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A novel linear uncertainty propagation method for nonlinear dynamics with 

interval process 

Licong Zhang1, Chunna Li1, Hua Su1, Xiaoding Wang2, Chunlin Gong1 

Abstract Interval process is a preferable model for time-varying uncertainty propagation of dynamic 

systems when only the range of uncertainties can be obtained. However, for nonlinear systems, except 

Monte Carlo (MC) simulation, there are still few efficient uncertainty propagation methods under the 

interval process model. This paper develops a non-intrusive and semi-analytical uncertainty 

propagation method, named ‘Convex Model Linearization Method (CMLM)’, by constructing a 

linearization formulation of a nonlinear system in a non-probabilistic sense. First, the criterion to 

evaluate the difference between the original system and the linearization formulation is derived, 

represented by discrepancy of middle-point, radius, and correlations of response. By minimizing these 

three parameters, the coefficients of linear equations will be optimized to obtain the linearization 

formulation of the original system. Then, the analytical equations are built to calculate uncertainty 

response under the interval process, without time-consuming analysis of the original system. To further 

improve the efficiency of the linearization process, Chebyshev-polynomial is introduced to 

approximate the nonlinear dynamic analysis. Two numerical examples that duffing oscillator and 

vehicle ride are set to tested the proposed CMLM. Compared to MC method, with comparable 

uncertainty response precision, the CMLM just need 1%-10% times of dynamic analysis of the 

nonlinear system. Furthermore, a practical launch vehicle ascent trajectory problem with black-box 

dynamics is solved by, respectively, the CMLM and MC method. The results verify the capacity of the 

CMLM to deal with black-box problems and show that the CMLM performs better in terms of accuracy, 

efficiency and robustness. 
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linearization method 

 
 Corresponding author: leonwood@nwpu.edu.cn 

1 Shaanxi Aerospace Flight Vehicle Design Key Laboratory, School of Astronautics, Northwestern Polytechnical 
University, Xi’an 710072, China 

2 Research and Development Department, China Academy of Launch Vehicle Technology, Beijing 100076, China 

mailto:leonwood@nwpu.edu.cn


1. Introduction 

Dynamic response evaluation of nonlinear systems plays a significant role in various practical 

engineering. Conventionally, the evaluation is based on a deterministic condition, however, practically, 

any dynamic systems are in the presence of uncertainty. Under these uncertainties, the performances 

of the systems will be affected. Even a slight bias might cause a great change in the dynamic response. 

Therefore, in recent years, much research has recognized the importance of uncertainty problems and 

developed several uncertainty propagation methods for dynamic response evaluation [1-3]. 

Generally, the probabilistic model is widely applied in uncertainty problems, in which the 

uncertainties are quantified by stochastic variables with certain probability distributions. For 

uncertainty propagation of dynamic responses, some categories of probabilistic methods, have been 

established, including Monte Carlo (MC) simulation [4], linear methods and nonlinear methods. MC 

simulation is capable to provide a result which approaches the true probability distribution, but requires 

a high computational cost. Linear methods including local linearization [5,6] and statistical 

linearization [7] have advantages in simplicity and efficiency. Nonlinear methods, such as polynomial 

chaos expansion (PCE) [8-10], are developed for highly nonlinear systems. To apply all the 

aforementioned probabilistic methods, there is an essential premise that the precise probability 

distributions of uncertainties are available. However, in many practical engineering problems, due to 

limited experiment condition or lack of knowledge, there are always restrictions to obtain sufficient 

information of uncertainties. To remedy this limitation of probabilistic methods, many non-

probabilistic methods have been developed [11-14]. 

Convex model theory [13] assumes that the imprecise parameters are enveloped into a convex set, 

and quantify them by some certain bounds rather than precise probability distributions. Thus, it is 

regarded as a powerful supplement to traditional probabilistic method, and so far, has been widely 

investigated in a great number uncertainty analysis area. A growing number of researchers apply the 

convex model to evaluate uncertain response of nonlinear systems, such as a wind turbine geared 

transmission system [15], rigid–flexible multibody systems [16] and an overhead crane [17]. 

Accordingly, various methods are developed. Wu et al. [18,19] introduced the Chebyshev inclusion 

functions into interval problems which can achieve high accuracy and efficiency. Li et al. [20] proposed 



a higher-efficiency sparse regression method to reduce the computational cost of Chebyshev method. 

Fu et al. [21,22] proposed a polynomial surrogate method for rotor system under interval uncertainties. 

Wang et al. [23,24] proposed a Legendre-polynomial-based method and applied it to complicated 

multibody dynamic systems. Polynomial-approximation approaches are shown to be effective to 

improve efficiency and guarantee precision for interval uncertainty propagation. 

The underlying assumption of the aforementioned methods is that the uncertainties are fully 

independent and time-invariant. Practically, the uncertainties may be of strong or weak correlation or 

dynamic characteristics. To quantify the correlation of interval uncertainties, several improved convex 

models are proposed, including multidimensional parallelepiped models (MPMs) [25,26] and a 

multidimensional ellipsoidal model (MEM) [27]. These models describe the correlation of 

uncertainties through different size and shape of convex models. Thus, they provide a potential 

approach to correlation analysis of dynamic response under correlated interval uncertainties. 

Essentially, the response is a kind of time-varying uncertain variable, and its values at different times 

are correlated interval variables. In the probabilistic model, such similar time-varying uncertainty can 

be described as a stochastic process, however, there has been few similar effective mathematical tools 

for convex model. To end this, Jiang [28] proposed a new non-stochastic quantification model for time-

varying uncertainty, namely the ‘interval process’ or ‘non-probabilistic convex model process’. This 

model quantifies the time-varying uncertainties using lower and upper bound functions, and describe 

the correlations of the values at different times using the MEM. Thus, it still presents the advantages 

that only the variation bounds rather than the precise probability distributions are required. Then the 

model is soon applied to dynamic response evaluation, the vibrations of single-degree-of-freedom 

systems, multiple-degree-of-freedom system and continuum structures are analyzed under the interval 

process [29]. Therefore, based on the interval process model, non-probabilistic methods for uncertainty 

propagation of dynamic systems under correlated uncertainties and time-varying uncertainties can be 

established. Up to now, most of the existing methods are only applicable for linear systems. For 

nonlinear systems, except MC simulation [30], only a Karhunen-Loève (K-L) expansion method [31] 

has been proposed, in which an interval process in time domain is described by superposition of infinite 

deterministic time-related functions with uncorrelated interval coefficients. For an interval process 



with weak time-correlation and long-duration, the K-L method may be computationally prohibitive 

due to ‘dimension disaster’. 

In conclusion, the interval process model is a preferable non-probabilistic tool for uncertainty 

propagation of dynamic response. However, for nonlinear systems, there is a lack of an efficient 

method under the interval process model. In the probabilistic model, linear methods are known for 

their high efficiency. Among them, the statistical linearization method transforms a nonlinear system 

into an approximate linear formulation in some statistic sense. It presents advantages that the 

derivatives of dynamic systems are not required and the modification of original systems can be 

avoided [32].  

This work proposes a linear method, called ‘convex model linearization method (CMLM)’, for 

nonlinear dynamics under the interval process model. The following novelty is realized: First an index 

is derived to evaluate the difference between a nonlinear system and its approximate linear formulation 

in a non-probabilistic sense using the characteristics of a convex model (middle-point, radius and 

correlation). Then, based on this index, a solving process of time-varying uncertainty propagation for 

nonlinear dynamics by linearizing the nonlinear system is developed. Meanwhile, analytical equations 

for calculating the uncertainty propagation of the linearized system are established to complete this 

process, and the Chebyshev-polynomial approximation is applied to reduce the times of analysis of 

the nonlinear system in this process, thus further improve the efficiency. 

The paper continues in Section 2 with a statement of the nonlinear dynamics with time-varying 

uncertainty under the interval process model. Section 3 introduces the proposed CMLM in detail. The 

methods are tested in two numerical examples and a launch-vehicle (LV) ascent-trajectory problem in 

Section 4. Finally, conclusions are given in Section 5. 

2. Nonlinear dynamics with time-varying interval uncertainties 

Consider nonlinear dynamics with the time-varying interval uncertainties ωI(t) and correlated 

initial interval uncertainties x0
I. The expression can be represented as: 

 
( ) ( )( ) ( ) ( )
( )

I I I

I I

0 0

,t t t t t
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 = +
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x f x B ω

x x
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where f(∙) are nonlinear functions; The superscripts I denotes interval, and B(t) is the corresponding 



input matrix. Under the interval uncertainties, the responses of the nonlinear system xI(t) are also time-

varying interval variables. To quantify these interval variables, the following models are introduced to 

describe the correlated interval uncertainties and the time-varying interval uncertainties. 

2.1. Correlated interval uncertainties description 

Generally, interval variables are described by an interval model (IM) as shown in (a) and (c) of 

Fig. 1. In the IM, a single variable is described by its upper and lower bounds, and multidimensional 

problem is then represented as a ‘multidimensional box’. However, the IM is not effective to quantify 

the correlations between uncertainties. To remedy the deficiency, some other convex models are 

proposed, and among them MEM is a well-performed model [33], as shown in (b) and (d) of Fig. 1. In 

the MEM, the correlation of the variables can be described by the shape of the ellipsoid. 

 

  
(a) 2D IM (b) 2D MPM 

  
(c) 3D IM (d) 3D MPM 

Fig. 1 The concepts of interval the model and the multidimensional ellipsoid model 

 

For bivariant interval variables, xI = [xI
1, xI

2], the detailed definition of a 2D MEM and correlation 

between the two variables are illustrated in Fig. 2.  
 

 
Fig. 2 The definition of correlation between interval variables in MEM 



 

The 2D MEM degenerates into an ellipse defined as [27]: 

 ( ) ( ) T
I M M 1= − − x x x x G x x

 
(2) 

where G is a 2  2 characteristic matrix. xM are middle points of xI. Afterwards the covariance of xI
1 

and xI
2 is defined by the geometry characteristics (θ, r1, and r2) of the ellipse as [29]: 

 ( ) ( ) ( )( )I I 2 2

1 2 1 1Cov , sin cosx x r r = −
 (3) 

where θ denotes a rotation angle of the ellipse from its normal state as shown in Fig. 2, meanwhile r1 

and r2 are the half lengths of the major axis and the minor axis of the ellipse. Naturally, the correlation 

coefficient is defined by (4) 

 ( ) ( )I I

1 2I I

1 2 R R

1 2
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,

x x
x x

x x
 =

 
(4) 

The shapes of ellipse that correspond to several different correlation coefficients are shown in Fig. 2. 

When | ρ | = 1, xI
1 and xI

2 are correlated and the ellipse degenerates into a line. 

The bivariant covariance matrix C is defined as: 

 ( )

( ) ( )
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C  (5) 

The diagonal elements of C are defined as variances of interval variables, which can be calculated 

as: 
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And the characteristic matrix G of the ellipse in (2) are exclusively determined by covariance 

matrix C as follow: 

 ( )-1=G C  (7) 

For multi-dimensional problem, the covariance matrix is a n  n matrix as (8) 
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C  (8) 

where the elements of C, cij, are the covariance of xI
i and xI

j as: 

 ( )I ICov , , 1,2, ,
ij i j

c x x i j n= =  (9) 

Eventually, the MEM can be determined by C as (10) 

 ( ) ( ) ( ) T 1I M M 1
−= − − x x x x C x x  (10) 



2.2. Interval Process Model 

Based on the MEM, the interval process model [28,34] is proposed to describe a time-varying 

interval variable x(t). At every time t, the value of x(t) is an interval variable. Thus, the variation of x(t) 

is enveloped within a pair of upper-bound and lower -bound functions, xU(t) and xL(t), as shown in Fig. 

3. The interval process can be denoted as: 

 ( ) I ,x t t T  (11) 

where T is called index set, which refers to time domain in time-varying uncertainty problem. 
 

 

Fig. 3 The concepts of the interval process model 
 

The middle-point function xM(t) and radius function xR(t) are defined as: 
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For any times t1 and t2, the auto-covariance function of xI(t) is defined as covariance of xI(t1) and 

xI(t2) based on MEM, as shown in Fig. 3. 

 ( ) ( ) ( )( )I I
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C t t x t x t=  (13) 

Similarly, the correlation-coefficient function is defined as: 
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Moreover, for a set of interval processes, xI(t) = {xI
1(t), xI

2(t),…, xI
n (t)}, the cross-covariance 

function matrix is defined as: 

 ( )I I

11 12 1

21 22 2

1 2

1 2

, =

n

n

n n nn

c c c

c c c
t t

c c c

 
 
 
 
 
 

x x
C  (15) 

where the elements cij is the covariance of xI
i(t1) and xI

j(t2) based on MEM as: 

 ( ) ( )( )I I

1 2Cov , , 1,2, ,
ij i j

c x t x t i j n= =  (16) 

When t1 = t2 = t, the diagonal elements of cross-covariance function matrix are defined as variance 

function:  

 ( )( ) ( )( ) ( )( )I I

2
I Rdiag ,t t D t t= =

x x
C x x  (17) 

If the middle point function xM(t) and the radius function xR(t) of an interval process xI(t) are both 

constants and furthermore its auto-covariance function is only related to the time interval τ = | ti-tj | 

rather than the time points ti and tj, namely: 
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where m and r are both constants, then the interval process xI(t) is defined as a stationary interval 

process. Similar to the stationary stochastic process, much physical phenomenon can be described by 

the stationary interval process in practical engineering. 

Finally, under the interval process model, time-varying uncertainties ωI(t) in the problem (1) can 

be describe by interval processes, and correlated interval initial uncertainties x0
I can be expressed as 

{x0| (x0-x0
M)T(Cx)-1(x0-x0

M) ≤ 1} through the MEM. Under these uncertainties, the responses of the 

nonlinear system (1) are apparently interval processes represented by the upper-bound functions xU(t) 

and lower-bound functions xL(t), and the goal of uncertainty propagation is calculating xU(t) and xL(t). 

3. The proposed CMLM 

To achieve the uncertainty propagation through the CMLM. The criterion to evaluate the degree 

of approximation of a linear formulation to the original system is derived at first. Then the basic theory 

of time-varying uncertainty propagation for linear dynamics is established. Finally, the complete 



uncertainty propagation process can be established. 

3.1. Linearization of nonlinear dynamic system 

Consider the nonlinear part of the system (1), f(x, u, t), under the interval process inputs, it 

becomes an interval process and its value at time t is an interval variable f I as: 

 ( )I I, ,f t f=x u
 (19) 

Now try to replace the nonlinear part by an approximate linear equation, which is selected in a way to 

minimize the difference between it and the original equation. The linear equation, under interval 

uncertainties, is also an interval variable at time t as: 

 ( )I T I T Iˆ ˆf f=x N r + M m =  (20) 

where xI = rI + m, thus, rI are interval parts with zero middle-point values, and NT is approximate linear 

state matrix of interval parts, meanwhile, m are middle-point parts with zero radius values, and MT is 

approximate linear state matrix of middle-point parts.  

If the two interval responses of nonlinear and linear equation to the same interval inputs have 

minimum difference, the linear equation can be defined as the optimal approximation to the nonlinear 

equation in some non-probabilistic sense, or called convex-model sense. In the MEM, the differences 

between two interval variables can be evaluated by: 
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where e1 evaluates the difference in middle-point values, e2 evaluates the difference in radius values, 

and e3 evaluates the difference in correlation. Thus, the optimal approximate linear equation 

represented by N* and M* can be obtained by minimizing e1, e2, and e3 simultaneously as: 
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1 2 3, arg min , ,e e e
 =N M

 (22) 

However, it is not convenient to calculate the correlation coefficient in the e3 by the definition (4), due 

to that the geometry properties of the MEM cannot be obtained analytically. Literature [33] has 

proposed the sample correlation coefficient (SCC) which is capable to calculate the correlation 

coefficient between any two interval variables without constraint of the form of convex model as: 
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where xI
i and xI

j are two interval variables; x i
(s), x j

(s) are sampling points of xI
i and xI

j. And ρs = ρ, 

when the sampling points are uniformly distributed within a MEM. 

Then, to obtain N* and M*, the muti-objective optimization problem (22) can be transformed into 

a single-objective optimization problem as: 
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After simplification (see Appendix A for details), the expression can be obtained as: 
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Minimization of e can be obtained when: 
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Thus, N* and M* can be calculated as: 
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And, the optimal approximate linear function can be expressed as: 

 ( ) ( ) ( )( )I I
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x x
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Obviously, the approximate linear equation can be obtained by calculating the value of radius and 

middle-point of the nonlinear function under the interval inputs, and correlations between the interval 

response and interval inputs.  

However, due to that the calculation of these values is based on the sampling points, a large 

amount computational cost of nonlinear functions is required. To reduce the cost, Chebyshev-

polynomial approximation of the original function is applied.  

A k-dimensional Chebyshev polynomial, for x  {xi| xi
L ≤ xi ≤ xi

U, i = 1,2, …, k }, is defined as 

[18]: 
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Then, a k-dimensional function f(x) can be approximated by Chebyshev polynomials with order 

no more than n as: 

 
( ) ( )

( )
1 2 1 2

1 2

, , , , , ,

, , ,
k k

k

n

i i i i i i

i i i

f p

c C



= 
x x

x
 (31) 

where the coefficients c can usually be determined by two methods. The first one is Chebyshev tensor 

product method (CTPM)[35], and in the CTPM, the number of sampling points are no less than (n+1)k. 

The CTPM can achieve the highest precision of the approximation, but for high-dimensional problems, 

computational efficiency will be extremely low. Another alternative construction form for Chebyshev-

polynomial approximation is Chebyshev collocation method (CCM) [35] which requires only a portion 

of samples from the CTPM. The lowest number of samples m equals to:  

 
( )!
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k n
m

k n

+
=  (32) 

In practice, the number of samples is usually selected as at least 2m. Therefore, for low-dimensional 

problems (especially when (n+1)k < 2m) CTPM is a better choice to construct Chebyshev-polynomial 

approximation, meanwhile, for high-dimensional conditions, CCM is a satisfied alternative method.  

Afterwards, for a MEM domain, the Chebyshev-polynomial approximation should be constructed 

in a corresponding IM domain at first. Due to that the MEM domain is a subset of the IM domain for 

the same interval variables, the Chebyshev-polynomial approximation is also effective in the MEM 

domain. Next through a coordinate transformation method [28] (see Appendix B for details), take 

samples in the MEM domain, and scan to find the radius and middle-point of the response of the 

nonlinear function. Meanwhile, using the sampling points, the SCCs between the response and inputs 

can also be obtained by (23). Thus, the approximate linear function can be calculated through (28), 

and the whole process of linearization is concluded as follow: 

Step 1 Define the order of Chebyshev polynomial n, and according the dimension of interval 

variables k, determine the number of interpolation points m for the construction of Chebyshev-

polynomial approximation. 

Step 2 Take m sets of interpolation points in IM domain of interval variables without 

consideration of correlation for the time being. 

Step 3 Calculated the values of the nonlinear function at interpolation points. And construct 



Chebyshev-polynomial approximation of the nonlinear function in the IM domain. 

Step 5 Take samples in the ME domain through the coordinate transformation method (see 

Appendix B for details). And scan to calculated radius f R, middle-point f M using the Chebyshev-

polynomial approximation, and calculate the SCCs ρs(f I, xI) by (23). 

Step 6 Calculate the approximate linear equation by (27). 

3.2. Time-varying uncertainty propagation of linear dynamics 

The general expression of a linear time-varying system can be expressed as: 

 ( ) ( ) ( ) ( ) ( )t t t t t= +x A x B u  (33) 

where x(t) are state variables, A(t) is state matrix, and u(t) are inputs, B(t) is corresponding input matrix. 

The solution of the problem with initial states x(t0) can be expressed as: 
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t
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where, Φ(t,t0) is defined as state transition matrix, which satisfies the following property: 

 ( ) ( ) ( )2 1 1 0 2 0, , ,t t t t t t=Φ Φ Φ  (35) 

When the inputs to the system are uncertainty and described as interval processes uI(t), the 

responses are also transformed to interval processes as [36]: 
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Based on the theories of differential and integral of the interval process [29,36], the middle-point 

functions xM(t) can be calculated as: 
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And the cross-covariance function matrix can be calculated as: 
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where, ( )I I u uC   is the cross-covariance function matrix of uI(t). Then the variance functions can be 

obtained when t1 = t2 = t as: 



 

( )( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

I I

I I

I I

0 0

I

T

0 0 0 0

T T

1 1 1 2 2 2 1 2

diag ,

=diag , , ,

diag , , ,
t t

t t

D t t t

t t t t t t

t t d d       +  

x x

x x

u u

x = C

Φ C Φ

Φ B C B Φ

 (39) 

Finally, the radius functions can be calculated as: 
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3.3. Uncertainty propagation process of nonlinear dynamics 

Through the CMLM, the nonlinear dynamics with time-varying interval uncertainties can be 

transformed into an approximate linear problem as: 

 ( ) ( ) ( ) ( ) ( ) ( )I T I T M I
t t t f t t t= +x N r + M m + B ω  (41) 

The middle-point function and radius function of the linear problem can be obtained through (37) and 

(40). However, the known middle-point and covariance are required previously before the linearization 

through the CMLM. Therefore, the problem can only be solved discretely and iteratively. 

To illustrate the iterative process, it is assumed that the linearization and calculation of previous 

i-1 discrete time points have been finished, and N1
*, N2

*, …, Ni-1
* are obtained as: 

  * * , 1,2, , 1
k

N k i= −N  (42) 

Thus, the system can be regarded as a piecewise-linear problem, and the state transition matrix, from 

t0 to ti-1, can be expressed as: 

 ( ) ( ) ( ) ( )* * *
1 1 2 2 2 3 1 1 0*

1 0, i i i i i it t t t t t

it t e e e− − − − − −− − −
− = N N NΦ I  (43) 

Then, began to calculate the response of system at time ti, and accomplish the linearization. First, 

scan to calculate the middle-point function at time ti, xM(ti). Take samples in MEM domain of xI(ti-1), 

and solve ordinary differential equation (ODE) problems from ti-1 to ti at these sampling points, by 

numerical ODE methods as: 
 ( ) ( ) ( ) ( )( )s s

ODE 1 1,
i i i

t f t t− −=x x  (44) 

where fODE(∙) denotes an iterative step of an arbitrary numerical ODE method. And xM(ti) can be 

obtained by scanning method as: 

 ( )
( ) ( )( ) ( ) ( )( )s s

M
max min

2

i i

i

t t
t

+
=

x x
x  (45) 

It should be noted that Chebyshev-polynomial approximation can also be applied here to reduce the 



computational cost of the scanning method. Consequently, calculate the covariance matrix function. 

Initialize Ni, let: 
 

0 *

1i i
N N −=  (46) 

The state transition matrix, from t0 to ti, can be updated, by the property (35), as: 

 ( ) ( ) ( )
0

10 *

0 1 0, ,i i it t

i it t e t t−−
−= NΦ Φ  (47) 

Accordingly, the covariance matrix function can be calculated, by (38), as: 
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It is not necessary to calculate the integration from initial time t0, the results can be derived from the 

obtained covariance matrix at previous time point ti-1 as: 
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Thus, only the calculations related to the integration from ti-1 to ti are required through (49). Afterwards, 

the linearization can be updated, by the CMLM, as: 
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And the state transition matrix can also be updated by the latest N, repeat the calculation (47)-(50), 

until N satisfies the following criterion: 

 
( ) ( )1 *j j

i i
e

−− N N  (51) 

Finally, the optimal approximate linear equation and the corresponding covariance matrix, at time ti, 

are obtained. 
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Through applying the above iterative process, from initial time t0 to the final time T, the 

uncertainty propagation problem can be solved completely. And the flowchart of the whole process is 

presented in Fig. 4, meanwhile, the main process is illustrated as follow: 

Step 1 Provide the initial conditions: xM(t0), xR(t0), C(t0, t0). Define the time span and other 

options of ODE numerical method. Define an initial value of state matrix of approximate linear system 

N0
*. Define the order of Chebyshev polynomial n, and according the dimension of the dynamic 



problem, determine the number of interpolation points m for the construction of Chebyshev-

polynomial approximation. Let i = 0; 

Step 2 Refer to the process established in Section 3.1. Take m sets of interpolation points of xI(t0) 

in IM domain, according to the initial conditions, for the construction of Chebyshev polynomial. Then 

calculate the response to these points at the next time t1 through the numerical ODE method; 
 

 
Fig. 4 The process to solve uncertainty propagation of nonlinear dynamics based on the CMLM 

 

Step 3 Let i = i + 1. Construct Chebyshev-polynomial approximation of the nonlinear function 

between x(ti-1) and x(ti), then, scan to find xM(ti). Meanwhile, according to the sampling points, 

evaluate an approximated radius Rapp(xI(ti)) as: 
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I
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x x
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where α is an amplification coefficient, which is in range [2, 5], to ensure the domain to construct 

Chebyshev-polynomial approximation, for the following step, totally envelope the exact domain of 

x(ti); 

Step 4 Refer to the process established in Section 3.1. Take m sets of interpolation points of xI(ti) 

in IM domain, according to the approximated domain obtained in the Step 3. Then calculate the 

responses to the sampling points at next time ti+1 through the numerical ODE method. Meanwhile, due 

to the property of ODE numerical method, the value of nonlinear function f(∙) at x(s)(ti) can also be 

obtained simultaneously; 

Step 5 Construct Chebyshev-polynomial approximation of the nonlinear function between x(ti) 

and f(x(ti)). Initialize the approximate linear system from ti-1 to ti, and let Ni
(0) = Ni-1

*. Let j = 1; 

Step 6 Carry out the calculation (47)-(50), however all the calculations of nonlinear function are 

replaced by the Chebyshev-polynomial approximation constructed in step 5. If Ni
(j) satisfies the 

criterion (51) go to the next step, else let j = j + 1 and repeat Step 6; 

Step 7 If ti < T, go to the step 3, else output xL(t) and xU(t) at every discrete time points. 

The time step of ODE numerical method should be determined according to the simulation 

precision of the middle-point function. In other words, the time step equals to the one of the simulations 

of the nominal trajectory. 

For the Step 3, there exists an alternative approach to calculate the middle-point function. For the 

systems with small uncertainties, the middle-point function can be approximated by the nominal 

trajectory. Therefore, the nominal trajectory can be calculated previously. And in the iteration, the 

calculation of middle-point can be replaced by letting the middle-point xM(ti) equal to the nominal 

value at ti. 

4. Tests and discussions 

4.1. Numerical tests 

Two numerical tests are set to demonstrate the effectiveness of the proposed method. The Runge–

Kutta method (RKM) is employed as the ODE solver. The order of Chebyshev polynomials for the 



approximation is defined as 2. In each example, the problem is solved through the CMLM, as well as 

100, 500, 1000 and 10000 MC analyses, respectively. The results of 10000 MC analyses are regarded 

as a standard to exam the precision of the other analyses. And the approach to achieve MC simulation 

for interval process is described in detail in the literature [30]. 

4.1.1. Duffing oscillator analysis 

At first a single-degree-of-freedom duffing oscillator system is considered as: 

 ( ) ( ) ( ) ( )( )( ) ( )3
I I I I I I I

m x t c x t k x t x t u t+ + + =  (53) 

Under an uncertain excitation uI(t) described as an interval process, the problem can be expressed as: 
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(54) 

where the initial condition is given as [x1(t0), x2(t0)]T = [0, 0] T; m, c and k equal to 1, 0.5π and 4π2, 

respectively; ε equals to 1. Moreover, the middle-point function, radius function and correlation-

coefficient function of uI(t) are given as: 
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 (55) 

The problem is solved in the time period of 0-5, and the time step of RKM is 0.025s. The lower 

and upper bounds obtained by MCLM and 10000-MC-analyses samples are shown in Fig. 5. Obviously, 

the samples are tightly enveloped by the lower and upper bounds.  
 

  
(a) x1 (b) x2 

Fig. 5 The lower-and-upper bounds and 10000-MC-analyses samples of x1 and x2 

 



For a further analysis of precision, 20 discrete time points, at 0.25s intervals, are selected, and the 

value of radius function at these points yielded by the CMLM, 100, 500 and 1000 MC analyses are 

compared to the ones of 10000 MC analyses. The sum of squares of error can be calculated as: 

 ( ) ( )( )
2

2 R R

std

1

N

i i

i

e x t x t
=

= −  (56) 

where N, the number of discrete time points, equals to 20 in the example; xR
std represents a standard 

solution, and it is the results of 10000 MC analyses. Then the CMLM, as well as 100, 500 and 1000 

MC analyses are respectively repeated 50 times. Subsequently, the values of e2 of x2 obtained by the 

above methods at all run-times are represented as a boxplot in Fig. 6. The error of the CMLM seems 

to be comparable to 100 MC analyses, and be larger than the other analyses. However, actually, when 

t > 1.25s, the error of the CMLM drops significantly, as shown in (b) of Fig. 6. The error of the CMLM 

at the time-points, which are larger than 1.25s, is much smaller than that of 1000 MC simulation. 

Meanwhile, the MCLM presents a greater robustness due to the analytical solution of covariance. In 

brief, the CMLM performances well in precision and robustness expect for a slight error in a very short 

initial stage.  
 

  
(a) 0≤ t ≤ 5 (b) 1.25≤ t ≤ 5 

Fig. 6 The boxplot of e2 of x2 after a 50-time test 
 

Finally, the precision and efficiency are concluded in Table 1. The CTPM are applied to construct 

Chebyshev-polynomial approximation, therefor, for the 2-dimensional problem, 9 interpolation points 

are required, accordingly, the times to apply ODE solver, NODE, is 9. The CMLM can achieve higher 

accuracy with much less computational cost than no less than 1000 MC analyses. 

 



 

 

Table 1 Precision and efficiency of different methods in calculating x2 for a duffing oscillator 

Method 
Mean of relative error to MC10000 

NODE 0≤ t ≤ 5 1.25≤ t ≤ 5 

MC100 5.21% 5.84% 100 

MC500 2.47% 2.46% 500 

MC1000 1.66% 1.62% 1000 

CMLM 3.91% 0.83% 9 

 

4.1.2. Vehicle ride analysis 

In the second example, a two-degree-of-freedom quarter-car model[20,18,23] is analyzed, as 

shown in Fig. 7. 
 

 

Fig. 7 The schematic of a quarter-car model with two-degree-of-freedom and the roughness of the road 
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 (57) 

where the initial condition is given as [xs(t0), xu(t0), vs(t0), vu(t0)]T = [0, 0, 0, 0] T; ms and mu equal to 

400 and 600, respectively; cs, ks and kt equal to 1000, 1.5104 and 2105, respectively; Ks and Ku equal 

to 1.5106 and 2107, respectively.  

It is supposed that the vehicle drives through a standard triangular road block with a speed of v = 

10m/s, xr can then be given by 
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(58) 

Then the standard triangular road block is supposed to be rough, and under the interval process model, 



due to an additional roughness ωI(t), xr(t) is transformed into an interval process xr
I(t) as 

 ( ) ( ) ( )I I

r r
t t tx x +=  (59) 

where ωI(t) is defined as the following stationary interval process, that 
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Afterwards, through neglecting the effect of ωI(t) to the three-order term, the nonlinear dynamics 

with time-varying interval uncertainties problem can be defined as 
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where fs and fu denote the nonlinear functions of vs and vu in (57).  

The problem is solved in the time period of 0-1s, and the time step of RKM is 210-3s. The lower 

and upper bounds obtained by MCLM and 10000-MC-analyses samples are shown in Fig. 8. Similarly, 

20 discrete time points, at 0.05s intervals, are also selected. And by comparing to the results of 10000 

MC analyses, the sum of squares of error of xs
R obtained by the CMLM, MC simulation of 100, 500 

and 1000 times are calculated. The results of a 50-time reptation are represented as a boxplot Fig. 9. 

With the comparation to 1000 MC analyses, the MCLM has a comparable but slightly larger error from 

0s to 1s as shown in (a) of Fig. 9. However, when 0.35 ≤ t ≤ 1, the MCLM achieves a higher precision 

than other approaches as shown in (b) of Fig. 9. 
 

  
(a) xs (b) xu 

Fig. 8 The lower-and-upper bounds and 10000-MC-analyses samples of xs and xu 

 



  
(a) 0 ≤ t ≤ 1 (b) 0.14 ≤ t ≤ 1 

Fig. 9 The boxplot of e2 of xr after a 50-time test 
 

At last, the details of precision and efficiency are listed in Table 2. The CTPM is selected to 

construct Chebyshev-polynomial approximation, thus, 81 times numerical solution of ODE is required 

due to 81 necessary interpolation points. From the comparation, the CMLM achieve comparable 

precision to 1000 MC analyses with a much higher efficiency. 
 

Table 2 Precision and efficiency of different methods in calculating xs for a vehicle ride analysis 

Method 
Mean of relative error to MC10000 

NODE 0 ≤ t ≤ 1 0.14 ≤ t ≤ 1 

MC100 5.08% 5.61% 100 

MC500 2.27% 2.72% 500 

MC1000 1.66% 1.64% 1000 

CMLM 4.41% 1.46% 81 

 

4.2. Application in uncertainty propagation of LV ascent trajectory 

The concept of LV-flight-dynamic model is shown in Fig. 10, and corresponding three-degree-of-

freedom dynamic equations can be expressed in a vector form as (62), which describes the motion of 

the center of mass of a LV. 

 



 
Fig. 10 The concept of LV-flight-dynamic model 
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where, v (= [vx, vy, vz]T) is the velocity vector of the LV; r (= [rx, ry, rz]T) is the position vector of the 

center of mass of the LV; m is the mass of the LV; G, R, P, and Fc are, respectively, gravity, 

aerodynamic force, propulsion, and control force on the LV. The detailed expansion of the model is 

illustrated in Appendix C. 

In practical engineering, the values of the above forces cannot be obtained analytically, and are 

always provided in the form of complex discrete tables. Therefore, the dynamic model is usually too 

complex to be modified arbitrarily and the calculation of LV trajectory is generally regarded as a black-

box problem. 

4.2.1. Uncertainty propagation problems 

Consider a three-stage LV, and the basic parameters of the LV are provided in Table 3. Meanwhile, 

the parameters of the flight conditions are listed in Table 4. The flight-program angle, the control 

program formulated to make the LV fly according to a certain flight trajectory, is given as (63). Based 

on the above parameters, the baseline trajectory is simulated as shown in Fig. 11. 
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Table 3 Basic parameters of the LV 

Parameter Symbol Unit Value Parameter Symbol Unit Value 

Total mass m t 35.40 Substage 2 

Total length L m 18.26 Substage mass m2 t 7.05  

Maximum diameter D m 1.67 Propellent mass mp2 t 270  

Substage 1 Propulsion P2 kN 270 

Substage mass m1 t 22.68 working time t2 s 65.20  

Propellent mass mp1 t 20.80 Substage 3 

Propulsion P1 kN 912 Substage mass m3 t 3.65 

working time t1 s 61.60 Propellent mass mp3 t 3.32 

- - - - Propulsion P3 kN 155 

- - - - working time t3 s 59.6 

 

Table 4 Parameters of the flight conditions 

Symbol Unit Value Symbol Unit Value 

Launch point Earth  

R0x m 0 ae m 6378145 

R0y m 6378145 be m 6356760 

R0z m 0 ωe m/s 7.29210-5 

Gravity ωex m/s 7.29210-5 

μ  m3/s2 3.9861014  ωey m/s 0 

J - 1.62410-3 ωez m/s 0 

Aerodynamic coefficients - - - 

Cx - 0.2 - - - 

Cy
α 1/° 0.07 - - - 

 

 

Fig. 11 The baseline trajectory of the LV 

 



The actual flight of the LV is usually affected by various uncertainties [37-39], the most common 

one is the variation of atmosphere environment. Especially, the impact is obvious to the-first-stage 

flight, due to a dense atmosphere condition at this stage, as shown in Fig. 12.  
 

 

Fig. 12 Comparison for the variation of flight height and atmospheric density 

 

Therefore, it is necessary to quantify the influence of the atmosphere uncertainty, however, it is 

obviously a time-varying uncertainty. And, to obtain the precise information of it, a great amount of 

cost in both experiment and time are generally required. At an earlier phase of design, only the worst 

condition needs to considered, thus the interval process is an extremely proper model to describe the 

uncertainty. Accordingly, the problem of the-first-stage flight is established as a time-varying interval 

uncertainty propagation problem, which is illustrated in detail as follow. 

Let x = [vT, rT]T, the dynamic model (62) can be expressed as: 

 ( ),t=x f x  (64) 

where f(∙) represents the nonlinear-function vector in (62), and t is the flight time. 

Problem 1: The wind will change the flight state of the LV through additional aerodynamic force, 

in other words it will cause additional acceleration. Due to that the direction of wind is random, the 

additional acceleration may occur probably in all three degrees of freedom. Therefore, the problem is 

formulated as: 

 ( ) ( )( ) ( ) ( ) ( ) T
I I I I I, , , ,0,0,0

x y z
t t t t t t   = +  x f x  (65) 

where ωx
I(t), ωy

I(t), and ωz
I(t) are additional accelerations described by stationary interval processes, 

which is similar to the model of wind in probabilistic method. Then middle-point function, radius 



function and the cross-covariance matrix function of ωI(t) are respectively defined as 
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(66) 

Problem 2: After that, the uncertainty propagation of the following two-stage flight should to be 

considered. At this moment, according to Fig. 12, the LV has left the area with dense atmosphere, thus 

there is few obvious external time-varying uncertainties. The flight is mainly impacted by uncertain 

initial conditions left by the first stage. Thus, the uncertainty propagation of the last two stages can be 

expressed as: 
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In conclusion, the uncertainty propagation of LV trajectory is defined, which is divided into two 

sub-problems, one is a problem with time-varying uncertainties of the first stage formulated as (65), 

and the other is a problem with correlated initial uncertainties of the second and third stage formulated 

as (67).  

4.2.2. Results and discussions 

Firstly, the Problem 1 is solved through the CMLM, in the time period of 0-60s. The RKM is 

applied as the solver, and the time step is 0.5s. The order of Chebyshev polynomials for the 

approximation is defined as 2. The lower and upper bounds obtained by MCLM with comparation to 

10000-MC-analyses samples are shown in Fig. 13.  

Then 12 discrete points, at 5s intervals, are selected from 0s to 60s. At these points, the e2 of vz 

and z obtained by the CMLM, 100, 500 and 1000 MC analyses are calculated, respectively. The 

standard solution in this case is still the results of 10000 MC analyses. Afterwards, the values of e2 

after a 50-time test are represented as boxplot in Fig. 14. It is shown that the CMLM performance a 

better robustness meanwhile provides a result with comparable precision to 1000 MC analyses.  

 



  
(a) vx (b) x 

 

  
(c) vy (d) y 

 

  
(e) vz (f) z 

Fig. 13 The lower-and-upper bounds and 10000-MC-analyses samples of the first-stage flight 
 



  
(a) vz (b) z 

Fig. 14 The boxplot of e2 of vz and z after a 50-time test 
 

Finally, the precision and efficiency are concluded in Table 6. For a 6-dimentional problem, the 

CCM is chose to construct Chebyshev-polynomial approximation. Therefore, at least 56 interpolation 

points are required, while the minimum times of numerical solution of ODE is 56. It is shown that, 

MCLM achieves a higher precision than 1000 MC analyses in vy, vz, y and z with a considerably smaller 

computational cost. Thus, it can be concluded that the MCLM performances well in precision, 

efficiency and robustness for a practical LV trajectory problem under time-varying uncertainties. 
 

Table 5 Precision and efficiency of different methods in calculating vz and z  

for the first-stage flight 

Method 
Mean of relative error to MC10000 

NODE 
vx x vy y vz z 

MC100 5.94% 6.25% 5.93% 5.99% 5.27% 5.44% 100 

MC500 2.69% 2.88% 2.44% 2.37% 2.51% 2.67% 500 

MC1000 1.69% 1.57% 1.60% 1.70% 1.69% 1.57% 1000 

CMLM 2.13% 2.80% 0.68% 0.88% 0.63% 0.39% 56 

 

After the uncertainty propagation of the first-stage flight, a correlated uncertain domain of the 

final state is caused. The values of middle-point and radius are listed in Table 6, meanwhile, the 

correlation-coefficient matrix is expressed as follow: 

1 0.21 0 0.68 0.18 0

1 0 0.24 0.89 0
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Table 6 Values of middle-point and radius for the final state after the first-stage flight 

Parameter vx vy vz x y z 

Unit m/s m/s m/s m m m 

Middle-point value 1061.44 1349.66 -4.86 17382.59 36754.38 -93.27 

Radius 7.98 12.34 7.32 240.35 413.06 207.33 

 

Under the above initial-value uncertainties, the Problem 2 can also be solved through the CMLM, 

and the results are shown in Fig. 15. The problem is solved in the time period of 60s-185s, and the 

RKM is still employed as the solver. The order of Chebyshev polynomials for the approximation is 

also defined as 2. The lower and upper bounds of vz and z obtained by the CMLM with comparation 

to 10000-time-MC samples are shown in Fig. 15. Then 25 discrete points, at 5s intervals, are selected 

from 60s to 185s. At these points, compared with 10000 MC analyses, the e2 of vz and z obtained by 

the CMLM and 100, 500 and 1000 MC analyses are represented as boxplot in Fig. 16, and the precision 

and efficiency are concluded in Table 7. It is shown that the CMLM performance a better in precision 

and robustness than 1000 MC analyses with only 56 times of calculation of original functions. 
 

  
(a) vz (b) z 

Fig. 15 The lower-and-upper bounds and 10000-MC-analyses samples of vz and z of the second and third flight 
 



(a) x (b)y 

Fig. 16 The boxplot of e2 of vz and z after a 50-time test for the second-and-third-stage flight 
 

Table 7 Precision and efficiency of different methods in calculating vz and z  

for the second-and-third-stage flight 

Method 
Mean of relative error to MC10000 

NODE 
vx x vy y vz z 

MC100 3.18% 2.21% 1.27% 0.75% 2.18% 1.80% 100 

MC500 1.50% 1.02% 0.65% 0.38% 0.80% 0.66% 500 

MC1000 1.02% 0.80% 0.38% 0.25% 0.43% 0.35% 1000 

CMLM 0.46% 0.26% 0.32% 0.09% 0.05% 0.07% 56 

 

  
(a) Uncertainty propagation of the first stage flight (b) Uncertainty propagation of the second-and-third stage flight 

Fig. 17 Uncertainty propagation of the LV ascent trajectory 



Eventually, through solving Problem 1 and Problem 2, the uncertainty propagation of the whole 

trajectory is obtained, as shown in Fig. 17. The results demonstrate the effectiveness of the proposed 

CMLM in solving practical engineering nonlinear dynamics with time-varying uncertainties and 

correlated initial uncertainties under the interval process model. 

5. Conclusion 

In this work, the interval process model is applied to dynamic response evaluation of nonlinear 

systems, in which only upper and lower bounds of uncertainties are required rather than precise 

probability distributions, and autocorrelations and cross-correlations of the time-varying interval 

variables are quantified. In order to efficiently solve the problem of uncertainty propagation under the 

interval process model, a linear method is proposed called CMLM. 

In the CMLM, an index to evaluate the degree of approximation of a linear formulation to a 

nonlinear system is represented by the uncertain-response characteristics (middle-point, radius and 

correlation) using the MEM. Through minimizing the index, the nonlinear system is linearized without 

neither calculation of derivatives nor the modification of the original system. The uncertainty 

propagation of linearized system can be calculated analytically. Thus, the CMLM presents the 

following advantages. First, it is a non-intrusive approach, which avoids the tedious modification of 

the state equations, thus it holds the capacity to solve black-box problems using any numerical methods 

for ODE problems. Meanwhile, it is a semi-analytical method and accordingly presents a greater 

robustness. Furthermore, to reduce computational cost during the linearization process, Chebyshev-

polynomial approximation is applied to replace the original nonlinear system analysis. Therefore, the 

CMLM performance well in efficiency, meanwhile precision is also guaranteed. 

The proposed method is tested in two numerical examples, and the results show that the MCLM 

has comparable precision to 1000 MC analyses and only 1%-10% times of dynamic analysis of 

nonlinear system is required. Meanwhile it has better robustness than MC simulation of less than 1000 

analyses after a 50-time repetition test. Then the CMLM is applied to a practical LV trajectory problem 

with black-box dynamics. The uncertainty propagations of a three-stage-LV ascent flight under 

external time-varying uncertainties and correlated initial uncertainties are solved. The results show that 

it still maintains high precision, efficiency and robustness, therefore, the effectiveness of the CMLM 



for complicated black-box problems in practical engineering is demonstrated. 

Appendix A: Derivation of CMLM criterion 

Through weighted sum of e1, e2 and e3, a comprehensive index e can be expressed as: 
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where the SCC ρs is defined as: 
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where xI
i and xI

j are two interval variables; x i
(s), x j

(s) are sampling points of xI
i and xI

j. Therefore, the 

SCC of the uncertain value of the nonlinear function and its approximate linear function can be 

calculated as: 
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where  
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Actually, the SCC between the uncertain value of the nonlinear function and its uncertain inputs 

can be calculated as: 
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Then substitute (73) into (72) that 
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Through the substituting (75) into (68), e can be expressed as: 
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Moreover 
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Finally, e can be calculated as: 
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Appendix B: Approach to take samples in a MEM domain 

The characteristic matrix G to describe a MEM can be decomposed by eigenvalue decomposition 

as: 
 

-1 TG = C = Q DQ  (78) 
where D is eigenvalue matrix; Q is eigenvector matrix, and QTQ = I. The samples, x(s), uniformly 

distributed in a ‘multidimensional ellipsoid’ can be obtained through a transformation (79) from the 

sampling points, U(s), uniformly distributed in a unit hyper-sphere[28] 
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1

s sM T 2
−

= +x x Q D U  (79) 

where xM are the middle points of the interval variables. For a k-dimensional problem, every single set 

of sampling points U(s) can be calculated in the spherical coordinates (r, θ1, θ2, …, θk-1) as: 
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where r(s) are the sampling points lie in a one-dimensional IM with range [0, 1], and [θ1
(s), θ2

(s), …, θk-

1
(s)] are the sampling points lie in a (k-1)-dimensional IM with range [0, 2π] of every dimension.  

Finally, the sampling points in MEM domain can be obtained by taking samples in the above IMs 

conventionally. Incidentally, through the approach, scanning method and MC simulation can also be 

achieved by taking samples orthogonally and randomly, respectively. 

Appendix C: Model of LV flight dynamics 

The detailed expansion of LV-flight-dynamics model is expressed as 
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where m is the mass of LV; [P, 0, 0]T is the component of propulsion P, [Xc, Yc, Zc]T are the components 

of control force Fc; [X, Y, Z]T are the components of aerodynamic force R, which can be calculated as: 
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where α and β are the angle of attack and sideslip angle, respectively. Cx is drag coefficient, and Cy
α is 

the derivative of the lift-coefficient with respect to α; SR is the reference surface area; q is the dynamic 

pressure, which is calculated as: 

 21

2
q v=  (83) 

where ρ is the atmospheric density, and v is the resultant velocity of the LV flight as 

 2 2 2

x y z
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Then, GB and GV are coordinate-transform matrixes as: 
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where φ and ψ are, respectively, the pitch angel and yaw angel, which describe the flight attitude of 

the LV. Meanwhile, θ and σ are, respectively, flight path angle and flight path azimuth angle, which 

describe the flight direction of the LV. These angles can be derived as: 
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Moreover, A and B, in(81), are the matrixes to describe inertial force caused by the earth rotation as 
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where ωe is the earth-rotation rate, and [ωex, ωey, ωez]T are the components of the vector ωe. Afterwards, 

[R0x, R0y, R0z]T, in (81), are the components of the vector R0 to describe the position of the launch point. 

Next, gr and gωe are the components of gravitational acceleration, and can be calculated as: 
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where μ and J are the constant characteristics of the gravity. ae the length of the semi-major axis of 

earth under an ellipsoid model, besides, the semi-minor axis is symbolled by be. And, r, the geocentric 

distance of the LV, is calculated as: 
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Meanwhile, ϕ, the geocentric latitudinal, can be derived from: 
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In addition, the flight height of the LV can also be obtained by r and ϕ as: 
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Finally, these equations can be solved according to a given flight-program angle, and generally, they 

are provided in the form as: 
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Accordingly, to achieve the flight program, the corresponding α and β are expressed as 
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where Aφ and Aψ are both constant coefficients.  
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