typical
solutions152 for dealing with those specific manoeuvres are rule-based methods that use some notion of time-to-collision144 to
ensure that they are only executed if there is more time in the worst-case scenario. Due to the lack of explanation of the situation,
these options led to overly cautious behavior. It was suggested that machine learning methods, such as Partially Observable
Markov Decision Processes or Deep Learning techniques, be used to infer the intentions of others drivers153. However, training
machine learning algorithms of this type usually necessitates simulated environments, so behavioral simulation of other drivers
is crucial142.

4.4.3 Collective Decision-Making (CDM)

Various collective decision-making (CDM) procedures have been created in Multi-Agent Systems (MAS) research to obtain
consensus over the agents’ collected preferences. In automotive applications, voting processes have been used to establish
agreements in car-sharing152, platooning, and leader election in decentralized intersection control154. It is able to brake properly,
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not like the driver’s late or poor reply to risky conditions, reducing the vehicle’s speed and the severity of the crash. As a result,
designing accurate and efficient low-level automated braking control methods or high-level control depending on coordinated
techniques is a huge technical issue. Conventional control techniques, like constant time headway (CTH), constant spacing
(CS) policy, policy, and sliding mode control (SMC)142, have a limited ability to adapt to changing driving environments. And
cannot make reliable and realistic decisions when CAVs coexist with traditional driver-controlled vehicles143.

4.4.4 Autonomous Braking Decision (ABD)

To prevent accidents, autonomous braking via accurate vehicle decision-making is crucial, especially in the initial phases
of AVs technology144. Autonomous Braking Decision (ABD) is completely dependent on the automated braking function
(ABF), which is one of the AVs safety core technologies154. It can successfully brake, as opposed to the driver’s reaction to
dangerous situations, which is either too late or inadequate, reducing the vehicle’s speed and the accident’s repercussions. The
intelligent control system, assisted by the present advancement of artificial intelligence (AI), makes decisions based on the
present environment and continuously learns and adapts to it155.

4.4.5 Trajectory Coordination (TC)

One of the concerns in autonomous multi-robot systems is how to avoid crashes between separate robots. Finding a coordinated
trajectory from beginning to goal for all robots and then allowing the robots to follow the which was before Trajectory
Coordination is one method to this challenge (TC)156. ’Classical’ prioritized planning, in which robots plan sequentially one
after the other, is a frequently used practical method for discovering such coordinated trajectories155. This method has been
demonstrated to be effective in practice, but it is unfinished, and it has not yet been properly assessed under what conditions
the method is certain to succeed. Furthermore, because prioritized planning is a centralized algorithm, it is unsuited for
decentralized multi-robot systems and the avoidance of chain collisions157.

4.4.6 Longitudinal and Lateral Constrains (LLC)

In collision avoidance decision-making, optimisation methods simultaneously defeat decentralization effects145. They use
Longitudinal and Lateral Constraints (LLC) to optimize a cost function concerning a collection of states and the input158.
Because several motion planning issues are non-convex, optimization problems may become stuck in local minima and become
computationally inefficient. Optimization issues can become stuck in the local bare minimum and inefficient to solve because
many motion planning problems are non-convex. Deploying the optimal collision avoidance decision-making approach in both
single and multiple vehicle collisions is a system need156.

Table 7. Various Areas of Autonomous Vehicle Decision-Making and Planning Focused on MVCCA in AVs.

Ref Features Aspects Pros Cons
Ref CMP CI CDM FM ABD TC LLC SVCA MVCA
142 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Framework for multiple players. A computational technique.
143 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Behavior-aware planning. Consider particular cases.

152 ✓ ✓ ✓ ✓ ✓ ✓
A Generic Mixed-Integer Formula-
tion.

Not considering multi-agent case.

153 ✓ ✓ ✓ ✓ ✓ ✓ Cooperative conflict resolution. Computational complexity high.

154 ✓ ✓ ✓ ✓ ✓ ✓
Cooperative trajectory planning for
MV.

Arbitrary road geometry.

145 ✓ ✓ ✓ ✓ ✓ ✓
Motion planning for multiple vehi-
cles.

Exclusively by preplanning step.

157 ✓ ✓ ✓ ✓ ✓ ✓ Tracking and decision making. Especially stochastic policy.
155 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Review on motion planning. Highway geometric planning.
158 ✓ ✓ ✓ ✓ ✓ ✓ ✓ Decision-making in multi-agent. Lead extreme time consumption.

156 ✓ ✓ ✓ ✓ ✓ ✓ ✓
Decision-making highly automated
Vs.

May need more research.

CMP = Cooperative Motion planning, CI = Cooperation and Interaction, CDM = Collective decision making, FM = Fleet Management, ABD = Autonomous braking

decision, TC = Trajectory Coordination LLC = Longitudinal and lateral constrains, SVCA = Single Vehicle Collision Avoidance, MVCCA = Multiple Vehicle Cooperation and

Collision Avoidance.

4.5 Vehicle Control for MVCCA in AVs

According to the proposed taxonomy, Motion planning, decision-making, and vehicle control are critical for multi-agents to
navigate their environment. In this section, we review a set of the most relevant review articles and journals in the prospective of
both single and multiple automated vehicles. We evaluate the main features as well as their discussion limitations in additional
review papers in Table 8. In the coming subsections we discussed some details of every aspects of our taxonomy.

In order to take into account the prevention of collisions and the mitigation of impacts in a multi-vehicle collision situation,
it is only appropriate to take into account a longitudinally coupled structure evolving of nearly followed vehicles. Coupled refers
to two adjacent agents in the same lane if such criteria are met jointly by their speed and distance159.156 examined the existing
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controller system in a mixed traffic system and concluded that the human driver car should be accurately modelled as an essential
agent in shared drivers’ vehicle control systems in terms of cognitive processes, control mechanisms, and decision-making
processes. Considering multiple agents’ traffic patterns,160 reviewed and presented an architecture for Integrated Vehicle
Dynamics Control for a quicker and more versatile design to help car manufacturers and suppliers.

4.5.1 Obstacle Avoidance (OA)

The most difficult task in autonomous driving systems is avoiding both static and moving obstacles, which is still hampered by
optimal policy procedures161. The problems arise from an integrated process of detecting and interpreting the surroundings and
impediments, as well as the production of appropriate behaviours162. As a result, having a superior control strategy that can
drive in an urban setting without colliding with other vehicles and objects is desirable163. The majority of current research does
not concentrate on the sub-task of obstacle avoidance (OA) in specific driving scenarios. However, on the normal road, other
vehicles or obstructions can have a significant impact on the car, therefore OA is a problem that AVs must overcome. Cars can
collect data and route information, such as road conditions and location estimations of static and dynamic objects, and use it to
forecast actions taken by other vehicles and infrastructure in real time164.

4.5.2 Geometric Model (GM)

The recognition of moving objects is frequently required in the first step of computer vision applications based on movies161.
After that, background subtraction is used to segregate the foreground from the background. However, the main objective is to
use the background removal techniques in research in real-world applications such as traffic surveillance165. However, a review
of the literature reveals that there is frequently a detachment between current approaches utilized in real-world applications and
current techniques in basic research. Furthermore, the videos assessed in substantial-level datasets are not comprehensive, as
they only reflect a portion of the full range of issues encountered in real-world applications166. For example, for image data
synthesis, a visual structure is applied to produce an estimated geometric representation of an object, whether the image input
is static. The second example enables the creation of an image-based human model that may be utilised for optical motion
capture167.

4.5.3 Kinematic Model (KM)

To detect unanticipated variations in participant and ego behaviour, a kinematic framework based on physical phenomena of
kinematics is used160. The kinematic model is also used to detect unexpected deviations by leveraging information from the
leader vehicle, which is directly conveyed and monitored by the leader’s nearby cars and supporting infrastructure. The KM is
reliable, but not optimal, in particular in the MVCCA aspect162.

4.5.4 Dynamic Model (DM)

The majority of technical obstacles arise from the unpredictable environment in which AVs operate, such as road and weather
conditions, perceptual and sensory input data mistakes, and ambiguity in pedestrian and agent vehicle behaviour26. A robust
AV control algorithm should account for many sources of uncertainty and generate measurable safe control rules. Furthermore,
algorithms that follow precise security measures can aid legislators in handling AV-related legislation difficulties, such as
insurance policies, and ultimately persuade the public to accept AVs on a large scale164.

4.5.5 RL based control

The reinforcement learning (RL)-based automated decision-making strategies function relatively well enough in autonomous
driving systems because of this ongoing learning and feedback feature. Researchers have fantastic solutions for enhanced
autonomous decision-making and control for AVs.167 propose a deep Q-network-based automatic braking system to avoid
vehicle-pedestrian collisions (DQN).165 Create a cooperative adaptive cruise control (CACC) automobile controller based on
RL. Recently,167 proposed a framework for CACC systems based on supervised reinforcement learning (SRL).168 overcome
the coordination problem in autonomous driving using multi-agent reinforcement learning (MARL).

4.5.6 Cooperative Control (CC)

The majority of studies on multi-AV control fall under cooperative coordination160. In other words, AVs are expected to connect
for global traffic information and optimize a common goal of improving traffic flow. In multi-robotic applications, cooperative
control has received a lot of attention169. For a group of robots with a centralised aim to achieve a task collectively, swarm
intelligence, formation control, and consensus control have all been widely employed, as has multi-AV control164. A centralized
controller or planner coordinates the movement of vehicles in a cooperative multiple vehicle systems to achieve a shared goal,
like collectively stabilizing traffic flow and smoothing traffic jams, optimizing driving comfort, or improving fuel efficiency167.

4.5.7 Non-cooperative Control (Non-CC)

A multi-agent system is a collection of vehicles that interact in a shared environment that they detect with sensors and act on
with actuators164, 167. Distributed control, Robotic teams, resource management, data mining, collaborative decision support

17/31



systems, and other disciplines use multi-agent systems167, 168. They may emerge as the most natural way of looking at a system
or provide an alternative viewpoint on systems previously thought to be centralized. Robotics, telecommunications, distributed
control, and economics are just a few fields where multi-agent networks are finding use. Due to their complexity, many tasks
that arise in these fields are challenging to solve using pre-programmed agent actions. However, the agents must use learning
to find a solution independently. A substantial portion of multi-agent learning research focuses on reinforcement learning
techniques167.

Table 8. According to Latest Works the Major Features of Vehicle Control for MVCCA in AVs.

Ref. Features Aspects Pros Cons
OA GM KM MD RLBC CC NC SVCA MVCA

161 ✓ ✓ ✓ ✓ ✓ ✓ ✓ A nonlinear vehicle models. Focused only modeling.
169 ✓ ✓ ✓ ✓ ✓ Vehicle control DL methods. Deep learning methods only.
160 ✓ ✓ ✓ ✓ ✓ Reviewed control techniques. Path tracking concepts.

26 ✓ ✓ ✓ ✓ ✓ ✓ Trajectory motion controller.
Verified only in simulation (Car-
sim).

165 ✓ ✓ ✓ Cooperative navigation algorithm.
Not guaranteed to deadlock avoid-
ance.

162 ✓ ✓ ✓ ✓ ✓ ✓
Cooperative approach for multi-
agent.

Strategies verified only in simula-
tion.

163 ✓ ✓ ✓ ✓ ✓ Investigate the trajectory modeling.
Multiple vehicles not in considera-
tion.

167 ✓ ✓ ✓ ✓ ✓ ✓ Computational techniques. Inter modal fleet planning.

164 ✓ ✓ ✓ ✓ ✓ ✓
Test and compare decision and con-
trol.

Simulate interactive driver behav-
ior.

168 ✓ ✓ ✓ ✓ Vision-based DL and RL methods. The perception input was static.
OA = Obstacle avoidance, GM = Geometric model, KM = Kinematic model, DM = Dynamic model, RLBC = RL based control, CC = Cooperative Control, NC =
Non-cooperative Control, SVCA = Single Vehicle Collision Avoidance, MVCA = Multiple Vehicle Collision Avoidance.

5 Conceptual Framework of MVCCA

5.1 Proposed Framework
According to the existing research works we have been developed our taxonomy to solve the MVCC problem. Moreover,
illustration of current automated vehicles (AVs) research work has shown that multiple factors and indicators causing vehicle
crashes are not thoroughly defined, categorized, or modelled in an embracing context that can be incorporated into applications.
Research on multiple agents in AVs is more complex and undiscovered until now. We elaborately reviewed contemporary
research and then created a novel approach to collision avoidance strategies in AVs. Now regarding to the MVCCA we proposed
an IT-enable conceptual framework that has five phases. Due to focusing on the decision-making phase, we also proposed
a reinforcement learning based model to make a perfect driving decision for avoiding chain collisions or mitigate the chain
collision severity. We need to train our model by trial and error to adopt our kinematic constraints170. The Figure 7 shows the
proposed conceptual framework for MVCCA in AVs, and following sections we will discussed briefly about all the five phases.

5.1.1 Perception Phase

From the review works in section 4 we got that, due to the mitigation of multiple vehicle collisions, the perception of a
multiple agent environment can obviously be more sophisticated than regular driving. Utilizing the segmentation and detection
algorithms, we divided the risk prediction phase into two distinct stage where our risk index for multiple vehicle collisions
is normally zero when only one road user is detected. It will become high when it detects two or n number of partners
surrounding itself. The risk index will reach a high level when the first crash occurs for any unpredictable reason, in this
critical situation, we suggests the vision-based supervised learning perception methods that are now very popular in the AI
community. In the proposed framework, making a local processing scheme could be suggested to achieve highly accurate
localization. Map-supported localization algorithms use to conduct the local features. In particular, we defined the simulations
by considering the prominant method as simultaneous localisation and mapping (SLAM). The aim of framing SLAMi is as a
Bayesian filtering problem is to estimate the joint posterior probability,

P(x1 : k,b|s1 : k,q1 : k−1) (1)

b is the map and x1 : k = x1, . . .xk the robot trajectory given its sensor measurement s1 : t = s1, . . .st and the device inputs
q1 : k−1 = q1, . . .q(k−1). In this group, Kalman filter is common methods. The RBPF shows a particle the trajectory of the
vehicle and the corresponding map and factories, the probabilities as follows:

P(x1 : k,b |s1 : k,q1 : k−1) = P(b |x1 : k,s1 : k).P(x1 : k|s1 : k,q1 : k−1) (2)

Here, the posterior probability is calculated by a particles filter. P(x1 : k, b|s1 : k,q1 : k−1) in which the previous distribution is
derived from the odometry of participant vehicles and refined with sensor interpretations in a multi-agent dynamic environment.
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Figure 7. Proposed AI-enable Conceptual Framework for MVCCA in AVs.

5.1.2 Communication and Coordination Phase

This is the second phase of our conceptual framework for MVCCA in AVs. In the multiple agent traffic environment, platooning,
lane merging, and truck overtaking are the extreme cooperative coordination situations with patterns of road users. Some
critical conditions as after the occurrence of the 1st crash, despite the high risk of 2nd, 3rd or multiple crash, there are situations
that are not clearly or unproductively controlled and where cooperation is required to avoid the chain collisions. Therefore, as
far the communication medium is a concern, two high standards would be set with 5G, a promising choice for the system. If a
unified level of preparation is preferred, C-V2X has to be chosen for backend communication. IEEE802.11p is also would be
sufficient for decentralized planning with coordination. A combination of both methods is, of course possible again, whereby
routing information is obtained from a central planning level via c-V2X, but manoeuvre planning could be organized via V2X
locally.

5.1.3 Threat Assessment Phase

In our proposed conceptual threat assessment phase will estimate the situation’s criticality and aids in ensuring safety in the
automated traffic system. Two critical metrics have been suggested (See the figre 7) for threat assessment namely single collision
and multiple collision, and the selection process of the critical metric must be good for specific driving actions in diverse driving
environments. The previous section 3) provides a comparison of vital indicators with an emphasis on real-time automated
driving strategies. According to that comparison, we would like to suggest the reinforcement learning based techniques that are
required by automated systems operating in complex, dynamic, and interactive environments that generalize the interactions
with multiple traffic participants to unforeseen circumstances and timely rationales. We presented a in-depth framework in our
previous work in171, where we utilized the critical condition prediction technique depending on recurrent neural network based
technique.

5.1.4 Decision Making and vehicle Control Phase

In our proposed conceptual framework, the last two phases namely Decision Making and vehicle Control are the top most
concentrated phases. From the previous sections we can say that the AVs decision-making process must deal with a diverse set
of situations, communicate with other traffic participants, and should able to take into account a set of sensors information from
the environment as well as the uncertainty. It is impossible to manually predict all circumstances that may arise and code a
suitable behavior. Therefore, considering methods focused on machine learning to train a decision-making agent is convincing.
A desired feature of such an agent is that it does not only deliver a recommended decision, but also measure the uncertainty of
the decision in question. Deep neural networks (DNNs) are a common artificial intelligence technique for learning after large
quantities of data with little human input or without any human interactions (i.e., RL methods). The developed agents that are
learned and can operate in unpredictable, broad and stochastic contexts, as revised. The agent has been particularly trained by
the effective way of a combination of Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL)172. We proposed
a multi-agent DRL based an ideal driving strategy for avoidance or mitigating multiple collisions. Followings are the details of
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the proposed MVCCA strategies decision making and vehicle control mechanism.

RL Method: A reinforcement learning (RL) method may learn how an agent should behave in order to maximise the
predicted cumulative rewards by interacting with the environment for a specific activation in a specific state. Existing RL
algorithms are categorised into two key types: value-based and policy-based methods. Value-based RL methods, which use
neural networks to solve value functions. The main advantage of policy-based RL methods is in the phase of optimization,
which can directly improve policy optimization while continuing stable over time during approximation. Regarding our
objectives which we defined in previous sections, here, we proposed a policy-based RL approach to address multiple collision
avoidance issues. The general form of loss function for RL policy updating, in a stochastic RL where Êt is the expectation
policy πθ , and at time step t, B̂t is an estimator of the function and the mathematical expression is,

L (θ) = Êt

[

logπθ (αt |st)B̂t

]

(3)

Although performing several optimization steps on this, L (θ ) (loss function) can seem appealing and straightforward, all
the factors may pose problems, such as the prevalence of sample inefficiency, the exploration and exploitation trade-off, and
the learned policy carriages unwanted high variance. In practice, this frequently leads to major policy updates, and it will be
harmful at a future time step of a training episode because it can change the distribution of observation and reward. In contrast,
it is important to use an actor-critical mechanism for modifying a policy that can combine the advantages of conventional
value-based and policy-based approaches in the loss function L (θ) ), some developed policy based algorithms such as PPO
and TRSO. For simpler implementation, PPO is more convenient than others because of its less computational cost. PPO offers
paired substitute loss function, a feature that can be combined as a policy substitute and an error term of value-function, and
can be express as follows:

L
goal+UF+P

t (θ) = Êt [L
goal

t (θ) − K1L
UF
t (θ)+K2P(πθ |(pt))] (4)

Here the paired substitute goal is L
goal

t (θ), K1, K2 are coefficients, L UF
t is the value function’s squared error loss (Uθ (pt)−

U
targ
t )2, and the loss of entropy denoted by P. Specifically, the paired substitute goal is L

goal
t (θ) takes the form as,

L
goal

t (θ) = Êt

[

min(rt(θ)B̂t ,goal(rt(θ)),1− ε,1+ ε)B̂t

]

(5)

Here, ε is hyperparameter, rt(θ) is probability ratio of rt(θ) = πθ (αt |st)/πθold
(αt |st). The probability ratio r is goal

objective whose paring is at 1−ε or 1+ε , and it depends on whether it is a positive advantage or a negative advantage, forming
the paired goal target as well as the ultimate goal after multiplying B̂t , is the approximate advantage. In contrast to unpaired
version, also known as the conservative policy iteration algorithm’s loss function, the ultimate value of L

goal
t (θ) takes the

minimized value of this paired goal objective and unpaired goal objective rt(θ), essentially avoiding a broad policy update.
The PPO algorithm typically utilises a stable length-N trajectory segment that runs the N-time steps of policy in each

iteration, and each M parallel actor collects data at each time step. It uses a simplified version of the generalised gain estimate,
which looks like this:

B̂t = δt +(γλ )δt+1 + .......+(γλ )N−t+1(δN−1) (6)

the discount factor here is γ and γ and δt = rt + γ V (st+1 −V (st). Then the loss L (θ) ) is created by PPO and SGD is the
optimizer with mini-batch , for epochs K on these time steps MN of data.

5.2 Proposed Control Learning Model

The decision-making model for vehicle control in the multiple agent traffic environment is defined as a Hierarchical DRL
method depends on three DRL techniques where the maximum Q value will be taken for deploying the best driving policy or
set of actions. By comparing the sets of actions, value functions according to the recent states of their respective functions,
compound functions optimise the DRL control actions outcomes. When all Q values are compared from 3 DRL schemes,
high-preforming value function targets and create a new set of value function from all learning control functions. The choice of
a high value would boost the value of goals with a preference comparison that improves the control goal option during selection.
The algorithm flowchart of our proposed decision-making for vehicle control is presented by the Figure 8.
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Figure 8. Proposed Decision-Making Model for Avoid MVCs

5.3 Proposed Network Settings

According to the proposed AI-enable conceptual framework presented in the Figure 7 for MVCCA now we defining the
prospective network settings of the suggested training model. For the decision-making and vehicle control processes, this
network architecture has two basic elements: a neural network settings and a simulation environment. In particular, dealing
with the neighbouring partners in order to achieve a high-level policy for decision-making to MVCCA, three RL algorithms
would be use the compare the training performance. The suggested simulator will Unity3D Game Enginei and a multi-agent
traingng environment will be create to collaborate with a partner training agent in a high-fidelity traffic environment suite
to deploy the simulation. The multiple vehicles in the context of multi-agent traffic environment that includes various road
networks and various traffic tasks setups will be execute. Figure 9 represents the learning model of the proposed training phase
of the system. In the training period, the ego vehicle first obtains feedback from the environment by way of our control rewards
for the safety, smooth, and efficient driving actions of the ego vehicle and the state of its surrounding partner vehicles, and these
countries are transmitted through the network. Next, the self-wheel determined the actions of longitudinal and lateral based
on a defined policy network and subsequently returned the action to the simulation environment to model the movement and
measure the corresponding reward in the next step. The award function integrates key objectives of the proposed architecture,
which are to develop a safe, efficient, and comfort-based automated collision avoidance strategy. In order to achieve the best
results, the following factors must be prioritized:1) to comfort: assessment of jerk (depends on its lateral and longitudinal
movement), 2) to efficiency: estimation of total time and distance between participants, and 3) to safety: assessment of collision
and near-collision risk.

6 Open Research Issues

In the realm of automated driving, we have identified several critical areas for open challenges. We believe that artificial
intelligence will play a key role in overcoming these challenges:

1. The proposed framework states that the combination of diverse sensor data becomes essential for a promising sensing
system. It is worth mentioning that important advances in object recognition and detection have been reported173.
However, the existing systems are intended to calculate 2D or 3D bounding boxes for a few trained object classes. As a
result, it is expected that future research will focus on bridging the gap between 2D image data and LiDAR-based 3D
data, as well as enhancing identified details to allow more objects to be perceived and tracked in real-time.

2. Real-time needs must be addressed to process massive amounts of data acquired from the vehicle’s sensors and update
AI method parameters across higher speed communication connections174. The progress in semiconductor chips for
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self-driving vehicles and the growth of 5G networks can overcome these limitations.

3. The collision risk evaluation system must fundamentally forecast the vehicle’s gesture throughout a time horizon too
short to medium175. As noted by various sources, the key focus of deep learning for AVs is perception and the learning
process176. However, AI is projected to play a considerable role in local trajectory assessment and planning in the coming
years.

4. Since the traffic environment is changing, a vehicle might potentially exceed ordinary road restrictions in an emergency
or on an expressway. It is therefore vital to thoroughly investigate how to evaluate the content of this uncertain situation.
After all, the multi-modalities (mixed traffic systems) and multiple actors dealing with diverse sub-problems, as described
previously in section 2, are extremely challenging, and the optimal solution has yet to be revealed. This paper shows
that strategic, tactical, and operational collision prevention problems have deeply interacted and should be handled in an
integrated way.

5. It is challenging to incorporate non-linear vehicle dynamics in real-time in high-speed collision situations. More complex
circumstances can also be employed for the future performance of collision avoidance systems, like avoiding unexpected
slowdowns and abrupt lane changes. The collision evasion system protects the provision of a broad collision scenario
that shows the best research problem for the future.

6. Typically, the trained conventional machine learning model cannot capture all critical traffic scenarios. Enormous
research uses various data sets, and the diversity of data sets is frequently not assured during data generation. The training
package is somewhat comparable and is rarer during training in the rare driving circumstances, where the model will
most definitely fail. In order to address this issue, future research should focus on the implementation of reinforcement
learning approaches in automated driving.

7. Most driving scenarios are classically believed to be resolvable. The other unsolved solutions are corner cases that need
a superhuman driver’s judgement and understanding. Deep learning algorithms’ generalization capacities should be
strengthened to tackle corner cases. In learning dangerous scenarios, generalization in a learning model is crucial, partly
because the training data for such corner instances is rare. This also means the conception of one-shoot and low-shoot
learning systems with fewer examples of instruction.

8. It is worth noting that the ability of AI mechanisms to adapt based on past experiences has already been demonstrated
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to understand the vehicles’ control methods parameters, which is a glimmer of optimism. Therefore, an improved
approximation of the underlying precise system model shows future research demands of considerable research.

9. In security-critical schemes, the application of protocols depends on learning-based AI techniques currently being debated,
bringing closer relationships between computer intelligence and the functional security sectors. The machine learning
package is not covered by existing safety standards, such as ISO26262. Despite the introduction of new data-driven
layout methods, there are still questions about the stability, explainability, and classification resilience of neural networks
and deep neural networks.

10. Many organizations and companies strive for automated driving to find the most effective way of moving from the
tentative experimental phase to the commercial phase. Artificial intelligence and machine learning are common methods,
and large amounts of data are needed to research using these methods. However, this is dubious as automobile researchers
cannot share their resources because they believe their competitive gain would be diminished. In order to solve this issue,
core attention is needed to developing policies that will benefit all automated driving research groups get benefits equally
and enable them to share their progress easily.

7 Conclusion

In summary, we can restate that have formed a extensive taxonomy that defines all the components of MVCCA in AVs according
to the existing protocols and solutions, emphasizing to prevent the collisions between single and multiple vehicles. We focused
on the investigations about collision avoidance methods and adaptive driving cooperation challenges. According to the aspects,
the strategic scheme was generally grouped. Following that, we reviewed many publications on the stages stated previously
and incorporated them into our taxonomy’s subsection. After reviewing all of these works, it appears that practical research
concerns can be pursued to improve or introduce better versions. A framework of MVCCA in AVs is proposed that is a complete
solution provided with the combination of several potential approaches in this field. The recommended technique is expected
to increase the performance and reduce the computational cost of the control system that captures the interrelationships of
MVCCA components indicated for integrating the learning-based control model into AVs applications. A broad range of topics
were explored in the future research issues section to examine the initiatives of leading auto-rotating tool producers, different
modern hardware implementation options, and several potential guidelines. It is intended that our proposed system supports
further research for assessing and viewing accident prevention technique’s patterns in more detail.
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