Anderson, J. R. (1990). The adaptive character of thought. Lawrence Erlbaum Associates, Inc.
Bateman, I., Dent, S., Peters, E., Slovic, P., & Starmer, C. (2007). The affect heuristic and the attractiveness of simple gambles. Journal of Behavioral Decision Making, 20(4), 365–380. https://doi.org/10.1002/bdm.558
Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22(1), 23. https://doi.org/10.2307/1909829
Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger, P. M., Griffiths, T. L., & Lieder, F. (2022). Rational use of cognitive resources in human planning. Nature Human Behaviour. https://doi.org/10.1038/s41562-022-01332-8
Cokely, E. T., Feltz, A., Ghazal, S., Allan, J. N., Petrova, D., & Garcia-Retamero, R. (2018). Decision making skill: From intelligence to numeracy and expertise. In K. A. Ericsson, R. R. Hoffman, A. Kozbelt, & A. M. Williams (Eds.), The Cambridge Handbook of Expertise and Expert Performance (2nd ed., pp. 476–505). Cambridge University Press.
Cokely, E. T., Galesic, M., Schulz, E., Ghazal, S., & Garcia-Retamero, R. (2012). Measuring risk literacy: The Berlin numeracy test. Judgment and Decision Making, 7(1), 25–47.
Cokely, E. T., & Kelley, C. M. (2009). Cognitive abilities and superior decision making under risk: A protocol analysis and process model evaluation. Judgement and Decision Making, 4(1), 20–33.
Crown, W., Buyukkaramikli, N., Thokala, P., Morton, A., Sir, M. Y., Marshall, D. A., Tosh, J., Padula, W. V., Ijzerman, M. J., Wong, P. K., & Pasupathy, K. S. (2017). Constrained Optimization Methods in Health Services Research—An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force. Value in Health, 20(3), 310–319. https://doi.org/10.1016/j.jval.2017.01.013
DeMiguel, V., Garlappi, L., & Uppal, R. (2009). Optimal Versus Naive Diversification: How Inefficient is the 1/ N Portfolio Strategy? Review of Financial Studies, 22(5), 1915–1953. https://doi.org/10.1093/rfs/hhm075
Dunwoody, P. T. (2009). Theories of truth as assessment criteria in judgment and decision making. Judgment and Decision Making, 4(2), 10.
Garcia-Retamero, R., Sobkow, A., Petrova, D., Garrido, D., & Traczyk, J. (2019). Numeracy and Risk Literacy: What Have We Learned so Far? The Spanish Journal of Psychology, 22, E10. https://doi.org/10.1017/sjp.2019.16
Gigerenzer, G. (2008). Why heuristics work. Perspectives on Psychological Science, 3(1), 20. https://doi.org/10.1111/j.1745-6916.2008.00058.x
Gigerenzer, G., Todd, P. M., & ABC Research Group. (1999). Simple heuristics that make us smart. Oxford University Press.
Glimcher, P. W. (2022). Efficiently irrational: Deciphering the riddle of human choice. Trends in Cognitive Sciences, S1364661322000912. https://doi.org/10.1016/j.tics.2022.04.007
Hacking, I. (1975). The Emergence Of Probability: A Philosophical Study Of Early Ideas About Probability, Induction And Statistical Inference. Cambridge University Press.
Hammond, K. R. (2000). Coherence and correspondence theories in judgment and decision making. In Judgment and decision making: An interdisciplinary reader, 2nd ed (pp. 53–65). Cambridge University Press.
Hertwig, R., & Grüne-Yanoff, T. (2017). Nudging and Boosting: Steering or Empowering Good Decisions. Perspectives on Psychological Science, 12(6), 973–986. https://doi.org/10.1177/1745691617702496
Ho, M. K., Abel, D., Correa, C. G., Littman, M. L., Cohen, J. D., & Griffiths, T. L. (2022). People construct simplified mental representations to plan. Nature, 1–8. https://doi.org/10.1038/s41586-022-04743-9
JASP Team. (2022). JASP (version 0.16.2)[Computer software]. https://jasp-stats.org/
Jasper, J. D., Bhattacharya, C., Levin, I. P., Jones, L., & Bossard, E. (2013). Numeracy as a Predictor of Adaptive Risky Decision Making. Journal of Behavioral Decision Making, 26(2), 164–173. https://doi.org/10.1002/bdm.1748
Loewenstein, G., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267–286. https://doi.org/10.1037//0033-2909.127.2.267
Lopes, L. L. (1987). Between hope and fear: The psychology of risk. Advances in Experimental Social Psychology, 20, 255–295. https://doi.org/10.1016/S0065-2601(08)60416-5
Machina, M. J., & Viscusi, W. K. (2014). Handbook of the economics of risk and uncertainty. Elsevier.
Markowitz, H. (1952). The utility of wealth. The Journal of Political Economy, 60(2), 151–158.
Mastrogiuseppe, C., & Moreno-Bote, R. (2022). Deep imagination is a close to optimal policy for planning in large decision trees under limited resources. Scientific Reports, 12(1), 10411. https://doi.org/10.1038/s41598-022-13862-2
Millroth, P., & Juslin, P. (2015). Prospect evaluation as a function of numeracy and probability denominator. Cognition, 138, 1–9. https://doi.org/10.1016/j.cognition.2015.01.014
Pacini, R., & Epstein, S. (1999). The Relation of Rational and Experiential Information Processing Styles to Personality, Basic Beliefs, and the Ratio-Bias Phenomenon. Journal of Personality and Social Psychology, 76(6), 972–987. https://doi.org/10.1037/0022-3514.76.6.972
Parker, G. A., & Smith, J. M. (1990). Optimality theory in evolutionary biology. Nature, 348(6296), 27–33. https://doi.org/10.1038/348027a0
Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The Adaptive Decision Maker. Cambridge University Press.
Peters, E. (2012). Beyond Comprehension: The Role of Numeracy in Judgments and Decisions. Current Directions in Psychological Science, 21(1), 31–35. https://doi.org/10.1177/0963721411429960
Peters, E., & Bjalkebring, P. (2015). Multiple numeric competencies: When a number is not just a number. Journal of Personality and Social Psychology, 108(5), 802–822. https://doi.org/10.1037/pspp0000019
R Core Team. (2020). R: A language and environment for statistical computing [Manual]. https://www.R-project.org/
Reyna, V. F., & Brust-Renck, P. G. (2020). How representations of number and numeracy predict decision paradoxes: A fuzzy-trace theory approach. Journal of Behavioral Decision Making, 1–23. https://doi.org/10.1002/bdm.2179
Sarimveis, H., & Nikolakopoulos, A. (2005). A line up evolutionary algorithm for solving nonlinear constrained optimization problems. Computers & Operations Research, 32(6), 1499–1514. https://doi.org/10.1016/j.cor.2003.11.015
Schoemaker, P. J. H. (1982). The Expected Utility Model: Its Variants, Purposes, Evidence and Limitations. Journal of Economic Literature, 20(2), 529–563.
Shevlin, B. R. K., Smith, S. M., Hausfeld, J., & Krajbich, I. (2022). High-value decisions are fast and accurate, inconsistent with diminishing value sensitivity. Proceedings of the National Academy of Sciences, 119(6), e2101508119. https://doi.org/10.1073/pnas.2101508119
Simon, H. A. (1956). Dynamic Programming Under Uncertainty with a Quadratic Criterion Function. Econometrica, 24(1), 74–81. https://doi.org/10.2307/1905261
Simon, H. A. (1990). Invariants of Human Behavior. Annual Review of Psychology, 41(1), 1–20. https://doi.org/10.1146/annurev.ps.41.020190.000245
Sobkow, A., Olszewska, A., & Traczyk, J. (2020). Multiple numeric competencies predict decision outcomes beyond fluid intelligence and cognitive reflection. Intelligence, 80, 101452. https://doi.org/10.1016/j.intell.2020.101452
Stanovich, K. E. (1999). Who Is Rational?: Studies of individual Differences in Reasoning. Psychology Press. https://doi.org/10.4324/9781410603432
Thaler, R. H., & Ziemba, W. T. (1988). Anomalies: Parimutuel Betting Markets: Racetracks and Lotteries. Journal of Economic Perspectives, 2(2), 161–174. https://doi.org/10.1257/jep.2.2.161
Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185(4157), 1124–1131. https://doi.org/10.1126/science.185.4157.1124
Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. https://doi.org/10.1007/BF00122574
von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton University Press.
Wulff, D. U., Mergenthaler-Canseco, M., & Hertwig, R. (2018). A meta-analytic review of two modes of learning and the description-experience gap. Psychological Bulletin, 144(2), 140–176. https://doi.org/10.1037/bul0000115
Zilker, V. (2022). Stronger attentional biases can be linked to higher reward rate in preferential choice. Cognition, 225, 105095. https://doi.org/10.1016/j.cognition.2022.105095