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Abstract

Counterfactual inference is a powerful tool, capa-

ble of solving challenging problems in high-profile

sectors. To perform counterfactual inference, one

requires knowledge of the underlying causal mech-

anisms. However, causal mechanisms cannot be

uniquely determined from observations and inter-

ventions alone. This raises the question of how to

choose the causal mechanisms so that resulting

counterfactual inference is trustworthy in a given

domain. This question has been addressed in causal

models with binary variables, but the case of cate-

gorical variables remains unanswered. We address

this challenge by introducing for causal models

with categorical variables the notion of counter-

factual ordering, a principle that posits desirable

properties causal mechanisms should posses, and

prove that it is equivalent to specific functional con-

straints on the causal mechanisms. To learn causal

mechanisms satisfying these constraints, and per-

form counterfactual inference with them, we intro-

duce deep twin networks. These are deep neural

networks that, when trained, are capable of twin

network counterfactual inference—an alternative

to the abduction, action, & prediction method. We

empirically test our approach on diverse real-world

and semi-synthetic data from medicine, epidemiol-

ogy, and finance, reporting accurate estimation of

counterfactual probabilities while demonstrating

the issues that arise with counterfactual reasoning

when counterfactual ordering is not enforced.

1 INTRODUCTION

“If my credit score had been better, would I have been ap-

proved for this loan?”, “What is the effect of the diabetes

type on the risk of stroke?”. Causal questions like these

are routinely asked by scientists and the public alike. Re-

cent machine learning advances have enabled the field to

address causal questions in high-dimensional datasets to

a certain extent Schwab et al. [2018], Alaa et al. [2017],

Shi et al. [2019]. However, most of these methods focus

on Interventions, which only constitute the second-

level of Pearl’s three-level causal hierarchy Pearl [2009],

Bareinboim et al. [2020]. At the top of the hierarchy sit

Counterfactuals. These subsume interventions and

allow one to assign fully causal explanations to data.

Counterfactuals investigate alternative outcomes had some

pre-conditions been different. The crucial difference be-

tween counterfactuals and interventions is that the evidence

the counterfactual is “counter-to” can contain the variables

we wish to intervene on or predict. The first question posed

at the start of this paper, for instance, is a counterfactual one.

Here we want to know if improving our credit score will

lead to loan approval in the explicit context that the loan has

just been declined. A corresponding interventional query

would be “what is the impact of the credit score on the loan

approval chances?”. Here, evidence that the loan has just

been denied is not used in estimating the impact. The second

question posed at the start of this paper—regarding the effect

of diabetes type on the risk of stroke—is an interventional

question. By utilising this additional information, counter-

factuals enable more nuanced and personalised reasoning

and decision making. Counterfactual inference has been

applied in high profile sectors like medicine Richens et al.

[2020], Oberst and Sontag [2019], legal analysis Lagnado

et al. [2013], fairness Kusner et al. [2017], explainability

Galhotra et al. [2021], and advertising Ang Li [2019].

To perform counterfactual inference, one requires knowl-

edge of the causal mechanisms. However, the causal mecha-

nisms cannot be uniquely determined from observations and

interventions alone. Indeed, two causal models that have

the same conditional and interventional distributions can

disagree about certain counterfactuals Pearl [2009]. Hence,

without additional constraints on the form of the causal

mechanisms, they can generate “non-intuitive" counterfac-
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tuals that conflict with domain knowledge, as originally

pointed out by Oberst and Sontag [2019].

This raises the question of how best to choose the causal

mechanisms so that resulting counterfactual inference is

trustworthy in a given domain. Despite the importance of

counterfactual inference, this question has only been ad-

dressed in causal models with binary treatment and outcome

variables Tian and Pearl [2000]. The case of categorical

variables remains unanswered. Beyond binary variables,

previous work has only derived upper and lower bounds for

counterfactual probabilities Zhang and Bareinboim [2020].

In many cases, these bounds can be too wide to be infor-

mative. We address this challenge by introducing for causal

models with categorical variables the notion of counterfac-

tual ordering, a principle that posits desirable properties

causal mechanisms should posses, and prove that it is equiv-

alent to specific functional constraints on the causal mecha-

nisms. Namely, we prove that causal mechanisms satisfying

counterfactual ordering must be monotonic functions.

To learn such causal mechanisms, and perform counterfac-

tual inference with them, we introduce deep twin networks.

These are deep neural networks that, when trained, are capa-

ble of twin network counterfactual inference—an alternative

to the abduction, action, & prediction method of counter-

factual inference. Twin networks were introduced by Balke

and Pearl [1994] and reduce estimating counterfactuals to

performing Bayesian inference on a larger causal model,

known as a twin network, where the factual and counter-

factual worlds are jointly graphically represented. Despite

their potential importance, twin networks have not been

widely investigated from a machine learning perspective.

We show that the graphical nature of twin networks makes

them particularly amenable to deep learning.

We empirically test our approach on a variety of real and

semi-synthetic datasets from medicine and finance, showing

our method achieves accurate estimation of counterfactual

probabilities. Moreover, we demonstrate that if counterfac-

tual ordering is not enforced, the model generates “non-

intuitive” counterfactuals that contradict domain knowledge

in these cases. Our contributions are as follows:

1. We introduce counterfactual ordering for causal mod-

els with categorical variables, which posits desirable

properties causal mechanisms should posses.

2. We prove counterfactual ordering is equivalent to spe-

cific functional constraints on the causal mechanisms.

Namely, that they must be monotonic.

3. We introduce deep twin networks to learn such causal

mechanisms and perform counterfactual inference.

These are deep neural networks that, when trained,

can perform twin network counterfactual inference.

4. We test our approach on real and semi-synthetic data,

achieving accurate counterfactual estimation that com-

plies with domain knowledge.

(a) (b) (c) (d) (e)

Figure 1: Orange nodes are unobserved, green latent. (a)

Example SCM; (b) twin network of (a); (c) intervention in

the twin network on node X∗; (d) interventions in the twin

network on X & X∗; (e) Uncounfounded version of (a).

2 PRELIMINARIES

2.1 STRUCTURAL CAUSAL MODELS

We work in the Structural Causal Models (SCM) framework.

Chapter 7 of Pearl [2009] gives an in-depth discussion. For

an up-to-date review of counterfactual inference and Pearl’s

Causal Hierarchy, see Bareinboim et al. [2020].

Definition 1 (Structural Causal Model). A structural causal

model (SCM) specifies a set of latent variables U =
{u1, . . . , un} distributed as P (U), a set of observable vari-

ables = {v1, . . . , vm}, a directed acyclic graph (DAG),

called the causal structure of the model, whose nodes are the

variables U∪V , a collection of functions F = {f1, . . . , fn},

such that vi = fi(PAi, ui), for i = 1, . . . , n, where PA
denotes the parent observed nodes of an observed variable.

The collection of functions and distribution over latent

variables induces a distribution over observable variables:

P (V = v) :=
∑

{ui|fi(PAi,ui)= vi}
P (ui). An example

causal structure, represented as a directed acyclic graph

(DAG), is depicted in Fig. 1a.

Definition 2 (Submodel). Let M be a structural causal

model, X a subset of observed variables with realization

x. A submodel Mx is the causal model with the same latent

and observed variables as M , but with functions replaced

with Fx = {fi | vi /∈ X}∪{f
′

j(PAj , uj) := xj | vj ∈ X}.

Definition 3 (do-operator). Let M be a structural causal

model, X a set of observed variables. The effect of action

do(X = x) on M is given by the submodel Mx.

The do-operator forces variables to take certain values, re-

gardless of the original causal mechanism. Graphically,

do(X = x) means deleting edges incoming to X and setting

X = x. Probabilities involving do(x) are normal probabili-

ties in submodel Mx: P (Y = y | do(X = x)) = PMx
(y).

2.2 COUNTERFACTUAL INFERENCE

Definition 4 (Counterfactual). The counterfactual “Y
would be y in situation U = u, had X been x”, denoted

Yx(u) = y, equates to Y = y in submodel Mx for U = u.



The latent distribution P (U) allows one to define prob-

abilities of counterfactual queries, P (Yy = y) =
∑

u|Yx(u)=y P (u). For x ̸= x′ one can also define joint

counterfactual probabilities, P (Yx = y, Yx′ = y′) =
∑

u|Yx(u)=y, &Yx′ (u)=y′ P (u). Moreover, one can define a

counterfactual distribution given seemingly contradictory

evidence. Given a set of observed evidence variables E,

consider the probability P (Yx = y′ | E = e). Despite the

fact that this query may involve interventions that contradict

the evidence, it is well-defined, as the intervention specifies

a new submodel. Indeed, P (Yx = y′ | E = e) is given

by Pearl [2009]
∑

u P (Yx(u) = y′)P (u|e) . The following

theorem outlines how to compute such distributions.

Theorem 1 (Theorem 7.1.7 in Pearl [2009]). Given SCM

M with latent distribution P (U) and evidence e, the con-

ditional probability P (Yx | e) is evaluated as follows: 1)

Abduction: Infer the posterior of the latent variables with

evidence e to obtain P (U | e), 2) Action: Apply do(x) to ob-

tain submodel Mx, 2) Prediction: Compute the probability

of Y in the submodel Mx with P (U | e).

2.3 TWIN NETWORK COUNTERFACTUAL

INFERENCE

A practical limitation of Theorem 1 is that the abduction step

requires large computational resources. Indeed, even if we

start with a Markovian model in which background variables

are mutually independent, conditioning on evidence—as in

abduction—normally destroys this independence and makes

it necessary to carry over a full description of the joint dis-

tribution over the background variables Pearl [2009]. Balke

and Pearl [1994] introduced a method to address this diffi-

culty. Their method reduces estimating counterfactuals to

performing Bayesian inference on an larger causal model,

known as a twin network, where the factual and counterfac-

tual worlds are jointly graphically represented, described

in technical detail below. We have included an extended

discussion of the computational distinction between twin

networks and abduction-action-prediction in the Appendix.

A twin network consists of two interlinked networks, one

representing the real world and the other the counterfactual

world being queried. Constructing a twin network given a

structural causal model and using it to compute a counter-

factual query is as follows: First, one duplicates the given

causal model, denoting nodes in the duplicated model via

superscript ∗. Let V = {v1, . . . , vn} be observable nodes in

the causal model and V ∗ = {v∗1 , . . . , v
∗
n} the duplication of

these. Then, for every node v∗i in the duplicated, or “coun-

terfactual,” model, its latent parent u∗
i is replaced with the

original latent parent ui in the original, or “factual,” model,

such that the original latent variables are now a parent of two

nodes, vi and v∗i . The two graphs are linked only by common

latent parents, but share the same node structure and generat-

ing mechanisms. To compute a general counterfactual query

P (Y = y | E = e, do(X = x)), one modifies the struc-

ture of the counterfactual network by dropping arrows from

parents of X∗ and setting them to value X∗ = x. Then, in

the twin network with this modified structure, one computes

the following probability P (Y ∗ = y | E = e,X∗ = x) via

standard inference techniques, where E are factual nodes.

That is, in a twin network one has:

P (Y = y |E = e, do(X = x)) =

P (Y ∗ = y | E = e,X∗ = x)
(1)

To illustrate this concretely, consider the causal model

with causal structure depicted in 1a, where variables X,Y
are binary. The counterfactual statement to be computed

is P (Y = 0 | Y = 1, do(X = 0)). The twin network ap-

proach to this problem first constructs the linked factual and

counterfactual networks depicted in 1b. The intervention

do(X∗ = 0) is then performed in the counterfactual net-

work; all arrows from the parents of X∗ are removed and X∗

is set to the value 0—graphically depicted in 1c. The above

counterfactual query is reduced to the following conditional

probability in 1c: P (Y ∗ = 0 | Y = 1, X∗ = 0) , which can

be computed using Bayesian inference techniques.

Our contribution: Despite their importance for counterfac-

tual inference, twin networks have not been widely studied—

particularly from a machine learning perspective. In the

Methods section we demonstrate how to combine twin net-

works with neural networks to estimate counterfactuals.

2.4 NON-IDENTIFIABILITY OF

COUNTERFACTUALS

As a general principle, observational and interventional data

do not allow for identification of counterfactual distributions,

as multiple parametrizations of the causal phenomenon can

be consistent with the observed data. Eq. 2 illustrates ths

phenomenon. Assume the simple case of DAG 1e, with

X,Y binary, UY a four-valued variable distributed under

q(UY ) and ¬X to be the logical negation of X .

Y =



















X, if UY = 0

0, if UY = 1

1, if UY = 2

¬X, if UY = 3

(2)

In this case the conditional probabilities are given by P (Y |
X) are: P (Y = 0|X = 0) = q(UY = 0)+ q(UY = 1) and

P (Y = 0|X = 1) = q(UY = 1) + q(UY = 3). As there

are no confounders in our example, these coincide with the

interventional distributions P (Y | do(X)).

The causal model in Eq. 2 has 3 parameters, but the con-

ditional distributions only provide 2 constraints on these



parameters. Hence, due to the existence of this free parame-

ter, there can exist models with the same conditional distri-

butions, but different counterfactuals. This observation can

bee seen as follows. Consider the following counterfactual

query P (YX=1 = 1 | Y = 0, X = 0). It can be written as:

P (YX=1 = 0 | Y = 1, X = 0) =
q(UY = 3)

q(UY = 2) + q(UY = 3)

which follows by noting Y = 1 and X = 0 implies ei-

ther Y = ¬X or Y = 1, which happens with probability

q(UY = 2) + q(UY = 3), and within this context the

only way Y = 0 when X = 1 is if Y = ¬X, which

occurs with probability q(UY = 3). Note that there is

no way to write this counterfactual probability in terms

of the conditional distributions P (Y | X) alone. More-

over, one can have two models with the same functional

form as Eq. 2 that yield the same conditional distributions,

but give different predictions for the above counterfactual

query. An example is one model with distribution over UY

given by {q(UY )}
3
0 = {1/2, 1/6, 1/6, 1/6}, another with

{q(UY )}
3
0 = {1/3, 1/3, 1/3, 0}. Hence, there are counter-

factuals that are not identifiable from data. Such counter-

factual distributions cannot be expressed in terms of ob-

servational or interventional distributions alone. This can

lead to counterfactual predictions that conflict with domain

knowledge, as shall be shown in the next section.

3 METHODS

3.1 NON-IDENTIFIABILITY & DOMAIN

KNOWLEDGE

Is non-identifiability of counterfactuals a problem? Given a

causal model trained on observations and interventions, can

we always trust its counterfactual predictions? In general the

answer is no: counterfactual predictions from a causal model

can conflict with domain knowledge—even if it perfectly

reproduces observations and interventions, as we now show.

In epidemiology, causal models with the structure of Fig-

ure 1e are studied, where X is the presence of a risk factor

and Y is the presence of a disease. From epidemiological

domain knowledge, it is believed that risk factors always

increase the likelihood of a disease being present Tian and

Pearl [2000]—referred to as “no-prevention”, that no indi-

vidual in the population can be helped by exposure to the

risk factor Pearl [1999]. Hence, if one observes a disease,

but not the risk factor, then, in that context, if we had inter-

vened to give that individual the risk factor, the likelihood

of them not having the disease must be zero—as having the

risk factor can only increase the likelihood of a disease.

We’ll now describe two causal models that generate the

same observations and interventions, yet the counterfac-

tuals generated by one model satisfy the above domain

knowledge and the other do not. Consider the two dif-

ferent parameterizations of the causal model discussed

in Section 2.4: {q(UY )}
3
0 = {1/2, 1/6, 1/6, 1/6} and

{q(UY )}
3
0 = {1/3, 1/3, 1/3, 0}. Both models have the

same conditional distributions, and we have P (YX=1 =
1) > P (YX=0 = 1) and P (YX=1 = 0) < P (YX=0 = 0).
This tells us that intervening to set X = 1 always makes

Y = 1 more likely, and doesn’t increase the likelihood of

Y = 0 relative to X = 0. So, at the interventional-level,

these models seem to comply with Epidemiological domain

knowledge that says that the presence of a risk factor, that

is, X = 1, always makes disease, Y = 1, more likely.

Despite this, in the first model P (YX=1 = 1 | Y = 1, X =
0) < P (YX=0 = 1 | Y = 1, X = 0). According to this

model, Y = 1 becomes less likely when we intervene with

X = 1 in the counterfactual context YX=0 = 1—even

though intervening to set X = 1 can only make Y = 1
more likely, and does not increase the likelihood of Y =
0. This is a very “non-intuitive” counterfactual prediction

from the point of view of an Epidemiologist. However, in

the second model, P (YX=1 = 1 | Y = 1, X = 0) =
P (YX=0 = 1 | Y = 1, X = 0). Indeed, in this model, no

matter the counterfactual context, intervening to set X = 1
never reduces the likelihood Y = 1. Thus the second model

complies fully with Epidemiological domain knowledge.

As the models agree on the data they’re trained on, we must

impose extra constraints to learn the model that generates

domain-trustworthy counterfactuals. In the next section, we

present a simple principle that provide such constraints.

3.2 COUNTERFACTUAL ORDERING

We continue to consider the causal structure from Sec-

tion 2.4 with a DAG as depicted in Figure 1e. However,

now X,Y are categorical variables with an arbitrary number

of categories N,M each. Inspired by the Epidemiological

example from the previous section, we now define coun-

terfactual ordering, which posits an intuitive relationship

between counterfactual and intervantional distributions.

Definition 5 (Counterfactual Ordering). A causal model

with categorical treatment variable X and categorical

outcome variable Y satisfies counterfactual ordering if

there exists an ordering on interventions and outcomes

{x0, x1, . . . , xN}, {y0, y1, . . . , yM} such that P (Yxi
=

yk) ≥ P (Yxj
= yk) and P (Yxi

= yh) ≤ P (Yxj
= yh)

for all i > j and k > h, then it must be the case that

P (Yxi
≥ yk|Yx∗ = y∗) ≥ P (Yxj

≥ yk|Yx∗ = y∗) for all

counterfactual contexts {y∗, x∗}.

This encodes to the following intuition: If intervention xi

only increases the likelihood of outcome yk, relative to any

intervention xj with j < i, without increasing the likelihood

of yh for all h < k, then intervention xi must increase the

likelihood that the outcome we observe is at least as high as



yk, regardless of the context. Counterfactual ordering places

the following constraints on a causal model.

Theorem 2. If counterfactual ordering holds P (Yxj
=

yl|Yxi
= yh) = 0 for all l > h and i > j.

Proofs are in Appendix. Equality’s of the form P (Yx =
y′|Yx′ = y) = 0 are equivalent to the statement {Yx =
y′} ∧ {Yx′ = y} = False, where ∧ is the logical AND op-

erator. Therefore, the conjunction of the input-output pairs

X = x, Y = y′ and X = x, Y = y cannot occur in such a

causal model. This yields constraints on the model parame-

ters beyond those imposed by observations and interventions

that can be enforced during causal model training.

It is important to note that we are not saying every causal

model should satisfy counterfactual ordering. As in all

works on causal inference, it is ultimately up to the ana-

lyst to decide if such an assumption appears reasonable

in a given domain. As discussed in the previous section,

counterfactual ordering appars a reasonable assumption in

Epidemiology. In the Experiments section, we empirically

demonstrate on data from medicine and finance that models

that are trained to satisfy counterfactual ordering comply

with domain knowledge, while models that aren’t appear in

conflict with domain knowledge.

3.3 COUNTERFACTUAL ORDERING AND

COUNTERFACTUAL STABILITY

Counterfactual stability has been proposed by Oberst and

Sontag [2019] as a different way to restrict the type of

counterfactuals a causal model can output, to ensure they

are “intutive”. We define counterfactual stability then prove

a relation between it and counterfactual ordering.

Definition 6 (Counterfactual Stability). A causal model of

categorical variable Y satisfies counterfactual stability if

it has the following property: If we observe Yx = y, then

for all y′ ̸= y, the condition
P (Yx=y)
P (Yx′=y′) ≥

P (Yx=y′)
P (Yx′=y) implies

that P (Yx = y′|Yx′ = y) = 0. That is, if we observed

Y = y under intervention X = x, then the counterfactual

outcome under intervention X = x′ cannot be equal to

Y = y′ unless the multiplicative change in P (Yx = y) is

less than the multiplicative change in P (Yx = y′).

This encodes the following intuition about counterfactuals:

If we had taken an alternative action that would have only

increased the probability of Y = x, without increasing the

likelihood of other outcomes, then the same outcome would

have occurred in the counterfactual case. Moreover, in order

for the outcome to be different under the counterfactual

distribution, the relative likelihood of an alternative outcome

must have increased relative to that of the observed outcome.

Counterfactual stability is weaker than counterfactual order-

ing, as it imposes fewer constraints on the model. In fact,

counterfactual ordering between intervention and outcome

values implies counterfactual stability holds between them:

Theorem 3. If a causal model satisfies counterfactual or-

dering then it satisfies counterfactual stability.

3.4 COUNTERFACTUAL ORDERING

FUNCTIONALLY CONSTRAINS CAUSAL

MECHANISMS TO BE MONOTONIC

Oberst and Sontag [2019] were unable to derive any general

functional constraints counterfactual stability places on the

causal mechanisms underlying a given causal model. They

were only able to compute counterfactuals satisfying it in a

single, specific type of causal model. Namely, one where the

mechanisms are parameterised using the Gumbel-Max trick.

By contrast, we now derive general a functional constraint

on causal mechanisms that is equivalent to counterfactual

ordering. In the next section we will show how to learn

causal models that satisfy this constraint. Thus we are able

to learn causal models that satisfy counterfactual ordering

without the need for specific parametric assumptions—such

as the Gumbel-Max trick, as was required for counterfactual

stability by Oberst and Sontag [2019].

Definition 7 (Monotonicity). If there exists an order-

ing on interventions and outcomes: {x0, x1, . . . , xN},

{y0, y1, . . . , yM} such that P (Yxi
= yk) ≥ P (Yxj

= yk)
and P (Yxi

= yh) ≤ P (Yxj
= yh) for all i > j and k > h

then Yx(u) ≥ Yx′(u) for all u. Equivalently, the events

{Yxi
= yh} ∧ {Yxj

= yl} = False for all i > j and h < l.

Theorem 4. Given an intervention & outcome ordering,

counterfactual ordering & monotonicity are equivalent.

Tian and Pearl [2000] proved that in an SCM with DAG 1a

with binary X,Y , where Y is monotonic in X , the proba-

bilities of causation—important counterfactual queries that

quantify the degree to which one event was a necessary

or sufficient cause of another—can be uniquely identified

from observational and interventional distributions. See Ap-

pendix D for a definition of the probabilities of causation.

We thus have the follow corollary to theorem B.

Corollary 1. In a counterfactually ordered SCM with DAG

1a and binary X,Y , the probabilities of causation are iden-

tified from observational and interventional distributions.

For categorical variables beyond the binary case, it is un-

known whether monontonicity implies unique identifiability.

However, in this work we are not concerned with counter-

factuals being uniquely defined, as long as “non-intuitive”

counterfactuals are ruled out. Constraints on the model be-

yond those imposed by observations and experimental data

are said to partially-identify counterfactual distributions. In

the next section we demonstrate how to learn causal models

satisfying counterfactual ordering from data.



3.5 DEEP TWIN NETWORKS

We now present deep twin networks which combine twin

networks with neural networks to learn the causal mecha-

nisms and estimate counterfactuals. Importantly, we will

discuss how to ensure the function space learned by the

neural network satisfies counterfactual ordering.

Contrary to prior Bayesian network approaches deep twin

networks allow us not only to estimate counterfactual prob-

abilities from data but to learn the underlying functions that

dictate the interactions between causal variables. Hence we

are able to gain a deeper insight on the mechanisms rep-

resented in the structural causal model that generate the

counterfactuals we want to predict. Moreover we are able to

quantify the uncertainty about the outcome by learning the

latent noise distribution. Finally, the use of neural networks

allow us to gain flexibility and computational advantages

not present in previous plug-in estimators. Specifically we

will see that our methods admits an arbitrary number and

type of confounders Z while estimating counterfactual prob-

abilities, a stark difference to plug-in estimators, such as

those presented in Cuellar and Kennedy [2020].

Our approach has two stages, training the neural network

such that it learns the counterfactually ordered causal mech-

anisms that best fit the data, then interpreting it as a twin net-

work on which standard inference is performed to estimate

counterfactual distributions. Note that if one can generate

counterfactuals, one can also generate interventions.

For clarity, we confine our explanations to the causal struc-

ture from Figure 1a where X,Y are categorical variables

with X ∈ {1, . . . , N} and Y ∈ {1, . . . ,M}, and Z can be

categorical or numerical. Note there can be many Z. Our

method can be extended to multiple causes and a single

output straightforwardly. To generalize this approach to an

arbitrary causal structure, one applies our method to each

parent-child structure recursively in the topological speci-

fied by the direction of the arrows in the causal structure.

Training deep twin networks: To determine the architec-

ture of our neural network, we start with the causal structure

of the SCM we wish to learn, and consider the graphical

structure of its twin network representation. Our neural net-

work architecture then exactly follows this graphical struc-

ture. This is graphically illustrated for the case of binary

X,Y from Figure 1a with twin network in Figure 1c in

Figure 2. In the case of binary X,Y , the neural network

has two heads, one for the outcome under the factual treat-

ment and the other for the outcome under the counterfactual

treatment. Furthermore two shared—but independent of one

another—base representations, one corresponding to a rep-

resentation of the observed confounders, Z, and the other

to the latent noise term on the outcome, UY , are employed.

For multiple treatments we have N neural network heads,

each corresponding to the categories of X . To interpret this

Figure 2: From DAG to twin network DAG to deep neural

network (NN) architecture for binary X,Y . Rectangular

blocks are NN blocks, like FCN layers or Lattices; forward

intersections are concatenation of features.

as a twin network for given evidence X,Y, Z and desired

intervention X∗, we marginalize out the heads indexed by

the elements of {1, . . . , N}/X,X∗. To train this neural net-

work, we require two things: 1) a label for head Y ∗, and 2)

a way to learn the distribution of the latent noise term UY .

For 1), we must ask what the expected value of Y ∗ is,

for fixed covariates Z, under a change in input X∗. This

corresponds to E(Y ∗|X∗, Z). Given the correspondence

between twin networks and the original SCM outlined

in Equation (1) from Section 2.3, this corresponds to

E(Y |do(X), Z), which is the expected value of Y under an

intervention on X for fixed Z. There are many approaches to

estimating this quantity in the literature Shalit et al. [2016],

Alaa et al. [2017], Johansson et al. [2016], Shi et al. [2019].

We follow Schwab et al. [2018]due to their methods sim-

plicity and empirical high performance. Any method that

computes E(Y |do(X), Z) can be used, however. In addition

to specifying the causal structure, the following standard as-

sumptions are needed to estimate E(Y |do(X), Z) Schwab

et al. [2018]: 1) Ignorability: there are no unmeasured con-

founders; 2) Overlap: every unit has non-zero probability

of receiving all treatments given their observed covariates.

Computing this expectation provides the labels for Y ∗.

For 2), consider the following. Formally, the causal struc-

ture of Figure 1a has Y = f(X,Z,UY ) with UY ∼ q(UY )
for some q. Without loss of generality Goudet et al. [2018],

one can rewrite this as Y = f(X,Z, g(U ′
Y )) with U ′

Y ∼ E
and UY = g(U ′

Y ), where E is some easy-to-sample-from

distribution, such as a Gaussian or Uniform. Hence we have

reduced learning q(UY ) to learning function g, whose in-

put corresponds to samples from a Guassian or Uniform.

Taken together, this provides a method to train our deep

twin network. A summary is provided in Algorithm 1.

Algorithm 1 Training a deep twin network

Input: X: Treatment, Z: Confounders, X∗: Counterfactual Treatment; Y : Outcome;

C: DAG of causal structure; I: loss imposing constraint on causal mechanisms

Output: F: trained deep twin network

1: Set F’s architecture to match twin network representation of C, as in Figure 2

2: To obtain label for counterfactual head, estimate E(Y |do(X), Z), yielding

training dataset D := {X,X∗, Z;Y, Y ∗}
3: for x, x∗, z; y, y∗ ∈ D and uy ∼ N (0, 1) do

4: y′, y
′
∗ = F (x, x∗, uy, z)

5: Train F by minimizing MSE(y, y′) + MSE(y∗, y
′
∗) + I(D)

6: end for



Enforcing constraints on the causal mechanisms: There

are a few approaches to ensure that the function space

learned by a neural network satisfies counterfactual order-

ing. Recall from Theorem B that such constraints corre-

spond to limits on the type of input-output pairs consis-

tent with the function. One approach is to specify a loss

function penalising the network for outputs that violate

the constraints, as done in Sill and Abu-Mostafa [1997].

Alternatively, counterexample-guided learning Sivaraman

et al. [2020] can be employed, to ensure the trained net-

work does not produce any of these outputs when given the

corresponding input. Lastly, as Theorem B equates counter-

factual ordering with monotonicity, a recent method uses

“look-up tables” Gupta et al. [2016] to enforce monotonicity,

and has been implemented in TensorFlow Lattice. Theo-

rem B requires that the treatment and outcome categorical

variables are themselves ordered. One method of ordering

our treatment variables is based on their perceived prefer-

ence, i.e. based on domain knowledge. In the absence of

domain knowledge one could look at the Average Treatment

Effect (ATE) =: 1
N

∑

i y1(i)− y0(i), where y1 represents

the treated outcome while y0 the control outcome, as well

as the interventional probabilities P (Y | do(X)). We then

determine an estimate of the relationship governing the treat-

ment and the outcomes by observing the trend of the ATE or

P (Y | do(X)) as we change the treatments. The treatments

are then ordered such that their relationship towards the

outcomes can be characterized as monotonic. If one does

not have access to interventional probabilities, then one can

estimate them from observational data Schwab et al. [2018].

Estimating counterfactuals: We can now use the trained

model to perform counterfactual inference. The reason our

neural network architecture matches the Twin Network

structure is that performing Bayesian inference on the neu-

ral network explicitly equates to performing counterfac-

tual inference. For Figure 1a, there are two counterfactual

queries one can ask: (1) P (YX=x′ = y′ | X = x, Y =
y, Z = z), (2) P (YX=x = y, YX=x′ = y′ | Z = z),
where any of x, y, z can be the empty set. Recall from

Section 2.3 that in a twin network (1) corresponds to

P (Y ∗ = y′ | X = x, Y = y,X∗ = x′), and (2) corre-

sponds to P (Y = y, Y ∗ = y′ | X = x,X∗ = x′). Any

method of Bayesian inference can then be employed to com-

pute these probabilities, such as Importance or Rejection

Sampling, or Variational methods. See Algorithm 2.

4 RELATED WORKS

Despite the large body of work using machine learning to

estimate interventional queries, which we discuss in detail

in the Appendix, relatively little work has explored using

machine learning to estimate counterfactual queries.

Machine learning to estimate counterfactual queries:

Algorithm 2 Deep twin network counterfactual inference

Input: X: Treatment, UY : Noise, Z: Confounders, X∗: Counterfactual Treatment;

Y : Outcome Y ∗: Counterfactual Outcome; F : Trained deep twin network; Q: desired

counterfactual query (in this example, YX=x′ = y′ | X = x, Y = y, Z = z))

Output: P(Q): Estimated distribution of Q.

1: Convert P(Q) to twin network distribution: P (YX=x′ = y′ | X = x, Y =
y, Z = z) → P (Y ∗ = y′ | X = x, Y = y,X∗ = x′)

2: Compute P (Y ∗ = y′ | X = x, Y = y,X∗ = x′) :
3: for x, x′, z ∈ Dtest do
4: for [uy ]N ∼ N (0, 1), N ∈ N do

5: Sample (ỹ, ỹ∗ = F (x, x′, uy, z)) such that ỹ = y

6: The frequency of these samples for which ỹ∗ = y′ yields P(Q)

7: end for
8: end for

Recent work from Pawlowski et al. [2020] used normal-

ising flows and variational inference to compute counter-

facual queries using abduction-action-prediction. A limita-

tion of this work is that identifiability constraints required

for the counterfactual queries to be uniquely defined given

the training data are not imposed. Work by Oberst and Son-

tag [2019], expanded by Lorberbom et al. [2021], used the

Gumbel-Max trick to estimate counterfactuals, again using

abduction-action-prediction. While this methodology satis-

fies generalisations of the monotonicity constraint, it does

so because the Gumbel-Max trick has a limit on the type

of conditional distributions it can generate—not because

the authors imposed partial-identfiability constraints dur-

ing the learning process. Hence the Gumbel-Max may not

be suitable for the computation of counterfactual queries

requiring different (partial-)identifiability constraints. Ad-

ditional work by Cuellar and Kennedy [2020] devised a

non-parametric method to compute the Probability of Ne-

cessity using an influence-function-based estimator. This

estimator was derived under the assumption of monotonic-

ity. A limitation of this approach is that a separate estimator

must be derived and trained for each counterfactual query.

A large body of work address the issue of partial iden-

tifiability of counterfactuals from data. Historically, this

line of work was initiated by Balke and Pearl [1997], who

explored bounds on the probabilities of causal queries of

binary variables using linear programming. Recently, Zhang

and Bareinboim [2020] extended such linear programming

derived upper and lower bounds beyond binary outcomes

to the case of continuous outcomes. Additional work by

Junzhe Zhang [2021] bounded counterfactuals by mapping

the SCM space onto a new one that is discrete and easier

to infer upon. Finally, Imbens and Angrist [1994] proposed

Local average treatment effects as means of identifications

of interventional queries from observational data.

5 EXPERIMENTATION

We now evaluate our counterfactual ordering principle and

our deep twin network computational tool. We focus on four

publicly available real-world datasets, the German Credit

Dataset Dua and Graff [2017], the International Stroke Trial



P(T’,T) 0.0 1.0 2.0 3.0

0 0 0.0816± 0.1414 0.0860± 0.1191 0.0344± 0.0208
1 0.1439± 0.1396 0 0.1156± 0.0984 0.1297± 0.1306
2 0.1286± 0.0726 0.1290± 0.1347 0 0.0741± 0.0752
3 0.0680± 0.0457 0.1854± 0.1452 0.0974± 0.1140 0

Table 1: Non-constrained model. P (T ′, T ) =
P (RiskAccount Status=T ′ = good | Account Status =
T,Risk = bad). Columns and rows are Treatments.

We observe counter-intuitive probabilities as the lower

triangular sub-matrix offers higher probabilities than the

upper triangular one. That is, if we observe evidence where

bad account status led to bad risk, the non-constrained

model predicts an increase in net worth would have led to a

lower chance of being deemed a good risk—even though

all other factors are kept fixed. An un-intuitive resul that

conflicts with domain knowledge of the finance industry.

(IST) Sandercock and Niewada [2011], the Kenyan Water

task Cuellar and Kennedy [2020] and the Twin mortality

dataset Louizos et al. [2017]. We further use two synthetic

and two semi-synthetic tasks to test our proposed methods.

Full dataset description is in Appendix E.

We break our research questions (RQ) into two distinct

types: ones that assess our counterfactual ordering principle,

and ones that assess the counterfactual estimation accuracy

of deep twin networks. Specifically, to asses counterfactual

ordering, we wish to determine if not enforcing it leads

to domain knowledge conflicting counterfactuals in real

datasets, relative to enforcing it. To estimate counterfactual

estimation accuracy of deep twin networks satisfying coun-

terfactual ordering, we test on synthetic and semi-sythentic

datasets—where we by design have access to the ground

truth—as well as on a dataset involving twins, where we

use features of one twin as a the counterfactual for the

other. Finally, we also test on a real dataset involving binary

treatment and outcome. We do this as Corollary 1 showed

that in counterfactually ordered causal models with binary

variables, certain counterfactual probabilities are uniquely

identified from data. Hence for binary variables we can

determine how accurate our deep twin network method is

relative to these known identified expressions.

• RQ1: If counterfactual ordering isn’t enforced, do

counterfactuals conflict with domain knowledge?

• RQ2: By imposing counterfactual ordering, do gener-

ated counterfactuals comply with domain knowledge?

• RQ3: Can we accurately estimate counterfactual prob-

abilities using deep twin networks?

5.1 ANSWERING RQ1 & RQ2

We investigate the German Credit real-world dataset and

explore the International Stroke Trial dataset in the Ap-

pendix. We train a deep twin network on German Credit

P(T’,T) 0.0 1.0 2.0 3.0

0 0 0.3022± 0.0415 0.3977± 0.0382 0.4040± 0.0381
1 0.1079± 0.0322 0 0.3891± 0.0988 0.4118± 0.0545
2 0.0670± 0.0156 0.2816± 0.0653 0 0.4470± 0.0751
3 0.1383± 0.0442 0.2953± 0.0344 0.3522± 0.0577 0

Table 2: Counterfactual Ordering. P (T ′, T ) =
P (RiskAccount Status=T ′ = good | Account Status =
T,Risk = bad). Columns and rows are Treatments. We

observe intuitive results as the lower triangular sub-matrix

offers lower probabilities than the upper triangular one. That

is, when we observe evidence in which bad account status

led to bad risk, the counterfactually ordered model predicts

an increase in net worth would have led to a higher chance

of being deemed a good risk—an intuitive result that com-

plies with domain knowledge in the finance industry.

data using algorithm 1. In the Appendix we outline how

we determined the monotonicity direction. In Table 2

and Table 1 we estimate the counterfactual probabil-

ity P (RiskAccount Status=T ′ = good | Account Status =
T,Risk = bad) for a model satisfying counterfactual or-

dering and an unconstrained model respectively. That is, we

ask what the probability that our loan risk would be good

if we improved our account status, given that our account

status is currently bad and we were just deemed a poor risk

of a loan. We note that the unconstrained model offers us

non-intuitive probabilities that, when put in context, do not

make sense in the real world. We observe that when we

condition on evidence in which bad account status led to

bad risk, the unconstrained model predicts that increasing an

individuals net worth would have resulted in a lower prob-

ability of being deemed a good risk than decreasing their

net worth. This result defies common sense, answering RQ1.

On the other hand, when we observe bad account status led

to bad risk, the counterfactually ordered model predicts that

an increase in an individuals net worth would have led to

a higher chance of them being deemed a good risk than a

decrease in their worth in this context. This result fits with

our understanding of the financial industry, answering RQ2.

We observe the same “intuitive” versus “non-intuitive” be-

havior for the Heparin treatment from the International

Stroke Trial dataset in Appendix F.3.

5.2 ANSWERING RQ3

Synthetic data We first evaluate whether we can accu-

rately estimate the probabilities of causation—defined in the

Appendix—on synthetic data. We test on data generated by

an unconfounded as well as a confounded synthetic causal

model, whose functional forms are outlined in the Appendix.

Following the algorithms 1, 2 we train a deep twin network

on data from each case and enforce monotonicity. In both

cases, we show accurate estimation. Results are in Table 3

and Fig. 3 in the Appendix.



Credit Dataset IST - Aspirin IST - Heparin

F1 Scores
No Constrains

Linear Layers

Counterfactual

Ordering

No Constrains

Linear Layers

Counterfactual

Ordering

No Constrains

Linear Layers

Counterfactual

Ordering

Factual 0.4929 0.8637 0.6113 0.6417 0.3497 0.9758

Counterfactual 0.4698 0.9795 0.7152 0.9501 0.4103 0.9851

Table 3: F1 score of counterfactual predictions for semi-synthetic German Credit Dataset with Treatment: Existing account

status, Outcome: Synthetic; & International Stroke Trial (IST) Dataset with Treatment: Aspirin, Outcome: Synthetic;

Treatment: Heparin, Outcome: Synthetic. See the Appendix for dataset description.

Semi-synthetic data In Table 3 we show the results of our

semi-synthetic experiments, described in the Appendix, for

both the German Credit Datasest as well as the International

Stroke Trial. Here, as the outcomes are synthetic, the ground

truth is known a priori, hence we are able to calculate the

associated F1 scores for each of the models. The counter-

factually ordered models are more accurate at predicting

both factual and counterfactual outcomes answering RQ3.

Moreover, not enforcing counterfactual ordering leads to

reduced performance in counterfactual estimation.

Real-world data We show performance on the Twin Mor-

tality data of Louizos et al. [2017] now, and discuss the

Kenyan Water task from Cuellar and Kennedy [2020] in the

Appendix. In the case of Kenyan Water dataset, treatment ad

outcome are binary, so we can compare the deep twin net-

works estimated counterfactual distributions to the uniquely

identified counterfactual distribution via Corollary 1. We

report accurate estimation in Table 5 in the Appendix.

In the Twin mortality dataset the goal is to understand the

effect being born the heavier of the twins has on mortality

one year after birth, given confounders regarding the health

of the mother and background of the parents. Previous work

addressed this with intervention queries. We use counter-

factual queries—specifically the probabilities of causation.

We follow Louizos et al. [2017], Yoon et al. [2018]’s pre-

processing. As in Louizos et al. [2017], we treat each twin

as the counterfactual of their sibling—providing a ground

truth reported in 5 in the Appendix. Again, monotonicity is

justified here as we do not expect increasing birth weight to

lead to reduced mortality.

First, given birth weight and mortality evidence provided

by one twin, we aim to estimate the expected counterfactual

outcome had their weight been different. That is, compute

E(MortalityWeight|Mortality∗,Weight∗, Z), where Z are ob-

served confounders. We achieve a counterfactual AUC-ROC

of 86% and F1 score of 83%. Louizos et al. [2017] ad-

dressed this same question using only used interventional

queries. That is, they computed E(MortalityWeight|Z) and

only achieve AUC 83%. We thus outperform Louizos et al.

[2017]’s AUC by 3%. Full results in Appendix Table 5.

Here, by explicitly conditioning on and using the fact that

the observed twins had birth weight and mortality, we are

able to update our knowledge about the latent noise term

of the other twin. Our improved AUC score showed using

this allowed more accurate estimation of the “hidden” twins

outcome. This cleanly illustrate the difference between inter-

ventions and counterfactuals. To give a comparison to prior

work, we computed the average treatment effect from our

model, yielding −2.34%± 0.019 which matches Louizos

et al. [2017]—showing our model accurately estimates in-

terventions as well as counterfactuals.

Table 5 in the Appendix reports our estimation of the Proba-

bilities of Causation. Note that no previous work has com-

puted these counterfactual distributions. Despite accurate

estimation of the Probability of Sufficiency, and Necessity

& Sufficiency, our model underestimates the Probability of

Necessity. This can be explained by a large data imbalance

regarding the mortality outcome—affecting the Probability

of Necessity the most as mortality is the evidence condi-

tioned here. Nevertheless, we correctly reproduce the rela-

tive sizes of the Probabilties of Causation, with Probability

of Necessity an order of magnitude larger than the others.

6 CONCLUSIONS

We motivated and introduced counterfactual ordering, a

principle that posits desirable properties causal mechanisms

should posses. We proved it is equivalent to causal mech-

anisms being monotonic. To learn such mechanisms, and

perform counterfactual inference with them, we introduced

deep twin networks. We emprically tested our approach on

real and semi-synthetic data, achieving accurate counterfac-

tual estimation that complies with domain knowledge.
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APPENDIX

A DISTINCTION BETWEEN TWIN

NETWORKS AND

ABDUCTION-ACTION-PREDICTION

As was discussed in the main text, abduction-action-

prediction counterfactual inference requires large computa-

tional resources. Twin networks were specifically designed

to address this difficulty Pearl [2009], Balke and Pearl

[1994]. Indeed, consider the following passage from Pearl’s

“Causality” [Pearl, 2009, Section 7.1.4, page 214]:

“The advantages of delegating this computation

[abduction] to inference in a Bayesian network

[i.e., a twin network] are that the distribution need

not be explicated, conditional independencies can

be exploited, and local computation methods can

be employed”

This suggests that the computational resources required for

counterfactual inference using twin networks can be less

than in abduction-action-prediction. This was put to the test

by Graham et al. [2019] and shown empirically to be correct,

with their abstract stating

“twin networks are faster and less memory in-

tensive by orders of magnitude than standard

[abduction-action-prediction] counterfactual in-

ference”

A key difference is that in a twin network, inference can

be conducted in parallel rather than in the serial nature of

abduction-action-prediction. For instance, sampling in twin

networks is faster than in the abduction-action-prediction,

as twin networks propagate samples simultaneously through

the factual and counterfactual graphs—rather than need-

ing to update, store and resample as in abduction-action-

prediction. Thus, full counterfactual inference in a twin

network can take up to no more than the amount of time

sampling takes, while in abduction-action-prediction one

incurs the additional cost of reusing samples and evaluating

function values in the new mutilated graph. This is poten-

tially advantageous for very large graphs, or for graphs with

complex latent distributions that are expensive to sample.

B THEOREM PROOFS

We now restate and prove all the theorems from section 3.

Theorem. If counterfactual ordering holds P (Yxj
=

yl|Yxi
= yh) = 0 for all l > h and i > j.

Proof. First note that P (Yx′ = y′|Yx′ = y) = 0 for any

y′ ̸= y follows from the definition of counterfactuals. The

https://datashare.ed.ac.uk/handle/10283/128
https://datashare.ed.ac.uk/handle/10283/128


conjunction of this and counterfactual ordering implies

0 = P (Yxi
≥ yk|Yxi

= yh) ≥ P (Yxj
≥ yk|Yxi

= yh). As

probabilities are bounded below by 0, we have P (Yxj
≥

yk|Yxi
= yh) =

∑

l>h P (Yxj
= yl|Yxi

= yh) = 0.

Again, as probabilities are non-negative, we have P (Yxj
=

yl|Yxi
= yh) = 0 for all l > h and i > j.

Theorem. If a causal model satisfies counterfactual order-

ing then it satisfies counterfactual stability.

Proof. We need to show that when counterfactual ordering

holds,
P (Yx=y)
P (Yx′=y′) ≥ P (Yx=y′)

P (Yx′=y) =⇒ P (Yx = y′|Yx′ =

y) = 0. From counterfactual ordering we have P (Yx =
y) ≥ P (Yx′ = y) and P (Yx = y′) ≤ P (Yx′ = y′).

The latter implies
P (Yx=y′)
P (Yx′=y′) ≤ 1, which when combined

with the former yields: P (Yx = y) ≥ P (Yx=y′)
P (Yx′=y′)P (Yx′ =

y). Additionally, Appendix B says counterfactual ordering

implies P (Yx = y′|Yx′ = y) = 0, concluding the proof.

Theorem. Given an intervention & outcome ordering, coun-

terfactual ordering & monotonicity are equivalent.

Proof. First we show counterfactual ordering implies mono-

tonicity. From Theorem B, counterfactual ordering implies

{Yxi
= yh} ∧ {Yxj

= yl} = False for all i > j and h < l,
as P (Yxi

= yh|Yxj
= yl) = 0. Monotonicity follows.

Next we show monotonicity implies counterfactual order-

ing. Monotonicity implies that for intervention X = x,

the likelihood of the outcome being higher in the outcome

ordering increases, while the likelihood of the outcome

being lower in the ordering decreases relative to the likeli-

hoods imposed by intervention X = x′ which lies lower

in the intervention ordering. All that remains is to show

that for such interventions, x, x′, and outcome Y = y
for which P (Yx = y) ≥ P (Yx′ = y), it follows that

P (Yx ≥ y|Yx∗ = y∗) ≥ P (Yx′ ≥ y|Yx∗ = y∗) for all

counterfactual contexts {y∗, x∗}.

P (Yx ≥ y|Yx∗ = y∗) is computed by first updating

P (U) under x∗, y∗ and computing P (Y ≥ y) in the sub-

model Mx. That is, it corresponds to the expected value

of P (Yx(u) ≥ y) under u ∼ P (U |x∗, y∗). From mono-

tonicity one has Yx(u) ≥ Yx′(u) for all u. Hence, for any

U = u that results in Yx′(u) ≥ y, that same U = u yields

Yx(u) ≥ y, as Yx(u) ≥ Yx′(u) ≥ y. Hence, as there are

at most as many values of U that lead to Yx ≥ y as lead

to Yx′ ≥ y, one has P (Yx(u) ≥ y) ≥ P (Yx′(u) ≥ y)
for any U = u. This follows because P (Yx(u) ≥ y) =
∑

u|Yx(u)≥y P (U = u) together with the observation that

summands in
∑

u|Yx′ (u)≥y P (U = u) are a subset of sum-

mands in
∑

u|Yx(u)≥y P (U = u). Taking expectations un-

der P (U |y∗, x∗) yields the proof.

C FURTHER RELATED WORK

Machine learning to estimate interventional queries:

Recently there has been much interest in using machine

learning to estimate interventional conditional distributions.

These were aimed at learning conditional average treatment

effects: E(YX=1 | Z) − E(YX=0 | Z). Examples include

PerfectMatch Schwab et al. [2018], DragonNet Shi et al.

[2019], PropensityDropout Alaa et al. [2017], Treatment-

agnostic representation networks (TARNET) Shalit et al.

[2016], Balancing Neural Networks Johansson et al. [2016].

Each work utilised neural network architectures similar

to the one depicted in Figure 2, with sight modifications

based on the specific approach. Other machine learning ap-

proaches to estimating interventional queries made use of

GANs, such as GANITE Yoon et al. [2018] and Causal-

GAN Kocaoglu et al. [2018], Gaussian Processes Witty et al.

[2020], Alaa and van der Schaar [2017], Variational Autoen-

coders Louizos et al. [2017], and representation learning

Zhang et al. [2020], Assaad et al. [2021], Yao et al. [2018].

While our architecture shares similarities with these, there

is one main difference. By interpreting our architecture as

a twin network in the sense of Balke and Pearl [1994]—as

discussed in Section 3.5—and explicitly including an input

for the latent noise term UY , we can elevate our network

from estimating interventional queries to fully counterfac-

tual ones by performing Bayesian inference on it.

D PROBABILITIES OF CAUSATION:

DEFINITIONS

The probabilities of causation are important counterfactual

queries that quantify the degree to which one event was a

necessary or sufficient cause of another. Recently, variants

on these have been used in medical diagnosis Richens et al.

[2020] to determine if a patient’s symptoms would not have

occurred had it not been for a specific disease. Here, the

proposition binary variable W is true is denoted W = 1,

and its negation, W = 0, denotes the proposition W is false.

1. Probability of necessity:

P (YX=0 = 0 | X = 1, Y = 1)

The probability of necessity is the probability event Y
would not have occurred without event X occurring,

given that X,Y did in fact occur.

2. Probability of sufficiency:

P (YX=1 = 1 | X = 0, Y = 0)

The probability of sufficiency is the probability that

in a situation where X,Y were absent, intervening to

make X occur would have led to Y occurring.



3. Probability of necessity & sufficiency:

P (YX=0 = 0, YX=1 = 1 | Z)

The probability of necessity & sufficiency quantifies

the sufficiency and necessity of event X to produce

event Y in context Z. As discussed in section 2.2, joint

counterfactual probabilities are well-defined.

E DESCRIPTION OF DATASETS USED

In the German Credit Dataset the treatment is a four-valued

variable corresponding to current account status, and the

outcome is loan risk. The International Stroke Trial database

was a large, randomized trial of antithrombotic therapy af-

ter stroke onset. The treatment is a three-valued variable

corresponding to heparin dosage, and the outcome is a

three-valued variable corresponding to different levels of

patient recovery. In both cases we explore semi-synthetic

settings, where the treatment and confounders are derived

from the original dataset but the outcome is defined in a syn-

thetic fashion. Synthetic outcomes allow us to determine the

ground truth counterfactuals and probabilities of causation

(see D for definition). We also evaluate our algorithm with

real world outcome of the German Credit Dataset.

The Kenyan Water task is to understand whether protecting

water springs in Kenya by installing pipes and concrete con-

tainers reduced childhood diarrhea, given confounders. First,

monotonicity is a reasonable assumption here as protecting

a spring is not expected to increase the bacterial concentra-

tion and hence increase the incidence of diarrhea. Cuellar

and Kennedy [2020] reported a low value for Probability

of Necessity here—suggesting that children who developed

diarrhea after being exposed to a high concentration of bacte-

ria in their drinking water would have contracted the disease

regardless. However, as there is no ground truth here, further

studies reproducing this result with alternate methods are

required to gain confidence in Cuellar and Kennedy [2020]’s

result. We follow the same data processing as in Cuellar and

Kennedy [2020], The Kenyan water dataset originates from

Kremer et al. [2015] lincenced under a non commercial use

clause and with the requirement for secure storage, both

conditions have been fulfilled by the authors. The data was

preprocessed following Cuellar and Kennedy [2020].

For the Twin Mortality data, two versions were used. First

databases provided by Louizos et al. [2017] were processed

to remove NaNs. No further processing was administered.

This constituted the completely real version of the Twin

Mortality dataset. However, as both Louizos et al. [2017]

and Yoon et al. [2018] process the their data to create a semi-

synthetic task, in the spirit of proper comparison we used

the data as processed and provided by Yoon et al. [2018],

with no additional processing.

E.1 UNCONFOUNDED SYNTHETIC EXAMPLE

FOR RQ3

Y =











X if UY = 0

0, if UY = 1

1, if UY = 2

(3)

Hence

P (N) =
P (UY = 0)

P (UY = 2) + P (UY = 0)
(4)

P (S) =
P (UY = 0)

P (UY = 1) + P (UY = 0)
(5)

P (NS) = P (UY = 0) (6)

E.2 CONFOUNDED SYNTHETIC EXAMPLE FOR

RQ3

Y =











X × Z, if UY = 0

0, if UY = 1

1, if UY = 2

(7)

where

X := Ux ⊕ Z

Hence

P (N) =
P (UY = 0)P (Z = 1)

P (UY = 2) + P (UY = 0)P (Z = 1)
(8)

P (S) =
P (UY = 0)P (Z = 1)

P (UY = 1) + P (UY = 0)
(9)

P (NS) = P (UY = 0)P (Z = 1) (10)

F SUPPLEMENTARY RESULTS

F.1 ANSWERING RQ3:

F.1.1 Synthetic data experiments

We test on both unconfounded and confounded causal mod-

els, with causal structure from Fig.1a and Fig.1e respec-

tively.The data generation functions are defined in Equa-

tions 7 and 3 The functions remain monotonic in X . Given

these, we construct synthetic datasets of 200000 points split

into training and testing under an 80−20 split. The samples

Uy were drawn from either a uniform or a Gaussian distri-

bution, depending on the experiment. Confounders Z were

taken from a uniform distribution. We opt for a high number

of samples such that we do not bias our analysis due to small



sample sizes. In the real world experiments the dataset sizes

are smaller. Results for a trained twin network are in 4. We

accurately estimate all Probabilities of Causation in both

unconfounded and confounded cases when ground truth and

candidate distributions are the same. In Figure 3 we also

show performance of (a) unconfounded and (b) confounded

cases as ground truth distribution of UY in synthetic gener-

ating functions changes, but candidate training distributions

remain fixed—showing robust estimation.

F.1.2 Real world data experiments

Kenyan Water dataset: The Kenyan Water task is to un-

derstand whether protecting water springs in Kenya by in-

stalling pipes and concrete containers reduced childhood

diarrhea. First, monotonicity is reasonable here as protecting

a spring is not expected to increase the bacterial concentra-

tion and hence increase the diarrhea incidence. Cuellar and

Kennedy [2020] reported a low value for Probability of

Necessity here—suggesting that children who developed

diarrhea after being exposed to a high concentration of bacte-

ria in their drinking water would have contracted the disease

regardless. However, as there is no ground truth, further

studies reproducing this result with alternate methods are re-

quired to gain confidence in Cuellar and Kennedy [2020]’s

result. We follow the same data processing as in Cuellar

and Kennedy [2020], detailed in the Appendix. Our find-

ings are in Table 5 of the Appendix and agree with Cuellar

and Kennedy [2020] on Probability of Necessity. Moreover,

unlike Cuellar and Kennedy [2020], we can also compute

Probability of Sufficiency and Probability of Necessity and

Sufficiency. We can thus offer a more comprehensive under-

standing of the role protecting water springs plays in child-

hood disease. Our results show that exposure to water-based

bacteria is not a necessary condition to exhibit diarrhea and

it is neither a sufficient, nor a necessary-and-sufficient con-

dition. This provides further evidence that protecting water

springs has little effect on the development of diarrhea in

children in these populations, indicating the source of the

disease is not related to water.

F.2 DETERMINING MONOTONICITY

DIRECTION

In Table 6 we provide the ATE of a semi-synthetic existing

account status from the German Credit Dataset Dua and

Graff [2017] with a fully synthetic outcome defined in F.3.1.

We observe that for a control treatment 0 changing the treat-

ment to [1, 2] the ATE increases, indicating a monotonic

increasing relationship. In addition, we could observe the in-

terventional probabilities where as we increase the value of

the treatment the probability of a higher outcome increases,

we show this in the Appendix’s Table 7. This reinforces our

beliefs regarding the type of monotonicity.

Similarly, Tables 8, 9 include the ATE and the interventional

probabilities for a real world variant of the above dataset

where the treatments are again the current account status of

the individual but the outcome is their classification as good

or bad risk. At this point, we may call upon our domain

knowledge and determine if the break in the monotonic

trend is due to noisy observations or a different ordering of

the treatments. As this is a real world dataset in which the

outcome attribution is inherently noisy we observe an out-

lier behavior from treatment 1. Upon closer inspection we

observe that treatment 1 corresponds to a negative balance

in the individuals checking account while treatment 0 indi-

cates no existing checking account. As such one could either

switch the treatment ordering to obey the monotonicity, or

in the case that this break in monotonicity is suspected to be

due to noisy data one could enforce prior knowledge-based

monotonicity. Here, we follow our prior knowledge and

attribute the break of monotonicity to noise. Our reasoning

is based on the fact that an individual without a prior credit

account is a larger unknown for a financial institution.

F.3 ANSWERING RQ1, RQ2

F.3.1 Synthetic Outcome For German Credit Score

data

Y =















































X + Z if UY = 0

0, if UY = 1

X ∗ Z, if UY = 2

2, if UY = 3

1, if UY = 4

step(X − 1), if UY = 5

2 ∗ step(X − 1), if UY = 6

(11)

where the treatment X and the confounders Z span the range

X,Z ∈ [0, 2]. Step is the Heaviside step function. In our

experimentation UY was drawn from a uniform distribution

F.3.2 Synthetic Outcome for Internatinal Stroke Trial

For X the dosage of aspirin treatment, as detailed in the IST

Dataset, and counfouders SEX := biological sex of patient,

AGE:= age of patient thresholded at 71 years, CONSC :=
level of consciousness the patient arrived in hospital with.

Y = 1/(1 + e−g) with g being given by:

g = X + SEX+0.2 ∗ (CONSC − 1)

+ 0.5 ∗X ∗ SEX ∗ AGE + Uy

(12)
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Figure 3: Predicted & ground truth Probability of Necessity as distribution of UY varies in synthetic generating functions,

but training distributions do not. Plots show robust estimation. (a) unconfounded, (b) confounded. Errors bars in both

Method Uy P(N) P(S) P(N&S)

Synth Ground Truth Uniform 0.5 0.5 0.33333

Synth Twin Net Uniform 0.50214± 0.00387 0.50046± 0.00631 0.33449± 0.00401
Synth w/ Conf Ground Truth Gaussian 0.54706 0.35512 0.27443

Synth w/ Conf Twin Net Gaussian 0.54563± 0.00276 0.35177± 0.00144 0.27207± 0.00125

Table 4: Results of Synthetic experiments. P(N): Prob. of Necessity; P(S): Prob. of Sufficiency; P(N&S): Prob. of Necessity

and Sufficiency. Our model achieves highly accurate estimations of the probabilities of causation on synthetic data.

F.3.3 Treatment: Existing Account Status , Outcome:

Risk, switched ordering

In Table 10 we show switching the ordering of treatment 0

and 1 leads to non-intuitive results akin to no constraints.

F.3.4 Treatment: Semi-Synthetic Account Status,

Outcome: Synthetic

Tables 11,12 show counterfactual probabilities from our

method applied to the semi-synthetic account status treat-

ment and synthetic outcome. We note that our model slightly

violates the monotonicity constraints by providing non zero

probabilities to two cases where they should be 0. However,

both of these are within our acceptable experimental error,

with one being less than 1%, the other being just over 1%

F.3.5 Treatment: Heparin, Outcome: Synthetic

Tables 13,14 show the counterfactual probabilities for the

semi-synthetic heparin treatment and synthetic outcome.



Method P(N) P(S) P(N&S) AUC-ROC / F1

KW Median Child Cuellar et al. 2020 0.12± 0.01 - - -

KW TN Median Child 0.13598± 0.049 0.09811± 0.031 0.31778± 0.012 -

KW TN Test Set 0.06273± 0.020 0.03914± 0.016 0.08521± 0.034 -

Twin Mortality Ground Truth 0.33372 0.01011 0.01353 0.83/- Louizos et al. 2017

TM TN Test Set 0.12241± 0.019 0.01401± 0.003 0.01174± 0.002 0.86/0.83

Table 5: Results of Kenyan Water (KW) & Twins Mortality (TM) with Twin Network (TN), P(N): Prob. of Necessity; P(S):

Prob. of Sufficiency; P(N&S): Prob. of Necessity & Sufficiency. In KW we agree & improve on Cuellar and Kennedy [2020].

In TM we overestimate P(N), but report accurate P(S) & P(N&S), & better AUC than Louizos et al. [2017].

ATE 0 1 2

0 0 0.3059 0.8914

1 -0.3059 0 0.5854

2 -0.8914 -0.5854 0

Table 6: Treatment: Semi-Synthetic Existing account status,

Outcome: Synthethic. As the change from 0 to 1&2 has a

positive ATE, the relationship is increasing monotonic

P (Y |do(X)) 0.0 1.0 2.0

0 0.6396 0.2056 0.1548

1 0.4635 0.2518 0.2847

2 0.1656 0.2620 0.5723

Table 7: Same data as Table 6. Rows are treatments, and

columns are outcomes

ATE 0 1 2 3

0 0 -0.0791 0.1029 0.2174

1 0.0791 0 0.1820 0.2965

2 -0.1029 -0.1820 0 0.1145

3 -0.2174 -0.2965 -0.1145 0

Table 8: Treatment: Account status, Outcome: Risk Status

P (Y |do(X)) 0.0 1.0

0 0.1919 0.8081

1 0.5450 0.4549

2 0.3336 0.6663

3 0.1265 0.8735

Table 9: P (Y |do(X)) of the same dataset, rows indicate

treatments while columns outcomes

P 0.0 1.0 2.0 3.0

0 0 0.4773± 0.0182 0.4243± 0.0272 0.3894± 0.0147
1 0.6049± 0.0386 0 0.5791± 0.0340 0.5616± 0.0183
2 0.6081± 0.0388 0.6025± 0.0806 0 0.5221± 0.0130
3 0.6265± 0.0297 0.6580± 0.0431 0.5188± 0.0272 0

Table 10: Switched counterfactual ordering – Probability of

counterfactual P (T, T ′) = P (YX=T ′ = 1 | X = T, Y =
0) – columns and rows are Treatments – We observe counter-

intuitive probabilities of necessity as the lower triangular

sub-matrix has higher probabilities than the upper triangular

P 1.0 2.0

0 0 0.1260± 0.0070 0.0000± 0.0000
1 0.0000± 0.0000 0 0.2262± 0.0429
2 0.0000± 0.0000 0.0000± 0.0000 0

Table 11: P = P (YX=1 = Column|YX=0 = Row).

P 0.0 1.0 2.0

0 0.0000 0.1190 0.0079

1 0.0000 0.0000 0.2037

2 0.0000 0.0000 0.0000

Table 12: P = P (YX=1 = Column|YX=0 = Row).

P 1.0 2.0

0 0 0.0482± 0.0006 0.1840± 0.0001
1 0.0011± 0.0019 0 0.1130± 0.0069
2 0.0000± 0.0000 0.0135± 0.0058 0

Table 13: P = P (YX=1 = Column|YX=0 = Row).

P 0.0 1.0 2.0

0 0.0000 0.0266 0.0917

1 0.0000 0.0000 0.0911

2 0.0000 0.0000 0.0000

Table 14: P = P (YX=1 = Column|YX=0 = Row).
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