(1) Romero-Munoz, L. M.; Segura-Fragoso, A.; Talavera-Diaz, F.; Guimbard-Perez, J.; Caba-Mora, D.; Barriga-Martin, A. Neurological injury as a complication of spinal surgery: incidence, risk factors, and prognosis. Spinal Cord 2020, 58, 318-323.
(2) Zhu, L.; Wu, G.; Zhou, X.; Li, J.; Wen, Z.; Lin, F. Altered spontaneous brain activity in patients with acute spinal cord injury revealed by resting-state functional MRI. Plos One 2015, 10, e118816.
(3) Lee, A.; Wen, B.; Walter, M.; Hocaloski, S.; Hodge, K.; Sandholdt, N.; Hultling, C.; Elliott, S.; Krassioukov, A. V. Prevalence of postpartum depression and anxiety among women with spinal cord injury. J. Spinal Cord Med. 2021, 44, 247-252.
(4) Xie, Z.; Li, C.; Xing, Z.; Zhou, W.; Xie, S.; Li, M.; Zhou, Y. Relationship Between Serum Fibrinogen Level and Depressive Symptoms in an Adult Population with Spinal Cord Injury: A Cross-Sectional Study. Neuropsychiatr Dis Treat 2021, 17, 2191-2198.
(5) Li, Y.; Ritzel, R. M.; Khan, N.; Cao, T.; He, J.; Lei, Z.; Matyas, J. J.; Sabirzhanov, B.; Liu, S.; Li, H.et al. Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics 2020, 10, 11376-11403.
(6) Wu, J.; Zhao, Z.; Kumar, A.; Lipinski, M. M.; Loane, D. J.; Stoica, B. A.; Faden, A. I. Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. J Neurotrauma 2016, 33, 1919-1935.
(7) Xue, W. K.; Zhao, W. J.; Meng, X. H.; Shen, H. F.; Huang, P. Z. Spinal cord injury induced Neuregulin 1 signaling changes in mouse prefrontal cortex and hippocampus. Brain Res. Bull. 2019, 144, 180-186.
(8) Chang, C. M.; Lee, M. H.; Wang, T. C.; Weng, H. H.; Chung, C. Y.; Yang, J. T. Brain protection by methylprednisolone in rats with spinal cord injury. Neuroreport 2009, 20, 968-972.
(9) Soltani, Z. H.; Ghadiri, T.; Vafaee, M. S.; Ebrahimi, K. A.; Karimipour, M.; Fallahi, S.; Ghorbani, M.; Shahabi, P. A potential entanglement between the spinal cord and hippocampus: Theta rhythm correlates with neurogenesis deficiency following spinal cord injury in male rats. J. Neurosci. Res. 2020, 98, 2451-2467.
(10) Luedtke, K.; Bouchard, S. M.; Woller, S. A.; Funk, M. K.; Aceves, M.; Hook, M. A. Assessment of depression in a rodent model of spinal cord injury. J Neurotrauma 2014, 31, 1107-1121.
(11) Wu, J.; Zhao, Z.; Sabirzhanov, B.; Stoica, B. A.; Kumar, A.; Luo, T.; Skovira, J.; Faden, A. I. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J. Neurosci. 2014, 34, 10989-11006.
(12) Liu, R.; Tang, J. C.; Pan, M. X.; Zhuang, Y.; Zhang, Y.; Liao, H. B.; Zhao, D.; Lei, Y.; Lei, R. X.; Wang, S.et al. ERK 1/2 Activation Mediates the Neuroprotective Effect of BpV(pic) in Focal Cerebral Ischemia-Reperfusion Injury. Neurochem. Res. 2018, 43, 1424-1438.
(13) Leung, S. W.; Lai, J. H.; Wu, J. C.; Tsai, Y. R.; Chen, Y. H.; Kang, S. J.; Chiang, Y. H.; Chang, C. F.; Chen, K. Y. Neuroprotective Effects of Emodin against Ischemia/Reperfusion Injury through Activating ERK-1/2 Signaling Pathway. Int. J. Mol. Sci. 2020, 21.
(14) Pignataro, G.; Esposito, E.; Sirabella, R.; Vinciguerra, A.; Cuomo, O.; Di Renzo, G.; Annunziato, L. nNOS and p-ERK involvement in the neuroprotection exerted by remote postconditioning in rats subjected to transient middle cerebral artery occlusion. Neurobiol. Dis. 2013, 54, 105-114.
(15) Xie, Z.; Huang, S.; Xie, S.; Zhou, W.; Li, C.; Xing, Z.; Wang, Z.; Wu, Z.; Li, M. Potential Correlation Between Depression-like Behavior and the Mitogen-Activated Protein Kinase Pathway in the Rat Hippocampus Following Spinal Cord Injury. World Neurosurg. 2021, 154, e29-e38.
(16) Chen, S. D.; Wu, C. L.; Hwang, W. C.; Yang, D. I. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy. Int. J. Mol. Sci. 2017, 18.
(17) Colucci-D'Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21.
(18) Bawari, S.; Tewari, D.; Arguelles, S.; Sah, A. N.; Nabavi, S. F.; Xu, S.; Vacca, R. A.; Nabavi, S. M.; Shirooie, S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol. Res. 2019, 148, 104458.
(19) Kim, Y. M.; Jin, J. J.; Lee, S. J.; Seo, T. B.; Ji, E. S. Treadmill exercise with bone marrow stromal cells transplantation facilitates neuroprotective effect through BDNF-ERK1/2 pathway in spinal cord injury rats. J Exerc Rehabil 2018, 14, 335-340.
(20) Li, L. M.; Huang, L. L.; Jiang, X. C.; Chen, J. C.; OuYang, H. W.; Gao, J. Q. Transplantation of BDNF Gene Recombinant Mesenchymal Stem Cells and Adhesive Peptide-modified Hydrogel Scaffold for Spinal Cord Repair. Curr. Gene Ther. 2018, 18, 29-39.
(21) Islam, F.; Mulsant, B. H.; Voineskos, A. N.; Rajji, T. K. Brain-Derived Neurotrophic Factor Expression in Individuals With Schizophrenia and Healthy Aging: Testing the Accelerated Aging Hypothesis of Schizophrenia. Curr Psychiatry Rep 2017, 19, 36.
(22) Moon, J. Y.; Roh, D. H.; Yoon, S. Y.; Choi, S. R.; Kwon, S. G.; Choi, H. S.; Kang, S. Y.; Han, H. J.; Beitz, A. J.; Oh, S. B.et al. sigma1 receptors activate astrocytes via p38 MAPK phosphorylation leading to the development of mechanical allodynia in a mouse model of neuropathic pain. Br J Pharmacol 2014, 171, 5881-5897.
(23) Song, J. H.; Yu, J. T.; Tan, L. Brain-Derived Neurotrophic Factor in Alzheimer's Disease: Risk, Mechanisms, and Therapy. Mol. Neurobiol. 2015, 52, 1477-1493.
(24) Nuernberg, G. L.; Aguiar, B.; Bristot, G.; Fleck, M. P.; Rocha, N. S. Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients. Transl Psychiatry 2016, 6, e985.
(25) Fischer, D. L.; Auinger, P.; Goudreau, J. L.; Paumier, K. L.; Cole-Strauss, A.; Kemp, C. J.; Lipton, J. W.; Sortwell, C. E. Bdnf variant is associated with milder motor symptom severity in early-stage Parkinson's disease. Parkinsonism Relat Disord 2018, 53, 70-75.
(26) Wang, J. Q.; Mao, L. The ERK Pathway: Molecular Mechanisms and Treatment of Depression. Mol. Neurobiol. 2019, 56, 6197-6205.
(27) Madhu, L. N.; Kodali, M.; Attaluri, S.; Shuai, B.; Melissari, L.; Rao, X.; Shetty, A. K. Melatonin improves brain function in a model of chronic Gulf War Illness with modulation of oxidative stress, NLRP3 inflammasomes, and BDNF-ERK-CREB pathway in the hippocampus. Redox Biol 2021, 43, 101973.
(28) Mendoza, M. C.; Er, E. E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320-328.
(29) Yun, M. S.; Kim, S. E.; Jeon, S. H.; Lee, J. S.; Choi, K. Y. Both ERK and Wnt/beta-catenin pathways are involved in Wnt3a-induced proliferation. J. Cell Sci. 2005, 118, 313-322.
(30) Vilar, M.; Mira, H. Regulation of Neurogenesis by Neurotrophins during Adulthood: Expected and Unexpected Roles. Front Neurosci 2016, 10, 26.
(31) Gonzalez-Burgos, E.; Fernandez-Moriano, C.; Gomez-Serranillos, M. P. Potential neuroprotective activity of Ginseng in Parkinson's disease: a review. J Neuroimmune Pharmacol 2015, 10, 14-29.
(32) Huang, X.; Li, N.; Pu, Y.; Zhang, T.; Wang, B. Neuroprotective Effects of Ginseng Phytochemicals: Recent Perspectives. Molecules 2019, 24.
(33) Kim, C. J.; Ryu, H. Y.; Lee, S.; Lee, H. J.; Chun, Y. S.; Kim, J. K.; Yu, C. Y.; Ghimire, B. K.; Lee, J. G. Neuroprotective Effect and Antioxidant Potency of Fermented Cultured Wild Ginseng Root Extracts of Panax ginseng C.A. Meyer in Mice. Molecules 2021, 26.
(34) Cheng, Z.; Zhang, M.; Ling, C.; Zhu, Y.; Ren, H.; Hong, C.; Qin, J.; Liu, T.; Wang, J. Neuroprotective Effects of Ginsenosides against Cerebral Ischemia. Molecules 2019, 24.
(35) Cheng, W.; Jing, J.; Wang, Z.; Wu, D.; Huang, Y. Chondroprotective Effects of Ginsenoside Rg1 in Human Osteoarthritis Chondrocytes and a Rat Model of Anterior Cruciate Ligament Transection. Nutrients 2017, 9.
(36) Chen, J.; Zhang, X.; Liu, X.; Zhang, C.; Shang, W.; Xue, J.; Chen, R.; Xing, Y.; Song, D.; Xu, R. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR signaling pathway in ischemic mice. Eur. J. Pharmacol. 2019, 856, 172418.
(37) Fan, C.; Song, Q.; Wang, P.; Li, Y.; Yang, M.; Yu, S. Y. Neuroprotective Effects of Ginsenoside-Rg1 Against Depression-Like Behaviors via Suppressing Glial Activation, Synaptic Deficits, and Neuronal Apoptosis in Rats. Front Immunol 2018, 9, 2889.
(38) Shen, L.; Zhang, J. NMDA receptor and iNOS are involved in the effects of ginsenoside Rg1 on hippocampal neurogenesis in ischemic gerbils. Neurol. Res. 2007, 29, 270-273.
(39) Zhong, S. J.; Wang, L.; Gu, R. Z.; Zhang, W. H.; Lan, R.; Qin, X. Y. Ginsenoside Rg1 ameliorates the cognitive deficits in D-galactose and AlCl3-induced aging mice by restoring FGF2-Akt and BDNF-TrkB signaling axis to inhibit apoptosis. Int. J. Med. Sci. 2020, 17, 1048-1055.
(40) Fang, F.; Chen, X.; Huang, T.; Lue, L. F.; Luddy, J. S.; Yan, S. S. Multi-faced neuroprotective effects of Ginsenoside Rg1 in an Alzheimer mouse model. Biochim Biophys Acta 2012, 1822, 286-292.
(41) Do, E. S. C.; Da, S. F. F.; Ilha, J.; Duarte, M.; Duarte, T.; Santos, A. Spinal cord injury by clip-compression induces anxiety and depression-like behaviours in female rats: The role of the inflammatory response. Brain Behav. Immun. 2019, 78, 91-104.
(42) Jalan, D.; Saini, N.; Zaidi, M.; Pallottie, A.; Elkabes, S.; Heary, R. F. Effects of early surgical decompression on functional and histological outcomes after severe experimental thoracic spinal cord injury. J Neurosurg Spine 2017, 26, 62-75.
(43) Basso, D. M.; Beattie, M. S.; Bresnahan, J. C. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 1995, 12, 1-21.
(44) Franz, S.; Ciatipis, M.; Pfeifer, K.; Kierdorf, B.; Sandner, B.; Bogdahn, U.; Blesch, A.; Winner, B.; Weidner, N. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain. Plos One 2014, 9, e102896.
(45) Xie, C. L.; Li, J. H.; Wang, W. W.; Zheng, G. Q.; Wang, L. X. Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. Life Sci. 2015, 121, 145-151.
(46) Hearn, J. H.; Cross, A. Mindfulness for pain, depression, anxiety, and quality of life in people with spinal cord injury: a systematic review. Bmc Neurol. 2020, 20, 32.
(47) Lee, A.; Wen, B.; Walter, M.; Hocaloski, S.; Hodge, K.; Sandholdt, N.; Hultling, C.; Elliott, S.; Krassioukov, A. V. Prevalence of postpartum depression and anxiety among women with spinal cord injury. J. Spinal Cord Med. 2021, 44, 247-252.
(48) Wu, J.; Stoica, B. A.; Luo, T.; Sabirzhanov, B.; Zhao, Z.; Guanciale, K.; Nayar, S. K.; Foss, C. A.; Pomper, M. G.; Faden, A. I. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment. Involvement of cell cycle activation. Cell Cycle 2014, 13, 2446-2458.
(49) Wu, J.; Zhao, Z.; Sabirzhanov, B.; Stoica, B. A.; Kumar, A.; Luo, T.; Skovira, J.; Faden, A. I. Spinal cord injury causes brain inflammation associated with cognitive and affective changes: role of cell cycle pathways. J. Neurosci. 2014, 34, 10989-11006.
(50) Soltani, Z. H.; Ghadiri, T.; Vafaee, M. S.; Ebrahimi, K. A.; Karimipour, M.; Fallahi, S.; Ghorbani, M.; Shahabi, P. A potential entanglement between the spinal cord and hippocampus: Theta rhythm correlates with neurogenesis deficiency following spinal cord injury in male rats. J. Neurosci. Res. 2020, 98, 2451-2467.
(51) Sefiani, A.; Geoffroy, C. G. The Potential Role of Inflammation in Modulating Endogenous Hippocampal Neurogenesis After Spinal Cord Injury. Front Neurosci 2021, 15, 682259.
(52) Shen, L. H.; Zhang, J. T. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurol. Res. 2004, 26, 422-428.
(53) Gage, F. H. Mammalian neural stem cells. Science 2000, 287, 1433-1438.
(54) van Praag, H.; Schinder, A. F.; Christie, B. R.; Toni, N.; Palmer, T. D.; Gage, F. H. Functional neurogenesis in the adult hippocampus. Nature 2002, 415, 1030-1034.
(55) Qiu, L. L.; Pan, W.; Luo, D.; Zhang, G. F.; Zhou, Z. Q.; Sun, X. Y.; Yang, J. J.; Ji, M. H. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca(2+)/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 2020, 17, 23.
(56) Lee, S.; Yang, M.; Kim, J.; Son, Y.; Kim, J.; Kang, S.; Ahn, W.; Kim, S. H.; Kim, J. C.; Shin, T.et al. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice. Brain Res. Bull. 2016, 121, 48-58.
(57) Colucci-D'Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21.
(58) Wang, Q. C.; Lu, L.; Zhou, H. J. Relationship between the MAPK/ERK pathway and neurocyte apoptosis after cerebral infarction in rats. Eur Rev Med Pharmacol Sci 2019, 23, 5374-5381.
(59) Mu, J.; Wang, R.; Li, G.; Li, B.; Wang, Z. Midazolam accelerates memory deterioration and neuron apoptosis of Alzheimer's disease model rats via PKA-ERK-CREB signaling pathway. Panminerva Med. 2020.
(60) Chen, S. D.; Wu, C. L.; Hwang, W. C.; Yang, D. I. More Insight into BDNF against Neurodegeneration: Anti-Apoptosis, Anti-Oxidation, and Suppression of Autophagy. Int. J. Mol. Sci. 2017, 18.
(61) Kim, H. S.; Jeon, I.; Noh, J. E.; Lee, H.; Hong, K. S.; Lee, N.; Pei, Z.; Song, J. Intracerebral Transplantation of BDNF-overexpressing Human Neural Stem Cells (HB1.F3.BDNF) Promotes Migration, Differentiation and Functional Recovery in a Rodent Model of Huntington's Disease. Exp Neurobiol 2020, 29, 130-137.
(62) Langhnoja, J.; Buch, L.; Pillai, P. Potential role of NGF, BDNF, and their receptors in oligodendrocytes differentiation from neural stem cell: An in vitro study. Cell Biol. Int. 2021, 45, 432-446.
(63) Wei, Z.; Liao, J.; Qi, F.; Meng, Z.; Pan, S. Evidence for the contribution of BDNF-TrkB signal strength in neurogenesis: An organotypic study. Neurosci. Lett. 2015, 606, 48-52.
(64) Scharfman, H.; Goodman, J.; Macleod, A.; Phani, S.; Antonelli, C.; Croll, S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol. 2005, 192, 348-356.
(65) Fumagalli, F.; Madaschi, L.; Caffino, L.; Marfia, G.; Di Giulio, A. M.; Racagni, G.; Gorio, A. Acute spinal cord injury reduces brain derived neurotrohic factor expression in rat hippocampus. Neuroscience 2009, 159, 936-939.