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Abstract

A novel elasto-geometric model is introduced that simultaneously estimates joint compliances and
geometric error parameters by employing the loaded double ball bar apparatus. The model parameters
are estimated from tests at different force levels by distinguishing between errors that change with
the applied force (compliance effect) from those that do not (geometric effects). At lower forces, the
geometric errors are dominant whilst at higher forces compliance-induced errors dominate. By
feeding the elasto-geometric model with pairs of adjacent force data the evolution of the estimated
equivalent local compliance parameters and geometric errors with changes in the applied force are
observed. Although theoretically unexpected, the estimated geometric errors also change across the
force range. As the force increases the majority of equivalent compliance terms increase such as the
dominant equivalent compliances Cxxx and Cyyy as well as the less significant compliances Cxyx
and Cccy. As for Ccxy and Ccyy, no clear trend was observed. Given this observed dependence of
the compliance on the force level, the model was enriched by modeling the compliances as linear
functions of the applied force. A single set of geometric errors could then be estimated and deemed
valid across the load range. The root mean square error (RMSE) value for predicting the radial
readings for all force levels for the constant and linearly variable compliance models are 0.0011 and
0.0009 mm, respectively, representing an 18% improvement for the linear compliance model. Both
the constant and linearly variable compliance models exhibit over 91% fit to the experimental data

with just over 1% improvement for the linear compliance model.
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1. Introduction
Compliance in a machine tool results in changes in the location of its tool with respect to the

workpiece in the presence of cutting forces and inertial and gravitational loads.

The tooltip stiffness chain was examined experimentally and with both analytical and finite element
models [1]. The cutting force and the tool deflection were measured with a dynamometer and
inductive proximity sensors, respectively. The tool deflection was found to contribute as much as the
rest of the system. Tests were conducted one direction at a time with a single axis being moved very
slowly to gradually increase the deflection. Results showed that the stiffness of shorter and thicker
tools, and that of slender and flexible tools, were about 5 to 7 times and 15 times less than that of the

machine and tool holder system, respectively.

The equivalent stiffness method models the joint deviation contribution to the total volumetric
deviation under load [2] from measurements of the force versus deviation functions at the interface
between the tool and workpiece. The translational compliances at the joints are modeled by a number

of suitably oriented linear springs.

A static stiffness modeling of the machining space is introduced in [3]. The parametric model includes
the six-directional static stiffness obtained by the combination of both load and deformation transfer
matrices. The loading and deformation of each part of the machine are analyzed separately. To
identify the static stiffness, an experimental setup is used including a loading device (hydraulic
cylinder) to apply force in the X-, Y- and Z-direction and a displacement sensor to measure the
deflection in the same direction. The error between the introduced model and measured stiffness was

7.6%.

The total stiffness of the machine is modeled using simple springs located at the bearing supports
between the carriages and guideways [4]. Multi-body system theory is used to explain the topological
structure of the machine. The deflection model represents the connection between the deformation of
the components and the relative deformation of the tool and workpiece. To determine the stiffness
value, each component was modeled as a spring with different degrees of freedom to deliver the
resultant displacement in the direction of the force. The experimental data is gathered by applying a
force to the machine spindle in either the X-, Y- or Z-direction and measuring the resulting deflection
using an Eddy current proximity sensor. The difference between the estimated and given stiffness

values at the tooltip was 8.8%, 9.6%, and 8.4% in the X-, Y- and Z-direction respectively.



To analyze the structural characteristics of an ultra-precision four-axis machine, the joint stiffness of
both hydrostatic guideways of linear axes and hydrostatic bearings of the rotary C-axis were studied
using a virtual prototype and experimental data [S]. The compliance of the individual axes and the
stiffness of the overall machine loop were experimentally determined using a load cell and
displacements measured by a laser interferometer. The virtual prototype was modeled in ANSYS
software using solid elements as well as identifiable stiffness matrices for the four joints, which were
identified to match the experimental joint compliances. The designed, predicted, and measured
stiffness of the X- and Y-axis were 5.71, 4.68, and 4.98 (N/um), and 9.86, 12.70, and 13.24 (N/um),
respectively. The predicted loop stiffness of the virtual prototype machine in the X-, Y- and Z-axis

directions were 94%, 96%, and 93% of those experimentally measured.

In [6] the direction dependency of the tool to workpiece compliance of a machine tool was examined.
A piezoelectric actuator excites the tool while the force and displacement are measured by a three-
axis force sensor and three-axis accelerometer signals, respectively. The compliance in the X and Y
(horizontal) directions was larger than that in the Z (vertical) direction. The highest compliance value

in the X direction was two times larger than those in the Y and Z directions.

A device named Stiffness Workspace System (SWS) was introduced in [7]. It applies a force with a
controlled value and direction and measures the resultant translational and rotational displacement
using twelve inductive sensors. The machine is stationary. It was concluded that the stiffness varies

both with the applied force direction and the location in the workspace.

An elastically Linked system (ELS) was introduced and the physical implementation was designed
as a Loaded Double Ball Bar (LDBB) [8]. The LDBB measures the radial volumetric displacement
during a circular test trajectory [9] while applying a constant radial force between the balls at the tool
holder and workpiece table. The measurements provide the volumetric compliance i.e., the
compliance in the working volume. It allows to test the machine in motion and combine the movement
of two mechanical axes at various feed rates thus approaching more realistic conditions of use. A low
force test is used as a reference and those readings are subtracted from data at higher force levels to
remove contamination from no-load effects. Using data from an LDBB test, the accuracy of a
machined part was predicted from the analysis of machining system capability [10]. In this approach,
the volumetric deviations measured by an LDBB circular test are used to estimate a multi-body

compliance model that can predict compliance for an arbitrary tool path. An FE model determines



the tool and workpiece contributions to the total deviation. This method predicted the machined

workpiece geometry with about 17% error.

The unloaded telescopic ball bar was invented to measure the two- or three-dimensional accuracy of
machine tools, as a fast and accurate method [11]. In [12] the characteristic patterns of ball bar traces
for 2D circular tests in the XY, YZ, and XZ planes of a three linear axis machine tool due to a variety

of machine error sources such as out-of-squareness and out-of-straightness were presented.

An elasto-geometrical calibration method for geometric errors and compliance parameters of a six-
DOF serial robot was introduced [13]. The load was applied using weights at the end effector and the
effect on the positioning was measured using a laser tracker. The torsional compliances, self-gravity,
and weight center of gravity were estimated. The geometric errors included joint-dependent and joint-

independent errors such as link offset and link twist errors.

An elasto-geometrical model of an industrial robot manipulator was introduced as a closed-loop
mechanism [14]. The error model for geometrical calibration was developed to relate the positioning
error to the vector of geometrical error through the Jacobian matrix. In the stiffness model, all the
links of the closed-loop system were considered as beams and nodes. Six DOF for nodal displacement
and wrench were considered. Elastic displacements were obtained through the stiffness model
validated by the FEA model in CASTEM® software. It was shown that the link deformation was

20% of the total elastic displacement at the end effector.

To enhance robot manipulator static pose accuracy, an elasto-geometrical calibration was established
[15]. Two methods were shown including analytical parametric modeling and a Takagi—Sugeno fuzzy
inference system. In the first method, an analytical finite element theory was used to determine the
equivalent stiffness of the structure that was required to predict the tool center point (TCP) pose error
under a high load level. The geometrical and stiffness error parameters of the elasto-geometric model
were 1dentified. It was shown that by considering the whole working volume, measured elastic
displacement depicted non-linear behavior that could not be explained by this method. Hence, a
second method fuzzy interface, which had an efficient mathematical structure, was used to better
explain the system's non-linear behavior. It was illustrated that by using this method, the accuracy of

the TCP's pose had been improved down to + 0.15mm.

An elasto-geometrical calibration approach was presented to improve the positioning accuracy of the
industrial robot [16, 17]. A laser tracker was used to identify geometric parameter error and joint

stiffness parameters by measuring the position of the end-effector in various robot configurations



while applying external forces and torques to the end effector with a cable-driven robot. The
calibrated elasto-geometrical reduced the position error to 0.960 mm compared to 2.571 for a

geometric-only calibration.

A model for machine tool equivalent joint compliance is introduced in [18]. Indirect estimation of
joint compliance is carried out via the loaded circular test. The relationship between joint and
volumetric compliance is established. It is shown that on-axis compliances such as Cxxx and Cyyy
were dominant and their values slightly increased with the applied force. In this model, the effect of
geometric errors was removed by subtracting the lowest force data assuming it only contained the

effect of geometric errors.

In previously mentioned methods and models for machine tool stiffness, the effect of geometric error
has not been considered. Furthermore, there is no analytical model to separate machine joint

compliance and geometric error parameters' effect in the loaded status.

In the abovementioned robot elasto-geometric models and procedures, the kinematic model of the
robot is used for the geometric errors model. It was also concluded that while the robot is under load,
the kinematic calibration methods in which geometric factors were applied to identify model
parameters, could not represent a significant improvement in the robot positioning accuracy since it

is strongly affected by a high external load.

It is to be noted that the stiffness value can vary with the magnitude of the applied forces [18] which
can be considered as a variable stiffness whilst it is not considered in the aforementioned methods
and models. Nevertheless, the variable compliance model which analyzes the change of compliance

parameters as a function of force is studied in this research.

In this research, the geometric errors and joint compliances are simultaneously estimated from two
linear axis loaded double ball bar circular tests using an enriched elasto-geometric model whereby
compliance is further modeled as a linear function of load to improve the separation of the

contribution of compliance and geometric errors.

2. Machine geometric and compliance model

A geometrically perfect, thermally insensitive, and rigid machine tool locates its tool and workpiece
to the desired relative location. However, manufacturing and assembly errors, wear and tear,
collisions, thermal expansion, and the presence of forces and compliance are a few factors that cause

the tool to deviate in location relative to the workpiece. A machine tool kinematics can be modeled



using a series of links and joints [19]. Machine deviations can be quantified as small errors in
translations and rotations occurring at the attachment of each link between axis joints as axis
alignment errors (or inter-axis errors) and each joint frame as error motion (intra-axis errors). These
errors then propagate through the branches to the workpiece and tool. The difference between the
actual and the nominal positions of the tool relative to the workpiece defines the volumetric error. A
schematic of the kinematic model of the tested machine is illustrated in Fig. 1. As shown in Fig. 1 the
LDBB circular test only involves the X- and Y-axis and since both are in the tool branch, the
kinematic model of the deviated position of the tool with respect to the foundation frame can be

written as

{F}F Equation 1

_  Fp Yo Yo Yo Y/ Xorm Xorm Xom X/ T
P =y, T YET vT T x,T XzT wIwTHTyT[0 0 0 1]
in which ]l:T is the homogeneous transformation matrix (HTM) from frame i to frame j. YET is the
nominal location of the Y-axis and it is identity as the foundation frame and the Y-axis carriage frame

at y=0 cannot be distinguished from each other, since the Y-axis is the primary reference then i?T
0

. . e Yo - . . . . . . .
is also identity, {}T is the nominal motion of the Y-axis, YYT is error motion of the Y-axis, Y(;T 18
identity as the X-axis is nominally aligned with the i-axis of frame Y’ and the X-axis location error,

. . . X . .
here an out-of-squareness error, will be modeled as a linear straightness error, then X?T is identity,
0

Xorr . . . . . . _ .
«T is the nominal motion of the X-axis, X)fT is the error motion of the X-axis and X{T is identity as

the nominal tool ball is assumed to be nominally at the moving carriage frame origin. tFT is the setup

error on the tool ball. The LDBB test is conducted within a single XY plane and since the LDBB test
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Fig. 1. Schematic of the nominal model for the LDBB test and its circular path through the XY plane along with the
machine with the topology of wCAFYXZSt where S stands for the spindle axis. Only the X- and Y-axis, shown in blue,
are active during the LDBB circular test. Compliance and geometric parameters are shown in magenta and green color,

respectively.

does not provide readings out of the XY plane, only the error terms that can affect the ball bar readings

are retained. The matrices of the model are as follows:

1 0 0 O
FPn_[(0 1 0 O .
v“wl=lg 0 1 o Equation 2
0 0 0 1
1 0 0 O
Yo 01 00 .
/ = E
YOT 00 1 0 quation 3
0 0 0 1
1 0 0 O
Y;O{T g (1) 2 %)I Equation 4
0 0 0 1



EXY
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Y Y, EC(0Y)X YY
Yyt = [ ©0 ]3X3 0 Equation 5
01x3 1
1 0 0 O
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X, 1 = < 0 0 1 0) Equation 6
0 0 0 1
1 0 0 O
Xor [0 1 0 O .
XET (0 0 1 0) Equation 7
0 0 0 1
1 0 0 x
Xor [0 1 0 O .
I = ( 00 1 0 Equation 8
0 0 0 1
1 0 0 Exx
X 01 0 E
X' = 0 0 1 E){X Equation 9
0 0 0 1
1 0 0 O
xm_[0 1 0 0 i
]l = < 00 1 0 Equation 10
0 0 0 1
1 0 0 Ex
t}T = 8 (1) (1) Eg ¢ Equation 11
0 0 0 1

where for instance R(Ey, Ec(oyyx) depicts a rotation by an angle E¢oy)x around the Z-axis of the Y-
axis reference frame and Exy and Eyy are straightness error motion of the Y-axis in the x-direction
and linear positioning error of the Y-axis. Additionally, Exx, Eyx, Ext and Ey; are linear positioning
error of the X-axis, straightness error motion of the X-axis in the y-direction, tool offset in the x-

direction, and tool offset in the y-direction, respectively.

In the workpiece branch, the deviation of the actual position of the workpiece ball with respect to the

foundation frame is:

{F}Fp _ FTVz\;T [0 0 0 1T Equation 12

wh T w



However, since there is no physical means of distinguishing between the foundation frame and the
actual workpiece ball position all HTMs in Equation 12 are replaced by the identity matrix as only

one setup is used and the workpiece ball is used as the foundation frame origin.

The LDBB readings, p, are computed by the subtraction of the nominal trajectory radius, R, from the

actual cartesian distance between the actual positions of the tool and workpiece balls as follows:

p=R —R Equation 13
where the actual cartesian distance is:

R = || {F}'I'ZP _ {F}£P|| Equation 14

While the above model is theoretically exact for any size of deviations, a simplified linearized model
can be produced assuming that deviations are small. This model can easily be solved to estimate the
causal deviations indirectly from measurements of the volumetric errors. A geometric Jacobian
matrix, J/, propagates the causal geometric errors, E, which include the geometric errors occurring at

the joints and the setup errors, to the volumetric cartesian errors, Ey, as follows [20]

Ey =] Eg Equation 15
where
x 0 y2 0 0 1 0
J=10 ¥ 0 y x 0 1 Equation 16
0O 0 0 01 0 O

where x and y are the joint coordinates for axis X and Y respectively. Each column of the Jacobian

matrix is related to the following geometric errors and setup errors composing Eg =
T
[ Exx1, Evxa, Exy2, Evyy1, Ec(onxs Extor Eyto] *-

Equation 15 can be contextualized to the telescopic loaded double ball bar reading by projecting the

translational volumetric error vector along the sensitive direction of the ball bar at position i

P, =Jg,i Ec Equation 17
where
Jg,i = [cos6; sin6; 0] ] Equation 18

with 6; being the angle that the ball-bar sensitive direction makes with the X-axis.



Multiple measurements around the circular trajectory are concatenated vertically to yield a single
linear system relating all ball bar readings to the causal geometric errors occurring at the joint and the

setup errors of the balls of the ball-bar
pc =Jc Eg Equation 19

The compliance model calculates the deflection occurring at the tool relative to the workpiece due to
a wrench applied between the tool and the workpiece in the presence of compliance (inverse of
stiffness) at the joints. It requires calculating the reaction wrench at the joints, the resulting deflection
at the joint, and propagating these deflections down the kinematic chains to the tool in the tool branch
and the workpiece in the workpiece branch using the geometric Jacobian. For each measurement
i=1,m of the LDBB a wrench W; is applied resulting in a change in the LDBB length p.; as follows
[18]:

_ AT T o .
Pci =B i Ji Goint J°; Wi i=1m Equation 20

The authors did not find a closed-form solution for the compliance matrix from experimental
measurements of the applied wrench and resulting LDBB length changes. Instead, Equation 20 was

used to generate a wrench Jacobian Jyy; which is introduced in [18].

3. Elasto-geometric model parameter estimation

Intuitively, the geometric errors will cause a certain change in the length of the loaded ball bar even
if no load is applied. Then, by applying a controlled load the compliance within the system will result
in an additional change in the ball bar length. As a result, the geometric effect does not cause a change

in load and so the elasto-geometric model becomes
Py = pc + pPg Equation 21

where pg, pc and py are the ball-bar length change due to the geometric errors, the compliance
deflection, and both (the letter H was chosen for hybrid compliance and geometric error model),
respectively. Using data at a single force level is not likely to allow us to distinguish between the
geometric and compliance error sources. Let us consider two force levels for the system of equations
to separate parameters with an effect that is constant across force levels, i.e. geometric errors, from
parameters that have an effect proportional to the applied force, i.e the compliances. For example,
using two force levels and linearized wrench Jacobian which is introduced in [18], for each level

yields Equation 22 and Equation 23
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Pcii =Jr1iC Equation 22

P2, = ]F,Z,j C Equation 23
which are then substituted in the combined equation

PH1i = Pcai T Pa,i Equation 24

PH2j = Pc2,j T PG, Equation 25

By substituting Equation 17, Equation 22 and Equation 23 in Equation 24 and Equation 25,

Pu1,i = Jr1,iC + g, E Equation 26

Puz2,j =Jr2,;C o Eq Equation 27
which can be written in a matrix form,

Pui1 _ [Jri Jei][C

pH,z,j] = F2,) ]G,j] [EG] Equation 28

For i=1, m;, and j=1 to my, there are m=m;+m; measurements in total so Equation 28 can be re-written

[C ]

Equation 29
EG 13%1 quation
mx13

PH,1] Jr1 Jea

pH,m mx1 ]F,m ]G,m

Equation 29 can be summarized as follow:

PHmx1 ]Hm><13PH13><1 quation 30

where, py is the summation of the compliance and geometric LDBB length change readings. Jy is
the elasto-geometric Jacobian which is constituted by the combination of the wrench Jacobian and
geometric Jacobian. Finally, Py is the combined parameters set which are composed of compliance
and geometric parameters. To estimate the elasto-geometric parameters, Equation 30 is solved using

the elasto-geometric Jacobian pseudoinverse as follows:

Equation 31

— Jt
PH,estlgxl - ] pmel

H13xm

Fig. 2 shows a 3D rendering of the tested 5-axis CNC machine with the topology wCAFY XZSt.
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Fig. 2. 3D rendering of the target 5-axis machine tool (WCAFY XZSt) with the LDBB mounted.

4. Simulation

Fig. 3 shows the data flow for the simulation of the elasto-geometric model. The joint compliances
are simulated at reasonable values from the literature review. The simulated LDBB readings due to
the compliance calculated with Equation 20 and the simulated geometric contributions to the readings
calculated with Equation 13 geometric are summed up using Equation 24 and Equation 25 to generate
the combined readings. In the estimation process Equation 31 yields the estimated combined
parameters (compliance and geometric parameters) which are then compared with the simulated
values. They are also used back in Equation 20 and Equation 13 to predict the LDBB combined

readings which are compared with the initially simulated readings.
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Simulated

I
: Machine Topology
| Cjoint, sim
R —— _ pT T . .
| F. — Pc,sim,i — B i]G,i Cjoint, sim] G.i VVI i=1m Pc.sim
[
! L
1 PH,sim=Pc,sim T PG.sim
I E,
I G,sim » . o
R — PGsim = R R
I 2] —_ pG,sim
|
|
e
¥ C]OlntlSIm ____________________
I - P — Jt
€c I H,est — / 4 PH,sim
Cjoint,est | Cjoint,est EG est
L
1

r--—--——- l 1
— pT T P — R —

| Pcpredi = B i Ja,i Cjoint, est G,fWi i=1m PG, pred = R"—R

|

. f—

| Estimated | _ +

I Machine pH,pred‘PC,pred PG,pred

T e — - m mm mm Em o Em e e = mm E —

W: simulated wrench at the tool

F: loaded double ball bar force

R: nominal trajectory radius

R': Cartesian distance

0: loaded double ball bar rotation angle
Cjoint,sim: simulated compliance for each axis

Cjointest: estimated compliance for each axis

E sim: simulated geometric parameters for each axis

E est: estimated geometric parameters for each axis

Pcsim: simulated geometric loaded double ball bar reading
Pc,;sim: simulated compliance loaded double ball bar reading
Pu,sim: €lasto-geometric (combined) simulated loaded double ball bar reading
PH, pred: €lasto-geometric (combined) predicted loaded double ball bar reading
Ju: elasto-geometric (combined) Jacobian matrices

Pcpred: predicted compliance loaded double ball bar reading
P prea: Predicted geometric loaded double ball bar reading

eg: geometric parameters error
ec: compliance error
ep: loaded double ball bar reading error

Fig. 3. Data flow for the simulation of the elasto-geometric Model.

13




Since only the X- and Y-axis of the WCAFYXZSt machine, illustrated in Fig. 2, are engaged in the
2D circular test only compliance and geometric errors in the XY plane and rotations around the Z-
axis are considered. As a result, the model may use those modeled axes to explain effects, which may
in reality originate from non-modeled axes of the real machine. The following relevant geometric
errors for the 2D test as shown in Fig. I, are simulated: Exxi, Eyxz, Exyz2, Eyy1, Ec(oy)x»> Exto and

Eyto- They are described in Table 1.

The linearized wrench Jacobian matrix which is introduced in [18] has 18 columns, which represent
each compliance term. The condition number and rank of the wrench Jacobian matrix are 1.7e+34
and six, respectively. The rank of the matrix shows that there are only six independent columns out
of 18. Twelve compliances must be removed from the estimation process. If the numerical Jacobian
matrix has identical or linearly related columns, one of the compliances associated with this set is
kept and the others are removed. Table 2 lists such compliance sets of confounded compliances.
Compliances associated with null columns are also removed. The retained compliances as shown in
Fig. 1, are Cxxx, Cxyx,> Cyyy, Ccxys Ccyy and Cccy which are in bold in Table 2. However, other
compliances from each confounded set could have been selected. The reduced Jacobian condition
number decreases to 9742 while the rank remains at six. The detailed descriptions of the kept

compliance and geometric parameters are presented in Table 1.

Table 1. A detailed description of relevant compliance and geometric errors

Error description Symbol
Compliance causing a translation in x for a force in x at joint X Cxxx
Compliance causing a translation in x for a force in y at joint X Cxyx
Compliance causing a translation in y for a force in y at joint Y Cyvy
Compliance causing a rotation around z (C) for a force in x at joint Y Cexy
Compliance causing a rotation around z (C) for a force in y at joint Y Ceyy
Compliance causing a rotation around z (C) for a moment of the force around z (C) at joint Y Ccey
Linear positioning error gain of the X-axis Exx1
Quadratic straightness error motion of the X-axis in the Y-direction Evxo
Quadratic straightness error motion of the Y-axis in the X-direction Exyo
Linear positioning error gain of the Y-axis Eyvq
Out-of-squareness of the X-axis relative to the Y-axis Ecoov)x
Tool offset in the X-direction Exto
Tool offset in the Y-direction Eyio

Compliances and geometric errors are individually simulated to detect similarities in the response of
the LDBB. Parameters producing similar responses cannot be separated mathematically. LDBB
response patterns generated by each compliance term are shown explicitly in [18] and reproduced in

Table 2. Table 3 presents the LDBB response patterns generated by each geometric term. According

14



to Table 2 and Table 3 all patterns of the compliance except C¢cy are also found in the geometric
error table. However, the model assumes that the patterns from geometric errors do not change size
with the load whereas those due to load and compliance will. As a result, by feeding the estimation

model with data taken at least for two load levels the two sources of errors should be separable.
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Table 2. LDBB response patterns generated by each compliance term (one unit of the radial scale represents 15.0 pm)
[18].

List of compliances and their corresponding LDBB patterns (kept compliances are in bold)

Cxxx > Cxxy Cxcys Cexy
90 90
15 120 15 60
120 ; 80
150 30 150 30
- . 180 0
210 330
210 330
240 300
240 300 710
270
Cxyxs Cyxx> Cxyy » Cyxy Cyers Cevy
20
20
15
55 15 o 120 60
150 20 150 30
180 0 180 0
- 250 210 330
240 300 20 200
270 270
Cyyx, Cyyy Cecy
20
- 5 120 1.5 60
120 60
150 30 150 30
180 0 180 0
210 330 210 330
240 e 300 240 300
270
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Table 3. LDBB response patterns generated by each geometric error parameter (one unit of the radial scale represents 15.0 pm).

List of geometric parameters each producing the pattern shown

Exx1 Eyx2 Exyz Eyy1
%0 20 90
120 L 60 120 2 60 22 15 120 60
120 5 60
150 30 150 30 150 30
150 30
180 0 180
180 150
210 330 210 330
210 330 - -
240 300 240 300
248 20 240 300
270 270 270
270
Ecoonx Exto Eyyo -
% 9 90
15
120 1.5 " 120 80 120 80
150 30 150 30 150 30
180 180 180
210 330 210 330 210 330
240 300 240 300 240 100
270 270 270
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Some simulations are also conducted to show that although some geometric and compliance
parameters produce similar patterns the size of the compliance pattern varies with the applied force
thus allowing its separation from the geometric effect. For this simulation Exy; and Cxxx are set to
1.1200 E-04 and 1.1000 E-04, respectively, and seven force values are simulated i.e., 36,112, 238,
364,490, 616, and 742 N. The LDBB readings are shown in Fig. 4. At a force of 0 N, the compliance
does not contribute to the LDBB readings and so only the geometric error produces the response. As
shown in Fig. 4, for non-zero forces from 36 to 742 N the readings gradually increase. Both Cxxx and
Exxq cause an ovalisation of the response along the X-axis but the size of the oval effect due to the
compliance parameters changes with the applied force whereas the geometric effect, as modeled, does

not.

18
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Fig. 4. The LDBB’s simulated as well as integrated compliance and geometric readings with a given value of Cyxx and
Exx, for seven different force levels (36,112, 238, 364, 490, 616 and 742 N).



Table 4. Simulated and estimated compliance values and geometric errors

Error Simulated Estimated Difference % Difference
Exx1 1.1200E-04 1.1200E-04 0.0000 0.0000
Evyxo 1.2300E-07 1.2295E-07 S5E-11 0.0406
Exy2 -2.1300E-06 -2.1305E-06 5E-10 -0.0234
Eyyq -2.2000E-04 -2.2195E-04 -1.95E-06 0.8863

Ecooy)x 2.6100E-05 2.6097E-05 -3E-09 -0.0114
Exto 6.1100E-04 6.1179E-04 7.9E-07 0.1292
Evio 6.2200E-04 6.2196E-04 -4E-08 -0.0064
Cxxx 1.1000E-04 1.1000E-04 0.0000 0.0000
Cxyx 1.2000E-04 1.2000E-04 0.0000 0.0000
Cyyy 5.5000E-04 5.5000E-04 0.0000 0.0000
Cexy 6.4000E-06 6.4000E-06 0.0000 0.0000
Ccyy 6.5000E-06 6.5000E-06 0.0000 0.0000
Ccey 6.6000E-08 6.5999E-08 -1E-12 -0.0015

Fig.5 shows the simulated and predicted LDBB readings for the simulated and estimated model
parameter values in Table 4. Simulated and estimated values are close to each other. As shown in

Fig.5, the simulated and predicted readings are similar.
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Fig.5. Simulated and predicted LDBB readings for values listed in Table 4 for eight different force levels (0, 36,112,
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21



5. Experimental Results and discussion

Fig. 6 shows the loaded double ball bar test setup. A loaded double ball bar applies a controlled radial
force between the work table and the tool holder of a machine tool while measuring the radial
deviations during a circular path on a machine tool. The test is conducted on a machine tool with the
configuration wWCAFY XZt. The LDBB has a length of 150 mm, and the test feed rate is 2000 mm/min.
The circular trajectory is in the XY plane with starting and ending angles of 0°and 360°, respectively.
Radial displacement readings are measured for seven tests at forces of 36, 112, 238, 364, 490, 616,
and 742N corresponding to pressure levels of 0.4, 1, 2, 3, 4, 5, and 6 bars internally applied to the
LDBB through the pneumatic actuator, respectively. The radial displacement readout has a 0.00024
mm resolution. The raw data which was captured by the LDBB and readings were compensated for

the setup deflection by using Equation 32 [21]:
§ =P % 2.33 X cos?6 Equation 32

where § (um), P (bar), and 0 (degree) are the deflection at the workpiece ball, the air pressure, and
the angle of the LDBB with the horizontal plane, respectively. The LDBB is perpendicular to the

horizontal plane, therefore 8 = 0 degree.

Both the tool and the workpiece balls have a radius of 30 mm. According to ISO 3290-1:2014 [22],
spheres of that radius can be reasonably well produced up to grade G20, i.e., with a tolerance in
diameter of + 11.5 pum; alternatively, the American Bearing Manufacturers Association standard
defines tolerances of £12.5 um for a corresponding grade G25 sphere. The LDBB measurement
instrument features steel spheres for general industrial use. Thus, it must be assumed that each
measurement contains an error component that is attributable to the imperfect shape of the sphere. It
is possible to manufacture spheres according to much tighter roundness tolerance, e.g., the IBS
Spindle Error Analyzer® features spheres with a roundness of less than + 25nm [23]. The use of such
spheres can reduce the complexity of understanding the measurement data as well as the time required
to perform a measurement. Alternatively, one needs to employ error separation methods such as
the Ball Reversal Method to quantify the contribution of the sphericity on the measurand [24]. For
the work described in this manuscript, the form error of the spheres has not been compensated for.
Based on the CMM measurement of these spheres, their form errors may contribute at most 30 pm.
This means, that the model inaccurately re-attributes this error to the described kinematic machine
tool errors. Nevertheless, this does not affect the modeling approach, as the measurement data, in

general, should be compensated for this error before the model parameter estimation. In the analysis
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of experimental results global and local methods have been used. In the global procedure, the data
from all tested load levels are fed to the estimator. However, in the local method, reading from only

two adjacent force levels is used to analyze the local compliance and geometric error parameters.

=
i

Fig. 6. Loaded double ball bar test setup. The direction of the test is clockwise. The work ball is fixed, and the tool ball
is moving. The test is conducted in the XY plane.

5.1. Global (overall) compliance and geometric parameters
Using the results from all force levels at once in Equation 31 yields global estimates for the
compliance and geometric parameters. The estimated compliance and geometric parameters values

are listed in Table 5 and Table 6, respectively.
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Table 5. Estimated global compliance value ( mm/N ) of X- and Y-axis using all force data at once.

Cxgstimated 319 CYggtimated
Wrench
Fxx Fyx Mcx Fxy Fyy Mcy

Sex | 6.19E-05 | 7.98E-07 0 0 0 0

Sox 0 0 0 0 0 0
-E Sex 0 0 0 0 0 0

Sy 0 0 0 0 0 0

Sy 0 0 0 0 4.61E-05 0

Ocy 0 0 0 -2.69E-08 -1.66E-08 -1.10E-09

Table 6. Estimated global geometry value (rad, mm, or mm/m) of X- and Y-axis using all pressure data at once.

Exx1 Eyx, Exy, Eyy, Ecoonx Exto Evto

-0.00013 4.34E-07  -7.26E-07 -9.86E-05 1.15E-06 0.003891 -0.00062

Fig.7 shows the experimental and the model prediction of the loaded telescopic double ball-bar from
36 to 742 N force levels. The estimation is conducted without the 112 N dataset, which will be studied
in the next section as it exhibits a non-linear behavior. As expected, the loaded telescopic double ball-
bar readings increase with the applied force. Also, although the shape of the trace predicted generally

follows the contour of the measurements there is a cyclical difference between them.
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Fig.7. Experimental and predicted global loaded double ball bar readings for X and Y -axis simultaneously with seven
different levels of applied force. p_exp and p_pred are the experimental and predicted readings of a loaded double ball
bar.

The model allows studying the relative contribution of the geometric and compliance parameters to
the response. Fig.8 shows the predicted readings in the absence of set-up errors (Exo and Eyg) for
(a) all compliance and geometric parameters, (b) the compliance parameters only, and (c) the
geometric parameters only. Since the geometry of the machine is modeled as invariant with a load,
all the predicted loaded geometric readings are identical. In Fig.8 (b) the maximum and minimum
predicted radial LDBB readings attributed to the compliance are 0.046 and O mm, respectively, which
results in a 0.046 mm radial variation. In Fig.8 (c) the maximum and minimum predicted radial LDBB
readings due to the estimated geometric errors are -0.007 mm and -0.026 mm, respectively, which
results in a 0.019 mm departure from the nominal circular trajectory. The radial variation due to

compliance effects is more than 3 times that of geometric errors.

Fig. 9 and Fig. 10 present predicted readings of the loaded double ball bar from the estimated global

compliance and geometric parameters at the highest force (742 N), respectively. In Fig. 9 (a) the
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impact of dominant equivalent compliance Cxxx and Cyyy on the loaded circular test readings are
predicted to be around 0.045 and 0.034 mm peak-to-peak. In Fig. 9 (b) the impact of non-dominant
equivalent compliances Cxyx, Ccxy, Coyy and Cgcy are predicted to be around 0.00058, 0.0022,
0.0014 and 0.0045 mm peak-to-peak.

In Fig. 10 (a) the impact of dominant loaded geometric parameters Exyx; and Eyy; impact on the
loaded circular test readings is predicted to be around 0.019 and 0.014 mm peak-to-peak. In Fig. 10
(b) the impact of loaded geometric parameters Eyx,, Exyz, Ecoy)xs Exto and Eyyg are predicted to be

around 0.0074, 0.012, 0.00017, 0.0076 and 0.0012 mm peak-to-peak.

26



=p_pred_36N
=——p_pred 238N
——p_pred 364N

p_pred 490N
===p pred_616N
=—p_pred_742N

X-axis
»

(a)

=—p comp pred 36N
—p_comp )rejfiiiz —p geo pred all forces
—p_comp_pred_.
p_comp pred 490N
——p _comp pred 616N
——p_comp pred 742N
X-axis X:axjs

—

(b) (©)

Fig.8. Predicted global loaded double ball bar readings for the X and Y-axis simultaneously with seven different levels of applied force. (a) Predicted combined
readings (p_pred). (b) Predicted compliance readings (p_comp_pred). (c) Predicted geometric readings (p_geo_pred).
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Fig. 10. Predicted readings of the loaded double ball bar (radial deviation versus the angle of the ball bar with the X-
axis during the circular test) from the estimated global constant geometric parameters at the highest force (742 N).

(@) Exx1, Eyxzs Exvzs Evy1, Ecov)xs Exco and Eyg. (b) Only Eyxs, Exy2, Ecovyxs Exto and Eyro-
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5.2. Local compliance and geometric parameters

By using only two adjacent force levels: [36 and 112; 112 and 238; 238 and 364; 364 and 490; 490
and 616; 616 and 742] N a set of local compliance and geometric parameters are estimated. The
experimental and predicted readings for a particular set of forces are illustrated in Fig. //(a). From
238 N force, the predicted readings more closely follow the experimental readings. At 112 N force,
results do not follow the general trend. This set of data significantly affects the estimated parameters

and was removed for model estimation.
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Fig. 11. Experimental and predicted local loaded telescopic double ball bar readings for X and Y-axis simultaneously
with seven different levels of applied force. p_exp and p_pred are the experimental and predicted readings of a loaded
telescopic double ball bar. (a) Includes the 112 N force level results and the predicted traces are obtained using
parameters estimated using the following two adjacent force levels ([36, 112], [112, 238], etc.). (b) Without 112 N
force level and using the following two adjacent force levels ([36, 238], [238, 364], etc.).

Fig. 12 shows the predicted local loaded telescopic double ball bar readings calculated using the

estimated machine parameters, excluding the tool offsets. Three simulations are conducted: (a)
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compliance and geometric parameters; (b) compliance parameters only and (c) geometric parameters
only. Although theoretically unexpected the estimated geometry changes with force levels. A possible
explanation is that the compliance model cannot fully explain the change in response and so the
geometric errors are used to explain those effects. The predicted LDBB reading variation due to
geometry variation is at most 0.0085 mm over the force range. This compares with 0.019 mm
attributed to the global geometry obtained when using all force data at once. So the variation is early
half the global value, which is not negligible. However, the overall shape of the geometric effect

remains similar.

Fig. 13 and Fig. 14 present predicted readings of the loaded double ball bar from the estimated local
compliance and geometric parameters at the highest force (742 N), respectively. In Fig. 13 (a) the
dominant equivalent compliance (Cxxx, Cyyy) impact on the loaded circular test readings are
predicted to be around 0.048 and 0.036 mm peak-to-peak. In Fig. 13 (b) the impact of non-dominant
equivalent compliances (Cxyx, Ccxy, Ccyy and Cecy) are predicted to be around 0.0018, 0.0064, 0.001
and 0.0036 mm peak-to-peak.

In Fig. 14 (a) the loaded geometric parameters (Exx4, Eyyq) impact on the loaded circular test readings
is predicted to be around 0.022 and 0.017 mm peak-to-peak. In Fig. 14 (b) the impact of loaded
geometric parameters (Eyxz, Exy2, Ec(ov)x, Exto and Eyyg) are predicted to be around 0.012, 0.014,

0.00082, 0.0068 and 0.0031 mm peak-to-peak.
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Fig. 13. Predicted readings of the loaded double ball bar (radial deviation versus the angle of the ball bar with the X-
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Fig. 14. Predicted readings of the loaded double ball bar (radial deviation versus the angle of the ball bar with the X-
axis during the circular test) from the estimated local geometric parameters at the highest force (742 N).
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Error! Not a valid bookmark self-reference. and Table 8 list the estimated local compliance and

geometric parameters values.

Table 7. Estimated local compliances values (mm/N, rad/N or I'E"d/N mm for different sets of two force levels.

Force (N) Cxxx Cxyx Cyyy Cexy Ceyy Cecy

F i, (36and 238) 6.15E-05 -1.65E-06 4.64E-05 8.04E-08 -2.79E-08 -2.88E-09

F,_3; (238 and 364) 6.28E-05 1.07E-06 4.72E-05 -6.94E-08 3.13E-09 -1.92E-09

F 3_4, (364 and 490) 6.54E-05 5.54E-07 4.94E-05 -6.03E-08 -3.11E-08 -1.38E-09

F 4_5 (490 and 616) 6.37E-05 2.56E-06 4.74E-05 -3.67E-08 -2.60E-08 -1.08E-09

F5_¢ (616 and 742) 6.60E-05 2.48E-06 4.92E-05 -7.63E-08 1.24E-08 -8.76E-10

Table 8. Estimated local geometric values (rad, mm, or mm/m) for different sets of two force levels.

Force (N) Exx1 Eyx, Exy; Eyy, Ecovx Exeo Eyo
F,_, (36and 238) -0.00012 2.75E-07 -7.66E-07 -9.36E-05 3.71E-06 0.004438 5.29E-05
F 5_3 (238 and 364) -0.00013 4.91E-07 -7.79E-07 -9.91E-05 -6.08E-07 0.004025 0.0003
F 3_, (364 and 490) -0.00014 5.27E-07 -6.77E-07 -0.00011 6.41E-07 0.003821 -0.00036
F 4 5 (490 and 616) -0.00014 5.01E-07 -6.68E-07 -0.0001 -5.91E-06 0.003525 -0.00093
F5_¢ (616 and 742) -0.00015 7.19E-07 -8.15E-07 -0.00011 -5.58E-06 0.003413 -0.00155

Fig. 15 and Fig. 16 show the estimated experimental compliance and geometric error values. In Fig.

15 by increasing the force the majority of compliance terms increase such as Cxxx, Cxyx, Cyyy and

Cccy- The other two, Ccxy and Ccoyy show no clear trends. In Fig. 16, as the force increases, most of

the loaded geometric terms decrease such as the scale gain errors Exyx; and Eyyq, the out-of-

squareness E¢oy)x and the tool offsets Exyy and Eyyy. Nevertheless, some increase such as the

quadratic straightness Eyy, and Exy,.
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5.3. Variable compliance

Results obtained for local compliances suggest that the values of compliances vary slightly with the
applied load. This appears to cause changes in the estimated geometric error parameters which
contravenes the definition of geometric errors that should be invariant with the applied load. To
analyze the change of compliance parameters as a function of force (F) a solution is now proposed
that consists of enriching the compliance model using a linear function for each compliance term such

as

Cxxx = Cxxxo + CxxxaF Equation 33

Then, the elasto-geometric Jacobian (/i) in Equation 30 is expanded to include the new linear (degree
one) compliance terms by adding an adjacent column for each existing column corresponding to the
constant compliance term (degree 0), which is the same value but multiplied by the relevant force
level for each row. Each row corresponds to an LDBB reading at a certain location on the test circle
and a certain force level. These estimated parameters as a function of force are shown in Fig. 15 as a
dotted line from 36 to 742 N. Comparing the global constant compliance and the global linearly
variable compliance, it is observed that the variable compliance model better explains the change of
compliance parameters, as observed in the local compliance values, as a function of force across the
load range. In Fig. 16, both elasto-geometric models, whether using constant or linearly variable
compliance terms, yield constant geometric errors as defined in the model. When comparing these
constant terms with the local compliance model and the corresponding geometric errors, which
change with the force level, it is observed that the global variable compliance model yields geometric
error parameters that tend to be closer to the local geometric parameters at the lowest pressure values.
To observe the modeling improvement of the variable compliance in comparison with constant

compliance values, the root mean square error is used

. Equation 34
X (Predicted; — Measured;)?

n

RMSE =

where Predicted, Measured and n represents predicted LDBB readings, experimental LDBB readings,
and the number of measurements, respectively. The RMSE value for produced LDBB reading for all
force levels by constant and variable compliance are 0.0011 and 0.0009 mm, respectively, which
shows a further reduction of 18% using the variable compliance model. To determine how well the

predicted data aligns with the measured one, the normalized root mean square error fitness is used
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RMSE Equation 35
_ X 100
|Measured,; jnax — Measured; mn|

fitness (%) = <1

Table 9 presents the fitting percentage for predicted readings from estimated global, variable global,
and local compliance parameters. The fit improves slightly with the force level as the compliance
effect becomes more significant. All fitting percentages exceed 91%. Compared to the constant
variable model, the linearly variable compliance model improves the fit only slightly by just over 1%

when using all force level data.

Table 9. The fitting values for global, variable global, and local compliance predicted readings with different force

levels.
LDBB readings for Fitting with constant Fitting with variable Fitting with local
different force level global compliances (linear model) global compliance
compliance

P36 (%) 924 93.7 91.7

p238 (%) 93.0 94.2 95.3

P34 (%) 92.5 93.8 95.4

Pagg (%) 93.0 94.2 95.8

Pe16 (%) 93.4 94.6 96.0

Pr42 (%) 93.9 95.0 96.2

6. Conclusion

The elasto-geometric model is contextualized to the data gathered during a loaded 2D circular test
implemented using a loaded double ball bar (LDBB) to simultaneously estimate the machine tool X-
and Y-axis equivalent compliances and geometric errors. The compliances are said to be “equivalent”
because although only two axes are mobile during the test, the machine has five axes, and all axes
may contribute to the observed volumetric deflections. At lower forces, the geometric errors are
dominant whilst at higher forces compliance errors dominate. When using all data to build a single
global geometry and compliance set of parameters (global constant compliance model) the radial
volumetric variations due to geometric errors and compliance are estimated at 0.019 mm and 0.046
mm, respectively, making compliance dominant by more than three times. The impact of dominant
and non-dominant equivalent global compliance Cxxx, Cyyy, Cxyx, Ccxy> Ccyy and Cccy on the loaded
circular test readings at the highest force level of 742 N are predicted to be around 0.045, 0.034,
0.00058, 0.0022, 0.0014, and 0.0045 mm peak-to-peak, respectively. The impact of loaded geometric

parameter Exxiq, Eyyi, Eyxz, Exy2, Ecov)x> Exto and Eyy on the loaded circular test readings are
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predicted to be around 0.019, 0.014, 0.0074, 0.012, 0.00017, 0.0076 and 0.0012 mm peak-to-peak,
respectively. The dominant global compliances are Cxxx and Cyyy at 0.0619 and 0.0461 um/N,

respectively.

By feeding the elasto-geometric model with pairs of adjacent force data the evolution of compliance
with changes in the applied force is observed. Although theoretically unexpected, the estimated
geometry changes with force levels. The radial volumetric largest change due to variation in the
estimated local geometry across the range of tested forces (local model) amounts to 0.0085 mm
whereas the global model radial volumetric effects due to geometric errors are estimated at 0.019
mm. This means that the estimated change in geometry is significant. As the force increases the
majority of local compliance terms increase such as Cxxx, Cxyx, Cyyy and Cccy. Two of the less
significant compliances, Ccxy and Ccyy, show no clear trends. Most of the loaded geometric terms
decrease such as Exxs, Eyy1, Ecov)x» Exto and Eyyg as the force increases but Eyy, and Exy, increase.
The change in local compliance suggests that the compliance varies with the applied force. As the
compliance is assumed to be constant this may be causing the apparent change in the geometric error
parameters at different force levels. Consequently, the compliance model was enriched as a linear
function of the applied force to process all force level data at once so that the estimated geometry is
kept the same at all force levels. The root mean square error (RMSE) value for predicting the radial
LDBB readings using the constant and linearly variable compliance models are 0.0011 and 0.0009
mm, respectively, for an improvement of about 18% using the variable compliance model. As all
models predict over 91% of the experimental radial deviations, the use of a linear compliance model
results in just over 1% fitting improvement. The enriched elasto-geometric model provides a means
to analyze the relative contribution of geometric errors and compliance at different load levels and

could in principle be used for machine health monitoring, fault diagnosis, and compensation.
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