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Abstract: There are several women safety devices in the market today. Women who suffer these 9 

atrocities are even denied basic human rights, as set out in the Criminal Code. Women who are not 10 

as fit (physically) as men need to be protected from the evils of society. The introduction of actions 11 

and procedures for healthier women is not adequate and needs to be well improved. However, these 12 

devices are not fool- proof. The summary of this paper is a partial result of a challenging problem 13 

faced during design and construction a fool-proof Smart Jacket for women’s safety using fabric sen- 14 

sors. The jacket consists of fabric Sensors, Accelerometer, Gyroscope and Magnetometer, which are 15 

strategically placed to record maximum variations in signal for minimum movement in subject’s 16 

body. The primary challenge is not in design or construction of a jacket, but in accurately classifying 17 

violent activity from animated activity. Both violent activity and animated activities have common- 18 

ality in sensor excitation. There are subtle differences which needs to be extracted to train a Machine 19 

learning algorithm to learn these particular patterns. The process undertaken by other studies con- 20 

verges at a successful use of orientation sensors, fabric sensors and an effective system of integrating 21 

those sensors, in the form of a device, belt or a wearable gadget which can be worn by the subject 22 

and machine learning models have been applied on the data collected from these devices with var- 23 

ying degree of success. However, the major gap in the studies of the past is that none of the study 24 

led to a successful classification between normal rapid motion and violent assault. Thorough and 25 

granular study of previous research spanning all necessary spectrum of technology such as attack 26 

dynamics between an assaulter and the victim was undertaken to select the sensor position, leading 27 

to selection of motion parameters that would later become distinguishable features. The primary 28 

challenge in achieving distinct classification is the similarity in the data patterns of rapid motion of 29 

the body which are common in normal physical activities such as brisk action, playing games, run- 30 

ning, or dancing. Using feature engineering and statistical analysis, new features have been created 31 

using a novel algorithm which uses the spatial-temporal parameters of the data and creates a sensor 32 

activation vector for a predefined length of time-stamped data. The training data has been collected 33 

from laboratory experiments in uncontrolled environment and the subjects were of different body 34 

types, thus ensuring that there would not be any bias in the data and the resulting model would 35 

perform well on the real data. The classical machine learning algorithms such as Decision Trees, 36 

KNN, SVM and Naïve Bayes have been used. The best result were obtained using Deep learning; 37 

the final result being a distinct classification between rapid movement from normal physical motion 38 

and rapid movement due to physical assault.  39 

 40 

 41 

Keywords: Multivariate Regression Analysis; Physical Violence; Stretch Sensors; Smart jacket; 42 

Woman Safety; 43 

 44 

Citation: Lastname, F.; Lastname, F.; 

Lastname, F. Title. Sensors 2022, 22, 

x. https://doi.org/10.3390/xxxxx 

Academic Editor: Firstname Last-

name 

Received: date 

Accepted: date 

Published: date 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Sensors 2022, 22, x FOR PEER REVIEW 2 of 21 
 

 

1. Introduction 45 

It is clearly marked from the facts and figures that incidents against woman have 46 

increased over the past decades [1]. Many gadgets have been devised which continuously 47 

track the events for the protection of the women such as sound grenade e-alarm, safety 48 

rod, pepper spray, smart pendant, safety torch with shock effect etc. [2]. These gadgets 49 

won’t work when the subject is caught off guard so there is a need of a system/gadget that 50 

would be reactive against any physical movement without any human trigger and record 51 

maximum motion responses when it is worn by the subject in an uncontrolled environ- 52 

ment. Based on earlier studies, it was clear that a significant amount of work had been 53 

done on body motion analysis and body centric calculations such as orientations, acceler- 54 

ation, and so on. Identifying the shortcomings and gaps in the previous research sheds 55 

light on the areas that were not addressed, one of which is body motion analysis with the 56 

goal of distinguishing signals produced by normal rapid motion from signals produced 57 

by the subject's resistance during an assault.  58 

In our research work, a jacket was designed to record orientation, acceleration, align- 59 

ment, stretching of the shoulders and elbows, as well as pressure applied to the body, in 60 

order to capture the entire body's motion. Sensors were strategically placed on the body 61 

to gather information. [16–18] The challenge was thus seen as a hardware problem with 62 

clearly defined goals, such as determining the optimal sensor data acquisition rate so that 63 

sufficient data can be acquired, resulting in sufficient variances in the data. The problem 64 

had been simplified to a machine learning problem when the proper hardware configu- 65 

ration had been established. Data was studied descriptively and inferentially to determine 66 

the solution to the challenge, which was approached as a data science problem. After do- 67 

ing a study of the data, it was discovered that using a single type of person to wear the 68 

jacket and generate the signals would result in biased results. As a result, three separate 69 

subjects were selected, and the data from each was integrated at the time of model devel- 70 

opment. The research was separated into two phases: the first phase took place in a con- 71 

trolled environment, while the second phase took place in a real-world, non-controlled 72 

environment. "Both standard machine learning models and deep learning models based 73 

on CNN were used in both phases," says the researcher. " In phase-one trials, the accuracy 74 

of the machine learning models was highly acceptable; nevertheless, the data obtained in 75 

a controlled environment was not a realistic depiction of real-world data. " Thus, Phase 76 

two was conducted in a far more robust and non-controlled manner than the previous 77 

phase. The machine learning models produced for non-controlled data were found to be 78 

unsatisfactory, which resulted in feature engineering and feature exploration, during 79 

which some of the sensors' data was removed and a novel technique was devised to pre- 80 

process the data before it could be used. Feature engineering is centered on creating or 81 

discovering new input feature vectors from your existing feature vectors. In general, it can 82 

be a part of data cleaning process or can be viewed as an advanced stage of machine learn- 83 

ing when all means of extracting input data from the system/phenomenon is exhausted.  84 

Feature engineering is based on transforming the feature vectors without changing 85 

the data itself. As one can recall, machine learning models are nothing but algebraic equa- 86 

tions which predicts or classifies. Feature engineering techniques enables data scientists 87 

to view the data in a different dimension by changing the representational aspects of the 88 

data, but without changing the real numbered value and the ratios inherent between fea- 89 

ture vectors [1], [2].  90 

 In this study, a temporal representation of data was constructed by rearranging the same 91 

data using the new approach, which resulted in considerably better machine learning 92 

models than the previous algorithm. The examination of the model was carried out in 93 

accordance with industry standards  94 

This is the go-to method for data scientists to improve the model performance. Here is the 95 

reason why. Key information can be isolated and highlighted thus allowing the algorithm 96 

to focus on what are the most important features that affect the model. 97 

 98 
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2. Literature Review 99 

Previous body motion analysis research has been conducted on a variety of plat- 100 

forms. Sensors and data gathering methods are frequently the difference. Some of them 101 

are standalone devices, such as pendants with a gyroscope, accelerometer, and GPS trans- 102 

mitter. Wearable gadgets that can monitor heart rate, temperature, pulse, and other phys- 103 

iological characteristics are another option. The issue statement in the earlier research on 104 

fabric sensors and wearable technology in general is different. It's worth noting that dif- 105 

ferent study groups have handled the subject for various reasons. Because the technology 106 

is still in its early stages, the researchers are in an experimental mindset, focusing their 107 

efforts on seeing whether a viable hardware system can be constructed. The use of ma- 108 

chine learning and AI algorithms is a common thread that runs across much of the prior 109 

research. Whatever the data and sensor, the numbers provided by the sensors must be 110 

processed using proven data centric processing methods, and machine learning models 111 

must be constructed to accomplish classification and prediction. When comparison re- 112 

search was required, the current study treated the prior study in the context of each pre- 113 

vious study's aims, with no mention of which previous study had a superior outcome or 114 

strategy. The reader's attention has been drawn to the originality of the technique used in 115 

this research by highlighting the gaps observed in earlier studies. There was no prior re- 116 

search that used a data-centric strategy to create a fully functional smart jacket that could 117 

provide sensor inputs that corresponded to the activities. It was also discovered that alt- 118 

hough the previous study had the depth of research for a specific activity or body motion, 119 

the breadth of multisensory fusion from wearable sensors and fabric sensors had not been 120 

examined in the context of real-world deployment. For the protection of women's safety, 121 

many systems have been created, including FIGHT BACK, STREETSAFE, SENTINEL, 122 

ONWATCH, GUARDLY, SURAKSHA, BONITTA, and others. [7]–[13]. When a person is 123 

being resisted against an assault, methods or technologies that continually monitor the 124 

variables are required. 125 

A smartphone that acts as a portable women's protection system for sending mes- 126 

sages or calling the guardian has been proposed as one of the solutions to safeguard 127 

women. Pepper spray, a pistol, and a smart necklace are among the other items. [14] [15]. 128 

When an attack happens, the victim or a witness is overcome by the perpetrator after a 129 

brief struggle, and the victim is rendered powerless, unable to utilize her smartphone or 130 

other equipment as a safety mechanism to defend herself. "Peace is not the absence of 131 

conflict, but the existence of creative choices for reacting to likely conflict," Dorothy 132 

Thompson says. 133 

It's a programme that can identify a violent occurrence without alerting the perpe- 134 

trator and can automatically deliver warning signals when the cloth is strained. A solution 135 

for this kind of application is consistent and automatic categorization of physical activi- 136 

ties. To collect such signals, you'll need a sensor or computer that records those factors. It 137 

is feasible to create a gadget that will continually capture the signal using wearable tech- 138 

nology. Advanced and complicated data gathering, storage, and analysis methods were 139 

required due to the high amount, pace, and diversity of data.[16] [17] Wearable physio- 140 

logical metric monitoring systems based on microelectronic integration, wireless commu- 141 

nication, and analytics are among these innovative technologies [41]. 142 

Advances in sensor technology and wireless networks have made it possible for sen- 143 

sors to be used for human activity detection in terms of capability, cost and reliability for 144 

various applications over the past decade. A large amount of data will soon be generated 145 

using these miniaturized sensors. In order to retrieve useful information, the need for pro- 146 

cessing techniques often increases in time as the data supply increases. Consistent and 147 

automatic classification of physical activities is needed for a solution for our form of ap- 148 

plication. “Human activity recognition (HAR) has become one of the most important and 149 

influential research topics in different fields”, “such as patient health care over the past 150 

few decades”.  [43] [27] [38], fall detection of elderly people [44] [45][46][32], security and 151 

safety system [47] [48] etc. 152 
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The purpose of activity recognition is to recognize the acts performed by a person 153 

who has given a collection of self-inspections and the surroundings.[49] There are numer- 154 

ous of system available which automatically classify the human physical activity per- 155 

formed by the subject in many different applications in the field. Figure 1 summarizes the 156 

domain areas for human activity identification (HAR). Human physical activity refers to 157 

static (sitting, standing, lying) postures. [50] [51], transition activities (sit-to-stand, sit-to 158 

lie, stand to-walk) [52], [53], Dynamic motions (Walking, Running, stairs climbing, exer- 159 

cising, housed hold chores) [54] [55].  160 

 161 

 162 
Figure 1:  Applications areas of Human Activity Recognition (HAR) 163 

 164 

In previous research, Human Activity Recognition (HAR) uses different types of ap- 165 

proaches, such as: 1) Computer vision-based HAR- It uses cameras to record the various 166 

activities [56] [53] [57] 2) Environmental sensor-based HAR- In order to detect events, sen- 167 

sors and signals  168 

such as sound sensors, light sensors or RFID tags are used, [58] [59] 3) Wearable sensor- 169 

based HAR-These are the sensors that are mounted on the various parts of the body, such 170 

as accelerometers, strain, stretch, and then analyze the information to identify the activi- 171 

ties [21] [14], [60], [61] and 4) Time geography-based HAR- Using time and location data 172 

to classify human activities [62] [53], [63]–[65].  173 

 174 

Many activity categorization algorithms based only on accelerometer data have been sug- 175 

gested for Android or other smart-phone platforms [15-18] .Differentiating between walk- 176 

ing, running, cycling, and driving is done using accelerometer-based systems (Fang et al., 177 

2012). Accelerometers have also been used to classify exercise activities (Muehlbauer et 178 

al., 2011). Various authors have proposed various classification schemes and feature ex- 179 

traction methods to identify different activities from a range of data; and have suggested 180 

various algorithms for the recognition of human postures such as decision trees, KNN, 181 

hidden Markov model, random forest, support vector machine, and artificial neural net- 182 

work to recognize different body activities [ 22-26] .Other approaches for classifying data 183 

from wearable sensors have also been employed. Model accuracy of over 95% has been 184 

attained using these approaches [21] . Other elements, such as the body's BMI, acceleration 185 

statistics, and physiological measures of the individual and during a particular activity, 186 

are recommended for further development. Singular value decomposition (SVD), multi- 187 
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scale entropy, fuzzy logic, and Naïve Bayes have all been used to automatically identify 188 

human body positions [31-36] 189 

 190 

Limitations: 191 

Different groups and industries have been researching sensor-based Human Activity 192 

Recognition (HAR) and Violent Activity Recognition (VAR), however, multiple questions 193 

have been addressed using different technologies. Based on the complexity of tasks they 194 

classify in the field of sensor-based activity detection, human activity recognition (HAR) 195 

techniques can be checked”. [39], [40-42] The primary issues rely on the number of activi- 196 

ties, the varieties of actions, the variety of sensors, comfortlessness, opacity & protocols 197 

for data collection which lead to a decrease in accuracy.[43], [44-46] 198 

Figure 2 outlined the difficulties or shortcomings behind the detection by sensor systems 199 

of normal motion of violent action. 200 

 201 
Figure 2: Limitations behind sensor-based recognition of human activity. 202 

 203 

Hardware Architecture  204 

 205 

The fabric sensors are strategically placed on the jacket in keeping the person 's reaction 206 

in mind when under violent attack as shown in Table 1.  207 

Table 1:  Sensor Positioning on the wearables 208 

Fabric Sensor Sensor Positioning 

Pressure Right and Left Wrist 

Stretch Right and Left Elbow and Shoulder 

3 DOF A/M/G 

Accelerometer, Magnetometer, Gyroscope) 

Wrist 

Processing Unit (Adafruit Flora Microcontroller)  Chest 

\ 209 

The rationale behind the sensor's position is that the first response to the shoulders and 210 

elbows immediately moves the subject / victim. The change of location causes the sensor 211 

values for pressure and elongation to change, which is further reported by the digitized 212 

flora microcontroller. Furthermore, on a computer, the wireless network transmitter sends 213 

the signal to the receptor. The jacket is made up of bus lines that bind the microcontroller 214 
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to the sensors, acting around the jacket as a conductive circuit. Using a high conductivity 215 

cloth, the bus lines were made, cut into a fine line and woven into a fabric to prevent 216 

contact losses during violent movements [14,38,39,40,41]. The jacket was built using con- 217 

ductive bus lines intertwined only to be able to carry out such a violent motion study 218 

easily. The information is processed via conductive bus lines linking all sensors to the data 219 

collection flora system. The change in resistance of the elongation and pressure sensors is 220 

measured by means of a 10-ohm resistance mounted in parallel with each of the sensors 221 

and the alignment of the bus lines around the jacket is precisely arranged so that the Flora 222 

microcontroller independently detects the change in resistance of each sensor and there is 223 

a bit-enabled transition from the integrated analogue to the sensor[14] . The Figure 3 224 

shows the Hardware architecture of the system. 225 

 226 

 227 
             228 

Figure 3:  Hardware Architecture of the System 229 

                            Software Architecture  230 

                            The sensor data is collected from the fabric pressure and stretch sensor which is mounted  231 

                             on the jacket that is worn by the subject.  232 

 233 

a) Data Collection 234 

There is a change in sensor parameters when there is a sudden pressing or twisting of a 235 

subject's elbow or hand. The respondent was chosen for the collection of data by age (20- 236 

25) and weight (45-55) kg. The data is collected at a frequency of 50 milliseconds. Every 50 237 

milliseconds, the device produces a single full frame represent a unique data set of all 238 

sensors, timestamps (epoch time) and expected to operate signs.  239 

                                  Feature vector containing 15 features + Time stamp is received every 50 ms. 240 

20 feature vector containing 15 features + Time stamp is received every Second 241 

                             A total of 50,000 data points are collected in Controlled environment and controlled envi 242 

                             -ronment.  243 
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                             Population Size = 50,000,   Sample Size = 20,000 244 

                             The subject performs the various activities in its own manner and was not limited to the  245 

                             manner in which the activities were to be carried out, but only in the order A1, A2, A3,            246 

                             A4, A5 and A6 as shown in Table 2. 247 

 248 

b) Data Pre-processing 249 

The Data which is collected from the sensors is a raw data which contains noisy infor- 250 

mation so it needs to be cleaned to get the relevant data before applying various machine 251 

learning algorithms. 252 

Table 2:  Description of Activities/Events 253 

Activity Description of the Activity 

Stationary (A1) The action is stationary and there are no data changes ob-

served. 

Walking (A2) The person wears a jacket and walks at a regular speed 

around it. 

Hurried Walking (A3) The person runs around quickly to strengthen physical mo-

bility. 

Jump-Turn-Twist (A4) The person Jumps and Twists in exercising or playing. 

Tango (A5) The person dances with another person who, as part of the 

tango style of dancing, often holds the subject's wrist. 

Violent Motion (A6) The person is being aggressively attacked. 

 254 

Data collection rate for our study is 1 data frame per 50 milliseconds. Over 500 seconds 255 

per operation, almost 10,000 data points were obtained from the entire data set population 256 

[66]. For each task, each activity window size is about 5-7 seconds and about 15 percent of 257 

the frames have been randomly selected as the sample population. For identical opera- 258 

tions, there is a certain amount of windows overlapping. For the signals at each interval, 259 

overlapping plays an important role in depending on the other interval signals. If we do 260 

not consider it, there is a risk of losing a significant data that is at the boundary of the 261 

window. This helps us to extract and pick important characteristics from the dataset dur- 262 

ing model growth. It also assists in the classification of transitional operations. For activity 263 

analysis, these frames were considered. For each frame type, a total of 8,000 to 10,000 data 264 

frames are reported and 1,500 sample frames are randomly chosen, consisting of one set 265 

of all acts [66-67] . Various pre-processing techniques are used to extract the meaningful 266 

data from the raw information such Principal component analysis (PCA), Multi-regres- 267 

sion analysis (MRA) to ranked the highly correlated features as shown in Figure 4. 268 

 269 

 270 
 271 

 272 

 273 

 274 

 275 

 276 

 277 

Figure 4:  Software Architecture of the System 278 

 279 
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c) Implementation and Results 281 

After pre-processing, different supervised training techniques have been used in the da- 282 

taset such as Naïve Bayes (NB), Support Vector Machine (SVM) , Decision Tree (DT), K- 283 

Nearest Neighbor (K-NN) in the controlled and uncontrolled environment [66-67]. 284 

                             Figure 5 shows the classification accuracy for various algorithms. The support vector  285 

                             machine provides the best accuracy of 97.6 percent at a speed of 0.85 seconds. This figure  286 

                             summarises that the model used is perfectly capable of predicting most of the sample of  287 

                             violent data. It also summarizes the accuracy which we achieved on the data that is rec- 288 

                             orded in the controlled environment in which ranges and activity both are defined in the  289 

                             controlled environment. Because the data is controlled and too many outliners and too  290 

                             much variance was observed. 291 

                              292 

                              293 
Figure 5: Accuracy model in controlled and uncontrolled environment 294 
 295 

The accuracy is 98.7 percent in our dataset using Deep Learning Model. In controlled en- 296 

vironment, the naïve Bayes algorithm was 96.9 but now in controlled environment using 297 

same algorithm is 69.7 which is remarkable decrease i.e. 27% decrease in accuracy that is 298 

a staggering number. Because the bias is less and variance is more and also noise is more 299 

so main challenge is not only the no. of subjects is more but also the overlapping of the 300 

features i.e. outliers and data pre-processing cannot remove. Similarly, other models show 301 

the decrease in accuracy percentage rate. 302 

For the recognition of similar activities as shown in Figure 6 is difficult to recognize as 303 

hand gestures are same in both the activities i.e., normal motion and violent activity.  304 

 305 

 306 

Figure 6:  Similar Gestures of Hand in recognition of activity[14] 307 
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There are several limitations to the conventional methods to identify violent activity from 308 

normal motion from sensor data. Despite the development of traditional algorithms, there 309 

are major drawbacks or limitations which has been discussed below: 310 

                             First, conventional predictions are based on hand-crafted attributes that rely on unique  311 

                             domain knowledge and human experience. “In the case of task-specific environmental  312 

                             setup, these models will perform well but in real-time, for more general scenarios, the  313 

                             performance is low, and it will take more running time to construct an effective activity           314 

                             recognition model”. 315 

Secondly, the characteristics learned are shallow in nature in the case of hand-designed 316 

methods and generally represent some statistical knowledge, such as mean, standard de- 317 

viation, variance, amplitude, frequency, etc. Although low-level activities such as jogging, 318 

biking, walking, etc. can be easily detected using these shallow features, identifying com- 319 

plex activities that are identical would be difficult or almost impossible. It is necessary to 320 

select appropriate features to improve the accuracy in the uncontrolled- environment 321 

which leads to the feature engineering because we cannot change the data, data is the 322 

reality and the phenomenon and the experiment and what we can do is to look out the 323 

data in a different way. So, if you have dependent variable then you can label the variable 324 

and the label become the features and if you transform those features is actually go into 325 

the feature creation phase. Feature engineering is the process of the creation of those fea- 326 

tures or attributes that already exist in the dataset. So, using that dataset we are not adding 327 

more information to it by creating more features so we have many ways to do it but we 328 

have developed a new way of doing it using. temporal context. One of the key original 329 

work has been done as a part of study is the development of sensor activation table of 330 

matrix. Feature engineering is centered on creating or discovering new input feature vec- 331 

tors from your existing feature vectors. In general, it can be a part of data cleaning process 332 

or can be viewed as an advanced stage of machine learning when all means of extracting 333 

input data from the system/phenomenon is exhausted.  Feature engineering is based on 334 

transforming the feature vectors without changing the data itself. As one can recall, ma- 335 

chine learning models are nothing but algebraic equations which predicts or classifies. 336 

Feature engineering techniques enables data scientists to view the data in a different di- 337 

mension by changing the representational aspects of the data, but without changing the 338 

real numbered value and the ratios inherent between feature vectors 339 

                            Sensor Activation Table (SAT) and Matrix 340 

Sensor activation table (SAT) is novel algorithm created as a part of the present study. The 341 

algorithm takes sensor data and transform the data into a new dimension representing 342 

the mean deviation, Range, Kurtosis, and the temporal variance in peaking time for each 343 

sensor. The SAT enhances the hidden Information in the physical activity which otherwise 344 

is easy to be misconstrued as noise and helps achieve a clear distinction between closely 345 

similar activities. For example, dance and violent attack have both similar patterns and it 346 

leads to false positives or false negatives. To overcome the situation, there was a need to 347 

see the data in a different way.  348 

The principal logic in construction SAT is borrowed from Time domain analysis of sensor 349 

data. Data collected by sensors is segregated in batches or windows which has a fixed 350 

window size. It is assumed that each window captures the activity in a given instant of 351 

time. It is equivalent to saying that each window of size lets day 100 data points is a snap- 352 

shot of activity in a single moment. If one were to collect a large amount of such moments, 353 

and then analyzed the data. There would be negligible loss of information.  354 

In this study, each window is transformed into a single vector which holds a different 355 

kind of information derived out of the 100 points windows.   356 

The data that first gets collected directly from the sensor amount to 15 features. Using 357 

features selection techniques, 4 of the features were found to add no significant value. 358 

Using the 11 remaining features, the data is then divided into windows of 100 data points. 359 
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Each window is subjected to the Senor Activation Algorithm which has been created in 360 

this study. The SAA will convert each window into a Sensor Activation vector (SAV). 361 

Stacking all the SAV’s together will form the SAT. A 11 featured window with 100 data 362 

points is converted into vector containing 44 elements. This means that each of the features 363 

in the window is transformed into 4 fields which represents statistical measures describ- 364 

ing the 100 points of that particular feature. A snapshot of the same is represented below 365 

in Table 3. 366 

Table. 3: Representation of Feature Extraction using Sensor Activation Table 367 

 368 

  369 
The 4 statistical measures extracted for every feature in the window. 370 

Using concepts of inferential statistics, we have created newer methods like TT-K      371 

large variance etc., which is a part of the SAT as shown in Table 11 and Figure 7. 372 

 373 

 Standard Deviation: The standard deviation is a measure of the amount of variation  374 

or dispersion of a set of values. A low standard deviation indicates that the values  375 

tend to be close to the mean of the set, while a high standard deviation indicates that   376 

the values are spread out over a wider range.  377 

 378 

                                 (1) 379 

 380 

 σ= population standard deviation, 𝑁𝑁 = the size of the population,𝑥𝑥𝑖𝑖  =each value 381 

from the population, µ=the population mean  382 

 383 

  384 
 385 

Figure 7:  Features Extraction for Sensor Activation Table (SAT) 386 
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Range: Difference between the highest value and lowest value, i.e. means how far it is 387 

stretching. 388 

           Range = 𝐻𝐻𝐻𝐻𝐻𝐻ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝐿𝐿𝐿𝐿𝐿𝐿 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣                            (2) 389 

Kurtosis: It is the representation how many % of points lying in the tail and how many 390 

points lying in the peak. Kurtosis is a measure of how differently shaped are the tails of a 391 

distribution  392 

                 Kurtosis =
𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝 𝑣𝑣𝑝𝑝𝑣𝑣𝑣𝑣𝑤𝑤𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑡𝑡𝑝𝑝𝑖𝑖𝑣𝑣 𝑣𝑣𝑝𝑝𝑣𝑣𝑣𝑣𝑤𝑤                                 (3)  393 

The normal curve is called Mesokurtic curve. If the curve of a distribution is more outlier 394 

prone (or heavier-tailed) than a normal or mesokurtic curve, then it is referred to as a 395 

Leptokurtic curve”. “If a curve is less outlier prone (or lighter-tailed) than a normal curve, 396 

it is called as a platykurtic curve”. “If the kurtosis is less than zero, then the distribution 397 

is light tails and is called a platykurtic distribution”. “ If the kurtosis is greater than zero, 398 

then the distribution has heavier tails and is called a leptokurtic distribution”. Kurtosis is 399 

measured by moments and is given by the following formula – 400 

 401 

                                                            (4) 402 

                 µ4= 𝑓𝑓ourth central moment 403 
                 𝜎𝜎4 = standard deviation 404 
 405 

Time to K large variance (TT-K Variance) - It is the variance of the data index where K 406 

small and K large values in sensor data and these large values and small values are 407 

mapped to the data index as shown in Figure 1. 408 

                             The experiment conducted in an uncontrolled environment with a subject wearing the  409 

                             smart jacket yields us data points. After using principal component analysis, the more  410 

                             important features are selected for analysis. Out of 15 sensor values, 11 values are selected. 411 

                                    412 
                                 Table 4:  Pseudo Code for Sensor Activation Table (SAT)  413 

 414 

 415 
 416 

 Verify if the number of Columns in the Input Table is 11 417 

{ 418 

<Query the length of the Input Table> 419 

 420 

Length_of_Input_Table/100 = Total_Data_Frames  421 

SAT_Table= Create a new Data Frame consisting of 44 columns 422 

[For each data frame consisting of 11 columns * 100 rows] 423 

 424 

 (Loop through every column and calculate the) 425 

{ 426 

Standard Deviation (),  427 

Range (), 428 

TTKL _Variance (), 429 

Kurtosis (). 430 

Add the 4 values to SAT_Table and repeat the same for remaining 10 columns. 431 

} 432 

 <Verify if the SAT_Table has 44 columns > 433 

 434 

 < if the length of SAT_ Table= Total_Data_Frames> 435 

  436 

Calculate TT-K variance.  437 

                                  } 438 
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TT-K = Time to K variance ultimately calculates the variance of time difference recorded 439 

when the data achieves K highest and K lowest points. K is determined based on the frame 440 

size. We take K= 10% of Length of Data Frame. For ex. If Length of Data Frame is 100, then 441 

K is chosen as 10.   442 

Time stamping of each data point is the key here. To make things simple, every hun- 443 

dred points of data is time-stamped from 1 to 100. And every hundred points is selected 444 

as one Data Frame. Sensor activation table is created by calculating the SD, Range, Kurto- 445 

sis and the TT-K Variance for each sensor data. For a list of X features, SAT will produce 446 

4X features, thus increasing the features without losing information or adding new infor- 447 

mation which does not belong to the experiment.  448 

A ‘K’ value of 10 means that the 5 highest and 5 lowest values are chosen from the 449 

100 data points in the specific column. Their corresponding time stamp is recorded and 450 

the variance in the timestamp is calculated. This variance is called the TT-K_Var. What 451 

this effectively does is it creates a measure of pattern in the data with respect to time it 452 

takes for the data points to reach a certain highest or lowest point. For example, if a certain 453 

activity is robotic and is performed exactly at the same point and if it produces the same 454 

result, leading to a specific sensor value, then the TT-K_Var will be equal to the Range of 455 

the Data. If, however, the activity is random then there will be a large variance in the time 456 

stamps. TT-K variance is a measure of how disordered the sensor values are.  457 

It can be debated if calculating the entropy of the values would be enough. However, 458 

entropy of the data values would not factor in the temporal relationship of the time at 459 

which the data reaches a certain level.  460 

Pseudocode for calculating TT-K_var 461 

      Query the length of the column whose TT-K_variance is to be calculated. 462 

If (column length == 100) 463 

{ 464 

Set K= 10% of Column Length.  465 

Set K_Large = K/2 466 

Set K_Small= K/2 467 

} 468 

            { 469 

With the column as pivot sort the column in ascending order. 470 

Select the first five values from Timestamp column as K_Small 471 

Select the last five values from TimeStamp column as K_Large 472 

Combine K_Large and K_Small into a list  473 

Calculate the variance of the list and return the value as TTK_Variance for that par    474 

-ticular column.  475 

               } 476 



Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

 477 
 Figure 8: A granular insight logic of sensor Activation Table 478 
 479 

Every 100 data points of a single feature are transformed into a vector of 4 numbers which 480 

signify the SD, Range, Kurtosis and Temporal Variance of those 100 points as shown in 481 

Figure 8 and 9. 482 

 483 
                              Figure 9: A Flow chart of Sensor Activation Table. 484 
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The creation of Sensor Activation matrix is the crucial step in the algorithm. Any machine 485 

learning algorithm which will be applied here on will be on the sensor activation matrix. 486 

In the present study, an average of 1l lakh data points have been collected for each activity 487 

which amounts to 6 lakhs data points. The Figure 10, a flow chart representing the trans- 488 

formation of the columns into Data frames and then into Sensor Activation Matrix is 489 

clearly described.  490 

 491 
                                  Figure 10: Creation of Sensor Activation Matrix 492 

 493 

                             Model Evaluation 494 

The large amount of dataset (200000-300000) is taken to classify the normal motion and 495 

violent attack in a controlled environment. For large amount of dataset, conventional ma- 496 

chine learning algorithms does not perform well. In this case for classification used the 497 

deep neural network (DNN) or also known as Deep Learning by using framework Tensor 498 

Flow. The Model has achieved an accuracy of 99.8% which is good enough for the first 499 

run. Further we will use other algorithms to compare the results.  500 

 501 

                             Results and Discussions 502 

 503 

Various Algorithms have been applied using raw data and feature extracted data for var- 504 

ious activities such as Walking (0), Brisk Walking (1), Sit-Stand (2) (Transitional Activity), 505 

Jump-Hop (3), Tango (4), Violent Attack (5). Figure 5.5 shows the pair plot of raw data 506 

which depicts that there is a confusion for the recognition of various activities which 507 

shows the overlapping of the scatter points. Figure 11 shows after the features are ex- 508 

tracted and remove redundant features and attributes shows the correctly classified activ- 509 

ities.  510 
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 511 
Figure 11: Pair plot correlation coefficient for various activities (Feature Extracted Data) 512 
 513 

  514 
Figure 12: Classification Accuracy using various algorithms in un-controlled environment 515 

(Feature Extraction) 516 
 517 

It must be cleared here that by raw data what the author means is non-engineered data. 518 

In both cases, i.e., raw data and feature engineered data; information has not been re- 519 

moved or added. It is the mere representation of the data which has been changed. The 520 

experimentation was conducted for laboratory conditions where there were restrictions 521 

on the extent of movements that the subject wearing the jacket would indulge in. A 522 
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separate phase of experimentation was also conducted where in the previously imposed 523 

restrictions on movement were relaxed. Such data would now include extreme peaking 524 

and more closely resemble the real-world conditions. The subjects who were a part of the 525 

experimentation were of different body types as well and that ensured variation in the 526 

subject’s movement. This reduced any chance of bias that would otherwise be found, if 527 

only one type of subject producing all the data.   528 

The primary advantage that this study had was the fact that the smart jacket was 529 

built in-house and hence there was unlimited supply of data from experimentation. The 530 

author was not dependent on any external agencies to procure data. This led to individual 531 

study of each data and its sensor and how much it contributed to the overall information. 532 

Using multivariate analysis and principal component analysis, the features that were ir- 533 

relevant were removed from the data set. Once the data was processed for missing data 534 

and outliers, the data was frozen for analysis. This non engineered data was further sub- 535 

jected to machine learning algorithms. It is evident from the plots in Figure 58 and Figure 536 

67 that the algorithms used over the raw data before feature engineering produced lesser 537 

accuracy. The same algorithms when used over the feature-engineered data produced 538 

higher accuracy.   539 

In this study, feature engineering was done on the basis of statistical measures and 540 

temporal nature of the data. Since the main objective was real-time analysis, it would have 541 

been to achieve real time classification on a single set of sensors parameters. The reason 542 

being that a single set would contain momentary information and the variation is quiet 543 

large between different activities. The feature engineering techniques used in this study 544 

considers chunks of data with a pre decided window size. What this means is that, instead 545 

of using a momentary set of data, we can now use a window of activity which would be 546 

about 100 data points. This is with the assumption that the movement or transition is cap- 547 

tured in those 100 data points. These 100 data points are transformed using feature engi- 548 

neering and a new sensor activation matrix is created.  549 

Even the real-time testing is done on the sensor activation vector which is created out of 550 

100 data points. The conversion from raw data into sensor activation vector is computa- 551 

tionally feasible owing to faster processing speeds.  552 

 553 

Discussion and Conclusion  554 

The entire study as mentioned earlier was data driven. It was clear earlier that model de- 555 

velopment would require a large amount of data and of great variation. The data was 556 

collected with the right strategy of noise cancellation. The following figure summarizes 557 

the entire process involved in this study. To counter the issue of lower accuracy in real- 558 

world conditions, a new approach was of feature engineering. Instead of just relying on 559 

feature reduction, this study viewed data.  In terms of time domain responses; this study 560 

presents successful implementation of feature transformation. The data is seen both as a 561 

time varying and frequency varying phenomena. The real question is how different is 562 

sensor excitation for different activities. Adding the temporal aspect to the data was nec- 563 

essary to capture the noise related to random movements in highly animated activities 564 

such as dancing and violent attack.  Variation brought in by different subjects in real 565 

world conditions added noise. However, this noise had valuable information related to 566 

the activity which could help clearly classify closely related activities.  567 

Temporal transformation enabled for a different representation of the same data. A win- 568 

dow size for recording data was decided and in our case, we choose it as 100 data points 569 

per window. Every window of 11 features with 100 points was transformed into a 44 fea- 570 

ture vector. About 6000 such windows were transformed into a Sensor Activation Matrix 571 

of size 44x4000. This data set was further divided into testing and training data. An accu- 572 

racy of 98% was observed as shown in the figure 13. This rise in accuracy can be rationally 573 

attributed to the data transformation. Further, real time testing of the model, which 574 

means, real time classification of the activity would not involve a new step. The real time 575 

data will have to be grouped as a window and the converted into sensor activation a 576 
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matrix of size 44x1. This vector is used for prediction. The activity information and varia- 577 

tions are captured in a window of 100 points. The Sensor activation vector is a single line 578 

of data embodying the variations in those 100 points. 579 

 580 

 581 
Figure 13: Summaries of the Study 582 

 583 

Future Work 584 

 585 

A deeper study on subject independent body motion was desired which would involve a 586 

separate thread of study which could analyze the effect of the resulting model with chang- 587 

ing body type of the subject. As a part of future study, different kinds of subjects could be 588 

used to generate data and the model developed so far could be tested and verified. A large 589 

disparate body type which difference in age, height, weight and sex could reveal under- 590 

lying shortcoming which can be explored and solved. 591 

A limited number of body postures and activities were finalized for testing. However, as 592 

a future study, a granular approach including the sensor data glitches during activity tran- 593 

sition could be undertaken. In future study, there could be a customized algorithm devel- 594 

oped for prediction which can model even the glitches that occurs during a particular 595 

transition. For example, while transition from walking to brisk walking; there could be a 596 

sudden jump in the X axis of the accelerometer. However, if the subject were to transition 597 

from walking to dancing, then the changes could occur in many other feature vectors.  598 

Activity analysis could have been better if the models were developed as a pair-wise 599 

classification. Meaning that the activities such as walking and brisk walking are easy to 600 

classify. A study of the transition between these activities will be studied in future re- 601 

search. 602 

 603 
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