[1] GBD 2015 Neurological Disorders Collaborator Group, “Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015,” Lancet Neurol., vol. 16, no. 11, pp. 877–897, Nov. 2017, doi: 10.1016/S1474-4422(17)30299-5.
[2] K. H. C. Li, A. Jesuthasan, C. Kui, R. Davies, G. Tse, and G. Y. H. Lip, “Acute ischemic stroke management: concepts and controversies.A narrative review,” Expert Rev. Neurother., vol. 21, no. 1, pp. 65–79, Jan. 2021, doi: 10.1080/14737175.2021.1836963.
[3] E. Berge et al., “European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke,” Eur. Stroke J., vol. 6, no. 1, p. I–LXII, Mar. 2021, doi: 10.1177/2396987321989865.
[4] G. Turc et al., “European Stroke Organisation (ESO) – European Society for Minimally Invasive Neurological Therapy (ESMINT) Guidelines on Mechanical Thrombectomy in Acute Ischaemic StrokeEndorsed by Stroke Alliance for Europe (SAFE),” Eur. Stroke J., vol. 4, no. 1, pp. 6–12, Mar. 2019, doi: 10.1177/2396987319832140.
[5] T. Jamieson and A. Goldfarb, “Clinical considerations when applying machine learning to decision-support tasks versus automation,” BMJ Qual. Saf., vol. 28, no. 10, pp. 778–781, Oct. 2019, doi: 10.1136/bmjqs-2019-009514.
[6] S. Nagel et al., “e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients,” Int. J. Stroke, vol. 12, no. 6, pp. 615–622, Aug. 2017, doi: 10.1177/1747493016681020.
[7] W. Brinjikji et al., “e-ASPECTS software improves interobserver agreement and accuracy of interpretation of aspects score,” Interv. Neuroradiol., vol. 27, no. 6, pp. 781–787, Dec. 2021, doi: 10.1177/15910199211011861.
[8] J. Pfaff et al., “e-ASPECTS Correlates with and Is Predictive of Outcome after Mechanical Thrombectomy,” AJNR Am. J. Neuroradiol., vol. 38, no. 8, pp. 1594–1599, Aug. 2017, doi: 10.3174/ajnr.A5236.
[9] C. Maegerlein et al., “Automated Calculation of the Alberta Stroke Program Early CT Score: Feasibility and Reliability,” Radiology, vol. 291, no. 1, pp. 141–148, Apr. 2019, doi: 10.1148/radiol.2019181228.
[10] I. Q. Grunwald et al., “Collateral Automation for Triage in Stroke: Evaluating Automated Scoring of Collaterals in Acute Stroke on Computed Tomography Scans,” Cerebrovasc. Dis., vol. 47, no. 5–6, pp. 217–222, 2019, doi: 10.1159/000500076.
[11] E. Kellner et al., “Automated Infarct Core Volumetry Within the Hypoperfused Tissue: Technical Implementation and Evaluation,” J. Comput. Assist. Tomogr., vol. 41, no. 4, pp. 515–520, Aug. 2017, doi: 10.1097/RCT.0000000000000570.
[12] S. Dehkharghani et al., “Performance and Predictive Value of a User-Independent Platform for CT Perfusion Analysis: Threshold-Derived Automated Systems Outperform Examiner-Driven Approaches in Outcome Prediction of Acute Ischemic Stroke,” AJNR Am. J. Neuroradiol., vol. 36, no. 8, pp. 1419–1425, Aug. 2015, doi: 10.3174/ajnr.A4363.
[13] T. M. Leslie-Mazwi and M. H. Lev, “Towards artificial intelligence for clinical stroke care,” Nat. Rev. Neurol., vol. 16, no. 1, Art. no. 1, Jan. 2020, doi: 10.1038/s41582-019-0287-9.
[14] L. Ding, C. Liu, Z. Li, and Y. Wang, “Incorporating Artificial Intelligence Into Stroke Care and Research,” Stroke, vol. 51, no. 12, pp. e351–e354, Dec. 2020, doi: 10.1161/STROKEAHA.120.031295.
[15] D. S. Liebeskind, “Artificial intelligence in stroke care: Deep learning or superficial insight?,” EBioMedicine, vol. 35, pp. 14–15, Sep. 2018, doi: 10.1016/j.ebiom.2018.08.031.
[16] M. S. Sirsat, E. Fermé, and J. Câmara, “Machine Learning for Brain Stroke: A Review,” J. Stroke Cerebrovasc. Dis., vol. 29, no. 10, p. 105162, Oct. 2020, doi: 10.1016/j.jstrokecerebrovasdis.2020.105162.
[17] R. Feng, M. Badgeley, J. Mocco, and E. K. Oermann, “Deep learning guided stroke management: a review of clinical applications,” J. NeuroInterventional Surg., vol. 10, no. 4, pp. 358–362, Apr. 2018, doi: 10.1136/neurintsurg-2017-013355.
[18] K. Mouridsen, P. Thurner, and G. Zaharchuk, “Artificial Intelligence Applications in Stroke,” Stroke, vol. 51, no. 8, pp. 2573–2579, Aug. 2020, doi: 10.1161/STROKEAHA.119.027479.
[19] A. Bivard, L. Churilov, and M. Parsons, “Artificial intelligence for decision support in acute stroke — current roles and potential,” Nat. Rev. Neurol., vol. 16, no. 10, pp. 575–585, Oct. 2020, doi: 10.1038/s41582-020-0390-y.
[20] W. Wang et al., “A systematic review of machine learning models for predicting outcomes of stroke with structured data,” PLOS ONE, vol. 15, no. 6, p. e0234722, Jun. 2020, doi: 10.1371/journal.pone.0234722.
[21] J. E. Soun et al., “Artificial Intelligence and Acute Stroke Imaging,” Am. J. Neuroradiol., vol. 42, no. 1, pp. 2–11, Jan. 2021, doi: 10.3174/ajnr.A6883.
[22] J. Shen, X. Li, Y. Li, and B. Wu, “Comparative accuracy of CT perfusion in diagnosing acute ischemic stroke: A systematic review of 27 trials,” PLoS ONE, vol. 12, no. 5, May 2017, doi: 10.1371/journal.pone.0176622.
[23] Y. Mokli, J. Pfaff, D. P. dos Santos, C. Herweh, and S. Nagel, “Computer-aided imaging analysis in acute ischemic stroke – background and clinical applications,” Neurol. Res. Pract., vol. 1, no. 1, p. 23, Dec. 2019, doi: 10.1186/s42466-019-0028-y.
[24] R. Karthik, R. Menaka, A. Johnson, and S. Anand, “Neuroimaging and deep learning for brain stroke detection - A review of recent advancements and future prospects,” Comput. Methods Programs Biomed., vol. 197, p. 105728, Dec. 2020, doi: 10.1016/j.cmpb.2020.105728.
[25] N. M. Murray, M. Unberath, G. D. Hager, and F. K. Hui, “Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review,” J. NeuroInterventional Surg., vol. 12, no. 2, pp. 156–164, Feb. 2020, doi: 10.1136/neurintsurg-2019-015135.
[26] E. Lotan, “Emerging Artificial Intelligence Imaging Applications for Stroke Interventions,” Am. J. Neuroradiol., Dec. 2020, doi: 10.3174/ajnr.A6902.
[27] T. Hernandez-Boussard, S. Bozkurt, J. P. A. Ioannidis, and N. H. Shah, “MINIMAR (MINimum Information for Medical AI Reporting): Developing reporting standards for artificial intelligence in health care,” J. Am. Med. Inform. Assoc., vol. 27, no. 12, pp. 2011–2015, Dec. 2020, doi: 10.1093/jamia/ocaa088.
[28] M. Giacalone et al., “Local spatio-temporal encoding of raw perfusion MRI for the prediction of final lesion in stroke,” Med. Image Anal., vol. 50, pp. 117–126, Dec. 2018, doi: 10.1016/j.media.2018.08.008.
[29] J. Heo, J. G. Yoon, H. Park, Y. D. Kim, H. S. Nam, and J. H. Heo, “Machine Learning–Based Model for Prediction of Outcomes in Acute Stroke,” Stroke, vol. 50, no. 5, pp. 1263–1265, May 2019, doi: 10.1161/STROKEAHA.118.024293.
[30] N. Kappelhof et al., “Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke,” Comput. Biol. Med., vol. 133, p. 104414, Jun. 2021, doi: 10.1016/j.compbiomed.2021.104414.
[31] K. C. Ho et al., “Predicting Discharge Mortality after Acute Ischemic Stroke Using Balanced Data,” AMIA. Annu. Symp. Proc., vol. 2014, pp. 1787–1796, Nov. 2014.
[32] D. J. Seiffge et al., “Simple variables predict miserable outcome after intravenous thrombolysis,” Eur. J. Neurol., vol. 21, no. 2, pp. 185–191, 2014, doi: https://doi.org/10.1111/ene.12254.
[33] M. Monteiro et al., “Using Machine Learning to Improve the Prediction of Functional Outcome in Ischemic Stroke Patients,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 15, no. 6, pp. 1953–1959, Nov. 2018, doi: 10.1109/TCBB.2018.2811471.
[34] C.-C. Chung, L. Chan, O. A. Bamodu, C.-T. Hong, and H.-W. Chiu, “Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death,” Sci. Rep., vol. 10, no. 1, p. 20501, Dec. 2020, doi: 10.1038/s41598-020-77546-5.
[35] C. C. Chung et al., “Artificial neural network-based analysis of the safetand efficacy of thrombolysis for ischemic stroke in older adults in Taiwan,” Neurol. Asia, vol. 25, no. 2, pp. 109–117, Jun. 2020.
[36] F. Wang et al., “Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model,” Ther. Adv. Neurol. Disord., vol. 13, p. 175628642090235, Jan. 2020, doi: 10.1177/1756286420902358.
[37] X. Li et al., “Using machine learning to predict stroke-associated pneumonia in Chinese acute ischaemic stroke patients,” Eur. J. Neurol., vol. 27, no. 8, pp. 1656–1663, 2020, doi: 10.1111/ene.14295.
[38] S. A. Alaka et al., “Functional Outcome Prediction in Ischemic Stroke: A Comparison of Machine Learning Algorithms and Regression Models,” Front. Neurol., vol. 11, p. 889, Aug. 2020, doi: 10.3389/fneur.2020.00889.
[39] E. Zihni et al., “Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome,” PLOS ONE, vol. 15, no. 4, p. e0231166, Apr. 2020, doi: 10.1371/journal.pone.0231166.
[40] X. Li et al., “Predicting 6-Month Unfavorable Outcome of Acute Ischemic Stroke Using Machine Learning,” Front. Neurol., vol. 11, p. 539509, Nov. 2020, doi: 10.3389/fneur.2020.539509.
[41] H. Bagher-Ebadian et al., “Predicting Final Extent of Ischemic Infarction Using Artificial Neural Network Analysis of Multi-Parametric MRI in Patients with Stroke,” PLoS ONE, vol. 6, no. 8, p. e22626, Aug. 2011, doi: 10.1371/journal.pone.0022626.
[42] K. C. Ho, W. Speier, S. El-Saden, and C. W. Arnold, “Classifying Acute Ischemic Stroke Onset Time using Deep Imaging Features,” AMIA Annu. Symp. Proc. AMIA Symp., vol. 2017, pp. 892–901, 2017.
[43] R. McKinley et al., “Fully automated stroke tissue estimation using random forest classifiers (FASTER),” J. Cereb. Blood Flow Metab., vol. 37, no. 8, pp. 2728–2741, Aug. 2017, doi: 10.1177/0271678X16674221.
[44] Y. Yu, D. Guo, M. Lou, D. Liebeskind, and F. Scalzo, “Prediction of Hemorrhagic Transformation Severity in Acute Stroke From Source Perfusion MRI,” IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 2058–2065, Sep. 2018, doi: 10.1109/TBME.2017.2783241.
[45] M. Livne, J. K. Boldsen, I. K. Mikkelsen, J. B. Fiebach, J. Sobesky, and K. Mouridsen, “Boosted Tree Model Reforms Multimodal Magnetic Resonance Imaging Infarct Prediction in Acute Stroke,” Stroke, vol. 49, no. 4, pp. 912–918, Apr. 2018, doi: 10.1161/STROKEAHA.117.019440.
[46] A. Nielsen, M. B. Hansen, A. Tietze, and K. Mouridsen, “Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning,” Stroke, vol. 49, no. 6, pp. 1394–1401, Jun. 2018, doi: 10.1161/STROKEAHA.117.019740.
[47] C. Lucas, A. Kemmling, N. Bouteldja, L. F. Aulmann, A. Madany Mamlouk, and M. P. Heinrich, “Learning to Predict Ischemic Stroke Growth on Acute CT Perfusion Data by Interpolating Low-Dimensional Shape Representations,” Front. Neurol., vol. 9, p. 989, Nov. 2018, doi: 10.3389/fneur.2018.00989.
[48] K. C. Ho, W. Speier, H. Zhang, F. Scalzo, S. El-Saden, and C. W. Arnold, “A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging,” IEEE Trans. Med. Imaging, vol. 38, no. 7, pp. 1666–1676, Jul. 2019, doi: 10.1109/TMI.2019.2901445.
[49] C. Tozlu et al., “Comparison of classification methods for tissue outcome after ischaemic stroke,” Eur. J. Neurosci., vol. 50, no. 10, pp. 3590–3598, Nov. 2019, doi: 10.1111/ejn.14507.
[50] K. C. Ho, “Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images,” J. Med. Imaging, vol. 6, no. 02, p. 1, May 2019, doi: 10.1117/1.JMI.6.2.026001.
[51] S. A. Sheth et al., “Machine Learning–Enabled Automated Determination of Acute Ischemic Core From Computed Tomography Angiography,” Stroke, vol. 50, no. 11, pp. 3093–3100, Nov. 2019, doi: 10.1161/STROKEAHA.119.026189.
[52] W. Qiu et al., “Radiomics-Based Intracranial Thrombus Features on CT and CTA Predict Recanalization with Intravenous Alteplase in Patients with Acute Ischemic Stroke,” Am. J. Neuroradiol., vol. 40, no. 1, pp. 39–44, Jan. 2019, doi: 10.3174/ajnr.A5918.
[53] A. Hilbert et al., “Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke,” Comput. Biol. Med., vol. 115, p. 103516, Dec. 2019, doi: 10.1016/j.compbiomed.2019.103516.
[54] W. S. Smith, K. J. Keenan, and P. A. Lovoi, “A Unique Signature of Cardiac-Induced Cranial Forces During Acute Large Vessel Stroke and Development of a Predictive Model,” Neurocrit. Care, vol. 33, no. 1, pp. 58–63, Aug. 2020, doi: 10.1007/s12028-019-00845-x.
[55] W. Qiu et al., “Machine Learning for Detecting Early Infarction in Acute Stroke with Non–Contrast-enhanced CT,” Radiology, vol. 294, no. 3, pp. 638–644, Jan. 2020, doi: 10.1148/radiol.2020191193.
[56] M. T. Stib et al., “Detecting Large Vessel Occlusion at Multiphase CT Angiography by Using a Deep Convolutional Neural Network,” Radiology, vol. 297, no. 3, pp. 640–649, Sep. 2020, doi: 10.1148/radiol.2020200334.
[57] M. Meijs, F. J. A. Meijer, M. Prokop, B. van Ginneken, and R. Manniesing, “Image-level detection of arterial occlusions in 4D-CTA of acute stroke patients using deep learning,” Med. Image Anal., vol. 66, p. 101810, Dec. 2020, doi: 10.1016/j.media.2020.101810.
[58] Wang Kai et al., “Deep Learning Detection of Penumbral Tissue on Arterial Spin Labeling in Stroke,” Stroke, vol. 51, no. 2, pp. 489–497, Feb. 2020, doi: 10.1161/STROKEAHA.119.027457.
[59] Y. Yu et al., “Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging,” JAMA Netw. Open, vol. 3, no. 3, p. e200772, Mar. 2020, doi: 10.1001/jamanetworkopen.2020.0772.
[60] R. A. Rava et al., “Performance of angiographic parametric imaging in locating infarct core in large vessel occlusion acute ischemic stroke patients,” J. Med. Imaging, vol. 7, no. 1, p. 016001, Jan. 2020, doi: 10.1117/1.JMI.7.1.016001.
[61] Hofmeister Jeremy et al., “Clot-Based Radiomics Predict a Mechanical Thrombectomy Strategy for Successful Recanalization in Acute Ischemic Stroke,” Stroke, vol. 51, no. 8, pp. 2488–2494, Aug. 2020, doi: 10.1161/STROKEAHA.120.030334.
[62] H. Nishi et al., “Deep Learning–Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large Vessel Occlusion,” Stroke, vol. 51, no. 5, pp. 1484–1492, May 2020, doi: 10.1161/STROKEAHA.119.028101.
[63] M. Grosser et al., “Improved multi-parametric prediction of tissue outcome in acute ischemic stroke patients using spatial features,” PLOS ONE, vol. 15, no. 1, p. e0228113, Jan. 2020, doi: 10.1371/journal.pone.0228113.
[64] H. Lee et al., “Machine Learning Approach to Identify Stroke Within 4.5 Hours,” Stroke, vol. 51, no. 3, pp. 860–866, Mar. 2020, doi: 10.1161/STROKEAHA.119.027611.
[65] Y.-C. Kim et al., “Novel Estimation of Penumbra Zone Based on Infarct Growth Using Machine Learning Techniques in Acute Ischemic Stroke,” J. Clin. Med., vol. 9, no. 6, p. 1977, Jun. 2020, doi: 10.3390/jcm9061977.
[66] T. S. Heo et al., “Prediction of Stroke Outcome Using Natural Language Processing-Based Machine Learning of Radiology Report of Brain MRI,” J. Pers. Med., vol. 10, no. 4, p. 286, Dec. 2020, doi: 10.3390/jpm10040286.
[67] M. Grosser et al., “Localized prediction of tissue outcome in acute ischemic stroke patients using diffusion- and perfusion-weighted MRI datasets,” PLOS ONE, vol. 15, no. 11, p. e0241917, Nov. 2020, doi: 10.1371/journal.pone.0241917.
[68] H. Zhang et al., “Intra-Domain Task-Adaptive Transfer Learning to Determine Acute Ischemic Stroke Onset Time,” Comput. Med. Imaging Graph., vol. 90, p. 101926, Jun. 2021, doi: 10.1016/j.compmedimag.2021.101926.
[69] A. Pinto et al., “Combining unsupervised and supervised learning for predicting the final stroke lesion,” Med. Image Anal., vol. 69, p. 101888, Apr. 2021, doi: 10.1016/j.media.2020.101888.
[70] N. Debs et al., “Impact of the reperfusion status for predicting the final stroke infarct using deep learning,” NeuroImage Clin., vol. 29, p. 102548, 2021, doi: 10.1016/j.nicl.2020.102548.
[71] A. Hakim et al., “Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge,” Stroke, vol. 52, no. 7, pp. 2328–2337, Jul. 2021, doi: 10.1161/STROKEAHA.120.030696.
[72] Y. Yu et al., “Tissue at Risk and Ischemic Core Estimation Using Deep Learning in Acute Stroke,” Am. J. Neuroradiol., vol. 42, no. 6, pp. 1030–1037, Jun. 2021, doi: 10.3174/ajnr.A7081.
[73] P. Dharmasaroja and P. A. Dharmasaroja, “Prediction of intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke using multiple artificial neural networks,” Neurol. Res., vol. 34, no. 2, pp. 120–128, Mar. 2012, doi: 10.1179/1743132811Y.0000000067.
[74] P. Bentley et al., “Prediction of stroke thrombolysis outcome using CT brain machine learning,” NeuroImage Clin., vol. 4, pp. 635–640, 2014, doi: 10.1016/j.nicl.2014.02.003.
[75] H. J. A. van Os et al., “Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms,” Front. Neurol., vol. 9, p. 784, Sep. 2018, doi: 10.3389/fneur.2018.00784.
[76] A. S. Kasasbeh, S. Christensen, M. W. Parsons, B. Campbell, G. W. Albers, and M. G. Lansberg, “Artificial Neural Network Computer Tomography Perfusion Prediction of Ischemic Core,” Stroke, vol. 50, no. 6, pp. 1578–1581, Jun. 2019, doi: 10.1161/STROKEAHA.118.022649.
[77] A. J. Winder, S. Siemonsen, F. Flottmann, G. Thomalla, J. Fiehler, and N. D. Forkert, “Technical considerations of multi-parametric tissue outcome prediction methods in acute ischemic stroke patients,” Sci. Rep., vol. 9, no. 1, p. 13208, Sep. 2019, doi: 10.1038/s41598-019-49460-y.
[78] Y. Xie et al., “Use of Gradient Boosting Machine Learning to Predict Patient Outcome in Acute Ischemic Stroke on the Basis of Imaging, Demographic, and Clinical Information,” Am. J. Roentgenol., vol. 212, no. 1, pp. 44–51, Jan. 2019, doi: 10.2214/AJR.18.20260.
[79] A. Alawieh, F. Zaraket, M. B. Alawieh, A. R. Chatterjee, and A. Spiotta, “Using machine learning to optimize selection of elderly patients for endovascular thrombectomy,” J. NeuroInterventional Surg., vol. 11, no. 8, pp. 847–851, Aug. 2019, doi: 10.1136/neurintsurg-2018-014381.
[80] J. You et al., “Automated Hierarchy Evaluation System of Large Vessel Occlusion in Acute Ischemia Stroke,” Front. Neuroinformatics, vol. 14, p. 13, Mar. 2020, doi: 10.3389/fninf.2020.00013.
[81] D. Robben et al., “Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning,” Med. Image Anal., vol. 59, p. 101589, Jan. 2020, doi: 10.1016/j.media.2019.101589.
[82] B. Fu et al., “Image Patch-Based Net Water Uptake and Radiomics Models Predict Malignant Cerebral Edema After Ischemic Stroke,” Front. Neurol., vol. 11, p. 609747, Dec. 2020, doi: 10.3389/fneur.2020.609747.
[83] S. Bacchi, T. Zerner, L. Oakden-Rayner, T. Kleinig, S. Patel, and J. Jannes, “Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes,” Acad. Radiol., vol. 27, no. 2, pp. e19–e23, Feb. 2020, doi: 10.1016/j.acra.2019.03.015.
[84] G. Brugnara et al., “Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning,” Stroke, vol. 51, no. 12, pp. 3541–3551, Dec. 2020, doi: 10.1161/STROKEAHA.120.030287.
[85] L. A. Ramos et al., “Predicting Poor Outcome Before Endovascular Treatment in Patients With Acute Ischemic Stroke,” Front. Neurol., vol. 11, p. 580957, Oct. 2020, doi: 10.3389/fneur.2020.580957.
[86] H. Nishi et al., “Predicting Clinical Outcomes of Large Vessel Occlusion Before Mechanical Thrombectomy Using Machine Learning,” Stroke, vol. 50, no. 9, pp. 2379–2388, Sep. 2019, doi: 10.1161/STROKEAHA.119.025411.
[87] C.-C. Chung et al., “Predicting major neurologic improvement and long-term outcome after thrombolysis using artificial neural networks,” J. Neurol. Sci., vol. 410, p. 116667, Mar. 2020, doi: 10.1016/j.jns.2020.116667.
[88] S. M. Sung et al., “Prediction of early neurological deterioration in acute minor ischemic stroke by machine learning algorithms,” Clin. Neurol. Neurosurg., vol. 195, p. 105892, Aug. 2020, doi: 10.1016/j.clineuro.2020.105892.
[89] K. Matsumoto, Y. Nohara, H. Soejima, T. Yonehara, N. Nakashima, and M. Kamouchi, “Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke.,” Stroke, vol. 51, no. 5, pp. 1477–1483, May 2020, doi: 10.1161/STROKEAHA.119.027300.
[90] L. Velagapudi et al., “A Machine Learning Approach to First Pass Reperfusion in Mechanical Thrombectomy: Prediction and Feature Analysis,” J. Stroke Cerebrovasc. Dis., vol. 30, no. 7, Jul. 2021, doi: 10.1016/j.jstrokecerebrovasdis.2021.105796.
[91] J. Hamann et al., “Machine‐learning‐based outcome prediction in stroke patients with middle cerebral artery‐M1 occlusions and early thrombectomy,” Eur. J. Neurol., vol. 28, no. 4, pp. 1234–1243, Apr. 2021, doi: 10.1111/ene.14651.
[92] B. Jiang et al., “Prediction of Clinical Outcome in Patients with Large-Vessel Acute Ischemic Stroke: Performance of Machine Learning versus SPAN-100,” Am. J. Neuroradiol., vol. 42, no. 2, pp. 240–246, 2021.
[93] G. Varoquaux, P. R. Raamana, D. A. Engemann, A. Hoyos-Idrobo, Y. Schwartz, and B. Thirion, “Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines,” NeuroImage, vol. 145, pp. 166–179, Jan. 2017, doi: 10.1016/j.neuroimage.2016.10.038.
[94] F. Eitel, M.-A. Schulz, M. Seiler, H. Walter, and K. Ritter, “Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research,” Exp. Neurol., vol. 339, p. 113608, May 2021, doi: 10.1016/j.expneurol.2021.113608.
[95] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms,” in Advances in Neural Information Processing Systems, 2012, vol. 25. Accessed: Mar. 02, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2012/hash/05311655a15b75fab86956663e1819cd-Abstract.html
[96] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,” p. 52.
[97] E. Hazan, A. Klivans, and Y. Yuan, “Hyperparameter Optimization: A Spectral Approach,” ArXiv170600764 Cs Math Stat, Jan. 2018, Accessed: Mar. 02, 2022. [Online]. Available: http://arxiv.org/abs/1706.00764
[98] I. Loshchilov and F. Hutter, “CMA-ES for Hyperparameter Optimization of Deep Neural Networks,” ArXiv160407269 Cs, Apr. 2016, Accessed: Mar. 02, 2022. [Online]. Available: http://arxiv.org/abs/1604.07269
[99] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for Hyper-Parameter Optimization,” in Advances in Neural Information Processing Systems, 2011, vol. 24. Accessed: May 18, 2022. [Online]. Available: https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
[100] C. and T. (European C. Directorate-General for Communications Networks and Grupa ekspertów wysokiego szczebla ds. sztucznej inteligencji, Ethics guidelines for trustworthy AI. LU: Publications Office of the European Union, 2019. Accessed: Mar. 02, 2022. [Online]. Available: https://data.europa.eu/doi/10.2759/346720
[101] D. Higgins and V. I. Madai, “From Bit to Bedside: A Practical Framework for Artificial Intelligence Product Development in Healthcare,” Adv. Intell. Syst., vol. 2, no. 10, p. 2000052, 2020, doi: 10.1002/aisy.202000052.