1. Kishi, K., Onuma, T. A. & Nishida, H. Long-distance cell migration during larval development in the appendicularian, Oikopleura dioica. Dev. Biol. 395, 299–306 (2014).
2. SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat. Rev. Mol. Cell Biol. 22, 529–547 (2021).
3. Scarpa, E. & Mayor, R. Collective cell migration in development. J. Cell Biol. 212, 143–155 (2016).
4. Shellard, A. & Mayor, R. All Roads Lead to Directional Cell Migration. Trends Cell Biol. 30, 852–868 (2020).
5. Theveneau, E. & Mayor, R. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial–mesenchymal transition, and collective cell migration. WIREs Dev. Biol. 1, 435–445 (2012).
6. Patan, S. Vasculogenesis and Angiogenesis. in Angiogenesis in Brain Tumors (eds. Kirsch, M. & Black, P. McL.) 3–32 (Springer US, 2004). doi:10.1007/978-1-4419-8871-3_1.
7. Otrock, Z. K., Mahfouz, R. A. R., Makarem, J. A. & Shamseddine, A. I. Understanding the biology of angiogenesis: Review of the most important molecular mechanisms. Blood Cells. Mol. Dis. 39, 212–220 (2007).
8. Arima, S. et al. Angiogenic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement. Dev. Camb. Engl. 138, 4763–4776 (2011).
9. Shellard, A., Szabó, A., Trepat, X. & Mayor, R. Supracellular contraction at the rear of neural crest cell groups drives collective chemotaxis. Science 362, 339–343 (2018).
10. Bailles, A. et al. Genetic induction and mechano-chemical propagation of a morphogenetic wave. Nature 572, 467–473 (2019).
11. Harmand, N., Huang, A. & Hénon, S. 3D Shape of Epithelial Cells on Curved Substrates. Phys. Rev. X 11, 031028 (2021).
12. Pieuchot, L. et al. Curvotaxis directs cell migration through cell-scale curvature landscapes. Nat. Commun. 9, 3995 (2018).
13. Vassaux, M., Pieuchot, L., Anselme, K., Bigerelle, M. & Milan, J.-L. A Biophysical Model for Curvature-Guided Cell Migration. Biophys. J. 117, 1136–1144 (2019).
14. Malheiro, V., Lehner, F., Dinca, V., Hoffmann, P. & Maniura-Weber, K. Convex and concave micro-structured silicone controls the shape, but not the polarization state of human macrophages. Biomater. Sci. 4, 1562–1573 (2016).
15. Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E. & Zadpoor, A. A. Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials 232, 119739 (2020).
16. Werner, M., Petersen, A., Kurniawan, N. A. & Bouten, C. V. C. Cell-Perceived Substrate Curvature Dynamically Coordinates the Direction, Speed, and Persistence of Stromal Cell Migration. Adv. Biosyst. 3, 1900080 (2019).
17. Bailles, A. et al. Genetic induction and mechanochemical propagation of a morphogenetic wave. Nature 572, 467–473 (2019).
18. Chevalier, N. R. The first digestive movements in the embryo are mediated by mechanosensitive smooth muscle calcium waves. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170322 (2018).
19. Sokolow, A., Toyama, Y., Kiehart, D. P. & Edwards, G. S. Cell Ingression and Apical Shape Oscillations during Dorsal Closure in Drosophila. Biophys. J. 102, 969–979 (2012).
20. Jaffe, L. F. & Créton, R. On the conservation of calcium wave speeds. Cell Calcium 24, 1–8 (1998).
21. Jaffe, L. F. Calcium waves. Philos. Trans. R. Soc. B Biol. Sci. 363, 1311–1317 (2008).
22. Han, S. J., Bielawski, K. S., Ting, L. H., Rodriguez, M. L. & Sniadecki, N. J. Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship between Traction Forces and Focal Adhesions. Biophys. J. 103, 640–648 (2012).
23. Ribeiro, A. J. S., Denisin, A. K., Wilson, R. E. & Pruitt, B. L. For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods doi:10.1016/j.ymeth.2015.08.005.
24. Hersen P et Ladoux B Nature 2011. Push it, pull it. Nature 470, 340–341 (2011).
25. le Digabel, J. et al. Magnetic micropillars as a tool to govern substrate deformations. Lab. Chip 11, 2630–2636 (2011).
26. Dokukina, I. V. & Gracheva, M. E. A model of fibroblast motility on substrates with different rigidities. Biophys. J. 98, 2794–2803 (2010).
27. Caballero, D., Voituriez, R. & Riveline, D. The cell ratchet: Interplay between efficient protrusions and adhesion determines cell motion. Cell Adhes. Migr. 9, 327–334 (2015).
28. Caballero, D., Comelles, J., Piel, M., Voituriez, R. & Riveline, D. Ratchetaxis: Long-Range Directed Cell Migration by Local Cues. Trends Cell Biol. 25, 815–827 (2015).
29. Raghavan, S., Desai, R. A., Kwon, Y., Mrksich, M. & Chen, C. S. Micropatterned Dynamically Adhesive Substrates for Cell Migration. Langmuir 26, 17733–17738 (2010).
30. Chandorkar, Y. et al. Cellular responses to beating hydrogels to investigate mechanotransduction. Nat. Commun. 10, 4027 (2019).
31. mvassaux/adhSC: Initial release of the adhesion cell model | Zenodo. https://zenodo.org/record/1187087#.YgZYXt_MK70.
32. In vivo confinement promotes collective migration of neural crest cells | Journal of Cell Biology | Rockefeller University Press. https://rupress.org/jcb/article/213/5/543/38331/In-vivo-confinement-promotes-collective-migration.
33. Mayor, R. & Etienne-Manneville, S. The front and rear of collective cell migration. Nat. Rev. Mol. Cell Biol. 17, 97–109 (2016).
34. Shellard, A. & Mayor, R. Supracellular migration – beyond collective cell migration. J. Cell Sci. 132, (2019).
35. Rougerie, P. et al. Topographical curvature is sufficient to control epithelium elongation. Sci. Rep. 10, 14784 (2020).