
Page 1/20

Soil moisture-evaporation coupling shifts into new
gears under increasing CO2

Hsin Hsu 
(

hhsu@gmu.edu
)
George Mason University
 https://orcid.org/0000-0002-1489-6632

Paul Dirmeyer 
Center for Ocean-Land-Atmosphere Studies, George Mason University
 https://orcid.org/0000-0003-

3158-1752

Article

Keywords:

Posted Date: June 23rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1713539/v1

License:


This work is licensed under a Creative Commons Attribution 4.0 International
License.
 
Read Full License

Version of Record: A version of this preprint was published at Nature Communications on March 1st,
2023. See the published version at https://doi.org/10.1038/s41467-023-36794-5.

https://doi.org/10.21203/rs.3.rs-1713539/v1
mailto:hhsu@gmu.edu
https://orcid.org/0000-0002-1489-6632
https://orcid.org/0000-0003-3158-1752
https://doi.org/10.21203/rs.3.rs-1713539/v1
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41467-023-36794-5


Page 2/20

Abstract
When soil moisture content (SM) falls within a transitional regime between dry and wet, it controls
evaporation rates, affecting atmospheric heat and humidity. Accordingly, different SM regimes
correspond to different gears of land-atmosphere coupling, affecting climate. Determining patterns of SM
regimes and their future changes is imperative. Global distributions of shifts between SM regimes from
eight climate models are examined. Under increasing CO2, the range of SM extends into unprecedented
coupling regimes in many locations. SM in many arid regions migrates from the transitional toward the
dry regime, while an opposite migration appears in semiarid regions. Transitional regimes also emerge in
currently humid areas of the tropics and high latitudes. These changes imply that a larger fraction of the
world will evolve to experience more than one gear of land-atmosphere coupling, with the strongly
coupled transitional regime growing the most. Furthermore, the locally predominant gear may change
under global warming.

Full Text
Soil moisture (SM) variability can control the water and heat fluxes at the land surface, affecting air
temperature and humidity (Entekhabi et al. 1996; Bonan 2008b; Seneviratne et al. 2010;  Santanello et al.
2018). This can establish feedbacks wherein, as the soil gets drier, the synchronous decrease in latent
heat flux (LE, the energy used for evaporation) and increase in sensible heat flux (H) (Koster et al. 2004;
Miralles et al. 2014) results in a warmer and drier overlying atmosphere (Schär et al. 1999; Santanello et
al. 2005; Dirmeyer et al. 2012). Increasing SM can set opposite changes into motion – each chain of
events ultimately alters cloud formation and precipitation (Eltahir and Bras, 1996; Findell and Eltahir
1997; Eltahir 1998; Koster et al. 2003; Yin et al. 2015; Sehler et al. 2020). Such positive local feedbacks
play an important role in extreme events such as droughts, floods and heat waves (Zaitchik et al. 2006;
Fischer et al. 2007; Hirschi et al. 2011; Herold et al. 2016; Miralles et al. 2014; Miralles et al.
2019). Furthermore, heterogeneous SM patterns that induce heterogeneous atmospheric heating and
moistening can modulate mesoscale circulations and precipitation patterns (Ookouchi et al. 1984; Taylor
and Ellis 2006; Taylor et al. 2011; Taylor et al. 2012; Froidevaux et al. 2014; Guillod et al. 2015; Hsu et al.
2016), triggering or maintaining mesoscale convective systems (MCSs; Klein and Taylor 2020; Gaal and
Kinter 2021), and propagating drought events (Schumacher et al. 2022). All of these phenomena are
rooted in the physical linkage between surface heat fluxes and SM, the foundation of SM-induced
feedback. 

 

SM-induced feedbacks can be strengthened or suspended in certain conditions. Such a shift in gears
happens when surface fluxes disconnect from SM control under specific conditions (Budyko 1974; Koster
and Milly 1997; Eagleson 1978; Santanello et al. 2007; Zeppetello et al. 2019). Such a disconnection is
related to important SM thresholds (Fig.1): the wilting point (WP) and the critical soil moisture (CSM). WP
is a criterion of vegetation hydraulic pressure that determines whether osmosis happens. When soils are
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drier than WP, water is unable to enter plant roots and supply transpiration, the main evaporation
component contributing to LE. Consequently, the sensitivity of evaporation to SM variability drops when
SM<WP. This is called the dry regime. CSM is the transition separating causes of evaporation limitation:
water availability versus energy availability (Seneviratne et al. 2010). When SM>CSM, increasing SM will
not cause greater evaporation, and evaporation may even decline as very wet soils correspond to periods
of rainfall, cloudiness and limited sunshine. In this wet regime, LE is also insensitive to SM variations.
Only when SM is between WP and CSM, lying in the transitional regime, does LE reliably increase with
increasing SM. The dry and transitional regimes together can be summarized as moisture-
limited, while the wet regime is energy-limited.   

 

Transitions among these three SM regimes have recently been shown to have potential influence on
extremes. The 2010/11 flooding in northern Australia moistened the land surface beyond the usual
moisture-limited regime and decoupled land from atmosphere (Lo et al. 2021). Reduced evaporation led
to wetter land conditions that could maintain the flood. On the contrary, as SM dries, passing from the
transitional regime to the dry regime, the available energy for surface heat fluxes goes mostly into H,
exacerbating near-surface atmospheric heating. Consequently, air temperature becomes hypersensitive to
declining SM, as has been evidenced in the United States (Benson and Dirmeyer 2021) and
Europe (Dirmeyer et al. 2021). 

Accordingly, SM regime transitions are good indicators of shifting gears between modes of local
SM:LE coupling. Determining global patterns of existing SM regimes and their projected changes from
state-of-the-art climate models can help indicate which gear of SM-induced feedback is dominant at any
location, and how they may change. We examine daily data from eight climate models participating in
the Coupled Model Intercomparison Project Phase 6 (CMIP6) from simulations proxying pre-industrial
climate and warming climate (Method Summary).  

 

Pre-industrial and projected patterns of soil moisture regimes 

Breakpoint analysis based on theoretical SM:LE behavior (Schwingshackl et al. 2017; Hsu and Dirmeyer
2022; see Methods) is used to find the two critical values, WP and CSM at each location, and determine
which SM regimes are active there. A total of five candidates, representing different combinations of
active SM regimes, are used to represent which regimes are active in each grid cell (bottom-left corner of
Fig.2). We assign binary digits 0 and 1 to indicate the presence of the dry, transitional, and wet regime, in
order, following the letter C for “candidate” (e.g., C010 for the transitional regime only). Fig.2 displays the
spatial pattern of consensus SM regimes among the climate models and how they are projected to
change under increasing CO2. This is determined from the mode of the candidate selected among all
climate models. The five colors correspond to each of the five candidates. Grid cells are colored
according to the pre-industrial climate model consensus, and stars within grid cells indicate the projected
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candidate in a warming climate. Note that the values of WP and CSM may also change, not only the
distribution of SM (see Fig.S1 and Discussion).

Over the rainforests, candidates C001 and C011 dominate in the pre-industrial climate (Fig.2). Only for
C011 does SM fall within the transitional regime in these locations, signifying active SM:LE coupling.
This situation becomes more common under warming as C011 expands in area, particularly over the
Amazon. Over semiarid regions such as the Sahel, Australia, and southern Great Plains, candidates C011
and 111 dominate during the pre-industrial period. Candidate 111 expands in a few of these regions
under warming. In arid regions, SM does not always remain in the dry regime. C110 and C111 occupy the
Sahara Desert, Chile, and Arabia. This could be because even sparse precipitation events moisten the
land surface enough to spark significant evapotranspiration that registers in our breakpoint analysis. SM
surpasses CSM in more locations as C111 emerges under warming. Overall, the global area where LE is
sensitive to SM outside high latitudes (60°S-60°N) increases by 2.6% under global warming, as indicated
by the summation of candidates for which the transitional regime is active, shown in the alluvial diagram
in Fig.2. 

 

Model agreement regarding soil moisture regimes 

The metric sum(δ), previously defined by Hsu and Dirmeyer (2022; See Methods), is used to quantify the
disparity among climate model simulations of SM regimes for the pre-industrial climate (Fig.3) and how
these disparities change under global warming. Similarly, its decomposition into sum(δdry), sum(δtran),
and sum(δwet) in Fig.3 reflect the degree of disparity in simulating dry, transitional, and wet regimes
individually. 

Strong disparity in representing the SM transitional regime is found over rainforests (Fig.3e), especially
over the Amazon, and this disagreement is largely reconciled in a warming world (Fig.3f). The dry regime
is detected in few climate models around the edge of the Amazon (Fig.3c). The consensus is relatively
good in semiarid regions compared to the rest of the world (Fig.3a). Disagreement is mainly found for dry
regime detection (Fig.3c). Note that some climate models do not simulate a dry regime over the Sahara,
as sum(δdry) is not zero (Fig.3b). Detection of the wet regime is also inconsistent across models (Fig.3g)
and the consensus is even less under warming (Fig.3h).  

The fractions of area with a change in any specific value of sum(δ) and their changes are displayed in
the left-bottom bars of each panel. Disagreement regarding SM regimes is mainly contributed
by sum(δdry). The overall consensus of modelled SM regimes increases under warming, due mainly
to better agreement in the detection of transitional and wet regimes. 

 

Main migration tendency for soil moisture between regimes under global warming
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A locally emergent SM regime does not necessarily indicate that SM is predominantly migrating into that
specific regime (see Table.S1 for a local example). We examine the net migration of SM between regimes
under global warming (see Methods). This yields 7 possible categories: no migration of SM or a
migration of SM between any two of the three defined SM regimes. The results are shown in Fig.4 with
symbols indicating different levels of agreement. The fraction of land area (60°S-60°N) within each
category is displayed using the color matrix.

 

The tendency of SM to extend into the transitional regime grows in a warmer climate over some semiarid
regions (see also Fig.S3). Over northwestern India, the Sahel, northern Australia, and central Asia, SM
shifts from the dry regime to the transitional regime, as suggested by most climate models. On the other
hand, over southern Africa, western and central Australia, migration is from the transitional regime to the
dry regime, corresponding to the regions that C111 emerges under warming. Over arid regions, despite the
strong disparity in detected SM regimes (Fig.3), how SM migrates between the regimes under warming is
consistent among the climate models (Fig.4). In the Sahara, Chile, and Arabian Peninsula, SM lies more
frequently in the dry regime, usually indicated by at least 6 of the 8 climate models. Migrations between
the dry and transitional regimes accounts for 60% of global area (red+aqua categories in the color matrix
of Fig.4). Robust results with at least 5 of 8 climate models agreeing with same tendency are often found
over arid regions and semiarid regions. Generally, no significant migration of SM between the regimes
due to warming is shown over the deep tropics (Fig.4). Sporadic responses are found over the Amazon
and the maritime continent while spatial patterns are not homogeneous and are not consistent among
the climate models.

Discussion
SM regimes are a good determinant for the type of local land-atmosphere coupling, which is determined
by the relationships between surface heat fluxes and SM (Fig. 1). Under global warming, SM can extend
to unprecedented SM regimes in many locations (Fig. 2). There is a trend toward more gears of SM:LE
coupling being experienced, and thus more shifting between gears, suggesting less stable hydroclimates.
Specifically, more locations will experience the transitional regime while few locations show that a SM
regime will vanish (Fig. 2). A consequence of this broadening of SM:LE candidates is that model
consensus grows with increasing CO2 (Fig. 3). For both the pre-industrial and the warming climate, SM
spans at least two regimes over most of the world (Fig. 2). This suggests that evaluating the temporal
variation of coupling is necessary when investigating topics relevant to land surface processes,
especially for extreme events.

The WP and CSM are well defined by the breakpoint analysis (see Methods); however, WP and especially
CSM can be sensitive to ecological and environmental factors. Therefore, values estimated here act as a
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climatology of the varying breakpoints of each analyzed period. WP is mostly determined by soil and
plant properties. For most climate models, plants are prescribed identically in piControl and 1pctCO2
simulations. This results in a neglectable change in WP under increasing CO2 (Fig.S1b). CSM is affected
not only by vegetation characteristics (Novák and Havrila 2006) but also climate conditions such as
vapor pressure deficit and insolation (Haghighi et al. 2018; Feldman et al. 2019; Denissen et al. 2020). As
these conditions do change in a warming climate, there can be a larger shift in CSM under increasing
CO2, as seen in Fig.S1c. Accordingly, an emerging SM regime under global warming is often not
completely attributable to a shift in SM distribution, but shifts in WP or CSM may also contribute. For
instance, a transitional regime is seen to emerge over the Amazon. In addition to a drier SM distribution
(Fig.S1a), there is also a trend toward higher values for CSM (Fig.S1c), which embrace a wider range of
SM in the transitional regime, bolstering its emergence.

SM migration between regimes under global warming (Fig. 4) shows a zonally consistent pattern,
presumably due to changes in the large scale atmospheric circulation. SM migrates from the dry to
transitional regimes over the Sahel, southern Arabian Peninsula, and Northern Australia. The increase in
number of days that SM actively controls LE might strengthen the SM-induced feedbacks in these
regions, which have been long-recognized as “hot spots” of land-atmosphere interactions (Koster et al.
2006; Zhang et al. 2008; Dirmeyer 2011; Diro et al. 2014; Hirschi et al. 2014; Liu et al. 2014; Lorenz et al.
2015; Hsu and Dirmeyer 2021).

SM regimes migrate from the transitional to dry regime over the Sahara, northern Arabian Peninsula,
southern Africa, and western and central Australia. As a result, the arid regions spend more days in the
dry SM regime, while the transitional semiarid to semi-humid regions spend more time in the transitional
SM regime. Although this appears to correspond to the “wet gets wetter, dry gets dryer” paradigm (Held
and Soden, 2006; Greve et al. 2014), results here do not necessarily suggest that transitional regions get
wetter and arid regions get drier. As mentioned above, critical SM values can shift under a warmer climate
and thus parts of the SM spectrum can slide into different regimes without a significant change in the SM
distribution. How precipitation, LE, and temperature individually affect the shifting gears of SM:LE
coupling needs to be disentangled.

Regimes detected over higher latitudes (above 50°) or higher altitudes could be underrepresented,
especially for pre-industrial climate. Inactive SM:LE coupling is mainly attributed to snow cover that cuts
off the connection between soil and atmosphere. For instance, C110 is suggested to best describe the SM
distribution over eastern Siberia in some climate models (Fig.S2). This does not guarantee detection of a
dry regime. The subarctic climate there leads to notable moist and warm conditions during summer,
driving evaporation. Winter is the dry season from a precipitation perspective; however, regardless the
dryness of SM, the snow cover stops the evaporation of soil moisture. As the number of days that land is
covered by snow varies greatly among climate models, a less reliable result is possible over such areas
(Fig. 3a&c&g). Nevertheless, a consistent pattern is seen under climate warming. In Fig. 2, C011 is
expanding poleward over the North America and Eurasia. With more days without snow cover under
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warming conditions, sensitivity of LE to SM emerges and land-atmosphere interactions could become
important in regions where they currently are not (Dirmeyer et al. 2013).

Some locations experience different soil moisture regimes in different climate models within the same
50-year climate; such disparities can be large (Fig. 3). We argue that this disparity is not guaranteed to
decline even if more climate models were included in this analysis. The metric sum(δ) quantifies
uncertainties that can be extended to characterize the fidelity of projections of extreme events linked to
SM:LE coupling, such as heatwaves, in multi-model analysis. Figure 3 can help to indicate the usefulness
of multi-model projections relevant to land surface processes at any location.

Few climate models simulate a dry regime over the heatwave-active regions such as western North
America (Fig. 2&Fig.S2). A similar pattern of biased SM dry regimes in historical simulations of climate
models has been pointed out previously by comparison to observationally-constrained data sets using
the same regime detection method (Hsu and Dirmeyer 2022)), wherein the dry regime is more commonly
seen in North America, Europe, and Australia. However, here we have used pre-industrial simulations
instead of historical simulations that correspond to the period of observational data sets, for reasons
described in the Methods summary; the lack of SM dry regime is seen globally in all analyzed climate
models (Fig. 2). As the dry regime is more prevalent in a warming climate (Fig. 3d), the lack of dry regime
might be attributed to a wetter climate during pre-industrial period, rather than the problematic
parameterization that prevents soil witness to fall below the WP. Moreover, different strategies of how
climate models represent phenology (Song et al. 2021) can affect WP, introducing another uncertainty in
the aggregated result of SM regime detection.

The global maps provided here can suggest locations worthy of a regional study of the physics of SM:LE
coupling and atmospheric responses. For example, SM lingers more in the transitional regime over the
Sahel in a warming climate. Does this only indicate more days with active SM:LE coupling, or will this
strengthen the magnitude of SM:LE coupling and thus affects long-term temperature climatology? Over
Australia, SM that shifts into the dry regime in the north and into the transitional regime in the south
could lead to an opposing shift of gears in SM-induced feedbacks. Investigating further the underlying
mechanisms and how they impact extremes can help us to understand land-atmosphere interactions,
potentially aid prediction and mitigation, and assess climate vulnerabilities with a new perspective.

Method Summary
Eight climate models participating in CMIP6 are used: MIROC6, AWI-ESM-1-1-LR, CMCC-ESM2, CanESM5,
CNRM-CM6-1-HR, NorESM2-MM, IPSL-CM6A-LR, MRI-ESM2-0 (see Table.S2). These models are selected
because they have provided daily SM and LE fields for DECK simulations (Eyring et al. 2016) for both the
piControl simulation and 1pctCO2 simulation (data are available online at: https://esgf-
node.llnl.gov/search/cmip6/) at the time of our analysis. Daily SM and LE fields are taken from these
simulations. The ensemble member r1i1p1f1 is used from all simulations except for CNRM-CM6-1-HR,
where r1i1p1f2 is used.
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To provide a robust indication of the shifts in SM regimes under warming, analysis is performed for the
part of 1pctCO2 runs spanning the 100th to 150th year, the time that the concentration of CO2 passes
from ~ 2.5 times the piControl level to 4 times, and is compared to the results from the 1st to 50th year of
the piControl run. SM and LE fields from each model are regridded to a common 2˚ x 2˚ global grid; data
are interpolated from the nearest grid cell. We note that daily LE fields are available from more models
than daily H fields, so that SM:LE is used here to determine SM regimes. The piControl simulation is used
instead of the historical simulation as the baseline for comparison because it is more consistent with
1pctCO2 runs. The historical simulation includes forcings in addition to greenhouse gases, such as land
cover change and aerosol variability, that complicate diagnoses; comparison between piControl and
1pctCO2 runs yields a pure assessment of the response to increasing CO2.

Soil moisture regime determination
Segmented regression (Schwingshackl et al. 2017; Hsu and Dirmeyer 2022) is used to define the two soil
moisture thresholds (WP and CSM) as breakpoints in piecewise linear fits to data where SM is the
independent variable. This analysis is performed for each model and simulation. At each grid cell, five
different segmented regression candidates are fitted to the distribution of available total daily LE versus
SM for each simulation by each climate model; these segmented regression candidates are determined
as follows: Locally, at least one SM regime (dry, transitional, or wet regime), to a maximum of the three
SM regimes, can be determined depending on whether either or both of the SM thresholds are detected.
This yields six possible combinations of SM regimes, called candidates: a solely dry regime, a solely
transitional regime, a solely wet regime, a dry + transitional regime, a transitional + wet regime, and a dry 
+ transitional + wet regime.

A solely dry or wet regime with SM:LE dependency is indicated by a one-segment regression with zero
slope (candidates C100 or C001). These are found to arise almost exclusively over rainforests and at high
latitudes where soils are almost always wet. Rare cases can also be found at coastal regions dominated
by maritime air. Thus, we treat all zero-slope cases as candidate C001. A solely transitional regime is
indicated by a one-segment regression consisting of a segment with positive slope (C010). Two segment
regressions have one breakpoint. A dry + transitional regime is indicated by a two-segment regression
consisting of a constant (dry) segment followed by a positive slope segment (C110). Transitional + wet
regime is indicated by two-segment regression consisting of a positive slope segment followed by a
constant (wet) segment (C011). A full dry + transitional + wet regime is indicated by the candidate with a
three segmented regression and two breakpoints, consisting of a positive slope connecting two constant
segments (C111).

Bayesian information criterion (BIC) for statistic model selection (Schwarz 1978) is used to select the
best fit among the five segmented regression candidates:

BIC = nln(RSS/n) + kln (n)
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where  is the sample size,  is the residual sum of squares, and  is the number of model
parameters, which is used to penalize regressions with more complex structure to prevent overfitting. At
the same time, values of the WP and CSM, if detected by the best fitted regression, are recorded at each
grid cell. It is possible for WP or CSM to change between simulations for the same model, and this aspect
is also investigated.

Agreement of model soil moisture regimes
We have previously designed an index δ to count the number of SM regimes for which the detection
disagrees between any two candidates (Hsu and Dirmeyer 2022).

where a, b, and c are the dry, transitional and wet binary bit, respectively, of a candidate value (e.g., for a
particular model); x, y, and z represent the same digits as a, b, and c for another source of candidate
values (e.g., for validation data). For example, candidate 001 and candidate 110 have bitwise opposite
detected regimes resulting in a maximal . Candidate 111 and candidate 110 only have
disagreement on detection of the wet regime and thus . By replacing x, y, and z with the digits of
the mode of the candidate obtained among all climate models, δ can represent how a specific climate
model departs from the multi-model consensus. Accordingly, the summation of the δ values obtained for
all pairs of each available climate model and the mode can represent how disparately the climate models
simulate local SM regimes. Consequently, the lower the summation of δ, the better the agreement and the
stronger the consensus of SM regimes among the climate models.

Migration of soil moisture among regimes
The fraction of days that SM stays in each SM regime is calculated for each simulation. The changes of
these fractions are calculated for days that SM stays in the same regime between piControl and 1pctCO2
(Fig.S3). Then, the chi-square of independence test (McHugh 2013) is applied to determine if the change
of the fraction is statistically significant. If a difference in the fraction of days for any of the three regimes
is significant at the 95% confidence level, the regime with the largest decrease is tagged as the regime
that SM shifts out of, while the regime with the largest increase is tagged as the regime that SM shifts
into. These tags yield seven categories: no statistically significant migration of SM or a migration of SM
between two of the three SM regimes. Finally, the mode of the category is obtained for each grid cell from
the same grid cell of each simulation by each climate model.
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Data availability

CMIP6 model data are available at: https://esgf-node.llnl.gov/search/cmip6/. Source code of analysis
and plots are available at https://github.com/hhsu81819/Soil-moisture-regime-and-projection. The
alluvial diagram in Fig.2 is generated
by: https://www.mathworks.com/matlabcentral/fileexchange/66746-alluvial-flow-diagram.
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Figure 1

The influence of soil moisture on the partitioning of surface heat fluxes with a fixed amount of available
energy.

 

The full range of SM can be separated into dry, transitional, and wet regimes by the thresholds of SM
(wilting point WP and critical soil moisture CSM) or can be separated as moisture limited conditions and
energy limited conditions separated by CSM. The transitional regime between WP and CSM is where
latent heat (LE; the energy that supplies evaporation) and sensible heat (H) have strong sensitivity to SM
variations. Given a fixed amount of available energy (net radiation minus ground heat flux), variations in
LE and H are shown as a function of SM (increasing from left to right) by the vertical lengths of the blue
(evaporative flux) and the red (thermal exchange) symbols, respectively. The shutdown of LE when SM
falls into the dry regime leads to available energy exclusively supplying sensible heat. In the wet regime,
LE ceases to increase with increasing SM.
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Figure 2

Global distribution of soil moisture regimes and their shifts under global warming.

 

SM regimes at each grid cell determined by the multi-model mode of the selected segmented regression
candidate among the five depicted on the left: wet regime (a.k.a. energy limited; green), transitional
regime (purple), dry+transitional (a.k.a. moisture limited; orange), transitional+wet (yellow) and
dry+transitional+wet (blue). For the candidate schematics on the left, soil moisture (SM) increases along
the x-axis, and evaporation rate (LE) increases along the y-axis. In the global map (60°S-60°N), the color
of each grid cell represents the elected candidate from the pre-industrial climate and the star color
indicates a new candidate emerging in a warming climate at that grid cell. The alluvial diagram at the
bottom shows the shift in the coverage of each candidate, calculated as the percentage of the global land
area between 60°S to 60°N.
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Figure 3

The disparity of soil moisture regimes among climate models and their changes under global warming.

 

Sum(δ) quantifies the disparity among models in SM regimes compared to the multi-model consensus
(see Methods for formulation); larger sum(δ) indicates greater disparity and thus the lower consensus.
Panel (a) displays sum(δ) for piControl simulations. Panel (b) displays the sum(δ) change under global
warming (1pctC02 minus piControl). Panels (c), (e), and (g) display the individual consensus of detection
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of the dry, transitional, and wet regimes, respectively. Panels (d), (f), and (h) display the corresponding
changes in the consensus under global warming. Histograms in each panel display the fractional land
area (60°S to 60°N) having the specific value of sum(δ) or change in sum(δ).

Figure 4

The main migration of soil moisture frequency between regimes under global warming.

For each climate model, the change in the percentage of days (1pctCO2 minus piControl) that SM is in
each regime is calculated and its significance is tested by a chi square test of independence with p<0.05.
If no significant difference in at least one SM regime is found, that grid cell is classified as experiencing
no migration (blank). If there is a significant difference in any SM regime, a net migration is classified as
a shift from the SM regime with the largest decrease in frequency to the regime that has the largest
increase. The main migration is obtained by the mode among the climate models. Grid cells with
agreement of at least 3 of 8 models are marked with dots; agreements of at least 5 of 8 models are
marked with stars. The color key also displays the percentage of land area (60°S-60°N) experiencing each
migration in a warming climate (26.1% of global land area has no migration).
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