Acquaah, G. 2007. Principles of Plant Genetics and Breeding. Oxford: Blackwell. Doi: 10.1017/S0014479707005728.
Buddhi, C.W., Arunakumara, K. and Min, H.Y. 2014. Isolation and characterization of phosphate solubilizing bacteria (Klebsiella oxytoca) with enhanced tolerant to environmental stress. African Journal of Microbiological Research, 8(31):2970-2978. https://doi.org/10.5897/AJMR2013.5771.
Butcher, K., Wick, A.F., DeSutter, T., Chatterjee, A. and Harmon, J. 2016. Soil Salinity: A Threat to Global Food Security. Agronomy Journal, 108(6):2189. doi:10.2134/agronj2016.06.0368.
Furkan, O. 2016. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian Journal of Microbiology. 47(3):621-627. https://doi.org/10.1016/j.bjm.2016.04.001.
Han, H.S., Supanjani, Lee, K.D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ, 52(3):130–136. https://www.agriculturejournals.cz/publicFiles/50531.pdf
Hasan, K., Sabagh, A.E., Sikdar, S.I., Alam, J., Ratnasekera, D., Barutcular, C., Abdelaal, A.A. and Islam, M.S. 2017. Comparative adaptable agronomic traits of blackgram and mungbean for saline lands. Plant Archives, 17(1):589-593. https://www.jebas.org/uploadsissues/49_pdf.pdf
Hossain, M.M., Miah, M.N.A., Rahman, M.A., Islam, M.A. and Islam, M.T. 2008. Effect of salt stress on growth and yield attributes of mungbean. Bangladesh Research and Publications Journal, 1(4):324-336. https://www.researchgate.net/publication/331703033_Effect_of_Salt_Stress_on_Growth_and_Yield_Attributes_of_Mungbean
Jackson, M.L. 1973. Soil Chemical Analysis, Prentice Hall of India (Pvt.) Ltd., New Delhi. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1453838
Jiang, H., Qi, P. and Wang, T. 2018. Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut (Arachis hypogaea) under saline soil. Annals of Applied Biology, 1–11. https://doi.org/10.1111/aab.12473.
Juan, M., Rivero, R.M., Romero, L. and Ruiz, J.M. 2005. Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars. Environmental and Experimental Botany, 54(3):193-201. 10.1016/j.envexpbot.2004.07.004.
Kadyan, S., Panghal, M., Kumar, S., Singh, K. and Yadav, J.P. 2013. Assessment of functional and genetic diversity of aerobic endospore forming Bacilli from rhizospheric soil of Phyllanthus amarus L.. World Journal of Microbiology and Biotechnology, 29:1597–1610. https://doi.org/10.1007/s11274-013-1323-3.
Kearl, J., McNary, C., Lowman, J.S., Mei, C., Aanderud, Z.T., Smith, S.T., West, J., Colton, E., Hamson, M. and Nielsen, B.L. 2019. Salt-Tolerant Halophyte Rhizosphere Bacteria Stimulate Growth of Alfalfa in Salty Soil. Front. Microbiol. 10:1849. doi: 10.3389/fmicb.2019.01849.
Kijne, J.W. (2006) Abiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97:3-18. 10.1016/j.fcr.2005.08.011.
Lugtenberg, B.J., Malfanova, N., Kamilova, F. and Berg, G. 2013. Plant growth promotion by microbes. Molecular Microbial Ecology and Rhizosphere, 1-2:559-573. https://doi.org/10.1002/9781118297674.ch53.
Mariana, D.G., Silvia, M.C.R., Jorge, A.R., Juan, C.M.D., Cristóbal, N.A. and Rosa, M.C.R. 2018. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon.4(11):e00954. https://doi.org/10.1016/j.heliyon.2018.e00954.
Maximillian, J., Brusseau, M.L., Glenn, E.P. and Matthias, A.D. 2019. Pollution and environmental perturbations in the global system, Editor(s): Mark L. Brusseau, Ian L. Pepper, Charles P. Gerba, Environmental and Pollution Science (Third Edition), Academic Press, Pp. 457-476. https://doi.org/10.1016/B978-0-12-814719-1.00025-2.
Miller, G., Susuki, N., Ciftci-Yilmaz, S. and Mittler, R. 2010. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell and Environment, 33:453-467. 10.1111/j.1365-3040.2009.02041.x.
Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Reviews on Plant Biology, 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Nagaraju, Y., Gundappagol, R.C. and Mahadevaswamy. 2020. Mining saline soils to manifest plant stress-alleviating halophilic bacteria. Current Microbiology,77: 2265–2278. https://doi.org/10.1007/s00284-020-02028-w.
Paranychianakis, N.V. and Chartzoulakis, K.S. 2005. Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agriculture Ecosystem and Environment, 106:171–187. https://doi.org/10.1016/j.agee.2004.10.006.
Parida, A.K. and Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Exotoxicol. Environment. 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010.
Piper, C.S. 1966. Soil and Plant Analysis, Hans Publishers, Bombay, Pp. 368.
Priyadharshini, B., Vignesh, M., Prakash, M. and Anandan, R. 2019. Evaluation of black gram genotypes for saline tolerance at seedling stage. Indian Journal Of Agricultural Research.(53):83-87. https://arccjournals.com/journal/indian-journal-of-agricultural-research/A-5118.
Ramos, C.A. 1993. Ecology of moderately halophilic bacteria, Pp. 55–86. In R. H. Vreeland and L. I. Hochstein (ed.), The biology of halophilic bacteria, CRC Press, Inc., Boca Raton, Fla. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98923/
Raptan, P.K. 2000. Salinity induced changes in dry matter partitioning and mineral ion production in Vigna spp. A M.S. thesis, Dept. of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur.
Raptan, P.K., Hamid, A., Khaliq, Q.A., Solaiman, A.R.M., Ahmed, J.U. and Karim, M.A. 2001. Salinity tolerance of black gram and mungbean: II-Mineral ions accumulation in different plant parts. Korean Journal of Crop Sciences, 46(5):387-394. https://www.koreascience.or.kr/article/JAKO200111922228662.page
Rodríguez, P., Torrecillas, A., Morales, M.A., Ortuno, M.F. and Sánchez-Blanco, M.J. 2005. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environment and Experimental Botany, 53:113–123. 10.1016/j.envexpbot.2004.03.005.
Shahid, S.A., Zaman, M. and Heng, L. 2018. Introduction to soil salinity, sodicity and diagnostics techniques. In: guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-96190-3_1.
Shanti, M., Peda, B.B., Rajendra, P.B. and Minhas, P.S. 2008. Effect of zinc on black gram in rice- black gram cropping system of coastal saline soils. Legume Research, 31(2):79-86. https://www.arccjournals.com/uploads/articles/lr312001.pdf
Shrivastava, P. and Kumar, R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22:123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
Singh, R.P. and Jha, P.N. 2016. Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp SL- 12 isolated from a salt lake. Symbiosis, 69:101-111. https://doi.org/10.1007/s13199-016-0387-x
Tanwar, S.P.S., Sharma, G.L. and Chahar, M.S. 2003. Effect of phosphorus and biofertilizers on yield, nutrient content and uptake by black gram [Vigna mungo (L.) Hepper]. Legume research, 26(1):39-41. http://www.indianjournals.com/ijor.aspx?target=ijor:lr&volume=26&issue=1&article=009
Vikas, V., Usadadia, V.P., Anil, K.M., Patel, M.M. and Viral, K.A.P. 2017. Impact assessment of land configuration and bio-organic on nutrient uptake and quality of Chickpea (Cicer arietinum L.) under coastal salt affected soil. International Journal of Pure Applied. Biosciences, 5(3):726-734. http://dx.doi.org/10.18782/2320-7051.2832.
Zerrouk, I.Z., Benchabane, M., Khelifi, L., Yokawa, K., Ludwig, M.J. and Baluska, F. 2016. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. Journal of Plant Physiology.191:111-119. https://doi.org/10.1016/j.jplph.2015.12.009