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Abstract

Blind source separation (BSS) consists of recovering the independent source

signals from their linear mixtures with unknown mixing channel. The existing

BSS approaches rely on the fundamental assumption: the source signals are non-

Gaussian§this limited the use of BSS seriously. To overcome this problem and

the weakness of cosine index in measuring the dynamic similarity of signals, this

study proposes the fuzzy statistical behavior of local extremum (FSBLE) based

on generalized Jaccard similarity as the measure of signal’s similarity to imple-

ment the separation of source signals. In particular, the imperialist competition

algorithm is introduced to minimize the cost function which jointly considers

the stationarity factor describing the dynamical similarity of each source sig-

nal separately and the independency factor describing the dynamical similarity

between source signals. Simulation experiments on synthetic nonlinear chaotic

Gaussian data and ECG signals verify the effectiveness of the improved BSS

approach and the relatively small cross-talking error and root mean square error

(RMSE) indicate that the approach improves the accuracy of signal separation.

Keywords: Blind source separation, Generalized Jaccard similarity, FSBLE, Imperialist

competitive algorithm
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1 Introduction

Blind source separation (BSS) aims at estimating source signals from their

linearly mixtures without any prior information about the source signals and trans-

mission channel [1, 2]. Originally, the BSS was introduced in 1984 by two French

researchers to understand the biological behavior of neural system [3, 4]. As a

momentous technical means of signal processing and analysis, BSS has been widely

utilized in communication system [5], image processing [6], speech recognition [7],

mechanical fault diagnosis [8], biomedical engineering [9] and many other aspects.

With the development and application of BSS technology, various approaches

have been developed for estimating the source signals, such as, independent com-

ponent analysis (ICA) [10], nonlinear principal component analysis (NPCA) [11],

sparse component analysis (SCA) [12], etcetera. Among which ICA has attracted

extensive attention of many experts and scholars as which is based only on sta-

tistical independence among the component. The main algorithms of ICA include

fast fixed-point algorithm (FastICA) [13], maximum likelihood estimation algorithm

[14], informax algorithm [15], joint approximate diagonalization of eigenmatrices

(JADE) [16], fourth-order blind identification (FOBI) [17], and the like.The main

assumption of ICA is that the source signals are non-Gaussianity, which shows that

ICA is incapable of separating Gaussian source signals. The specific reason lies

in that the invariance of Gaussian subspace makes it impossible to obtain the axis

orientation information utilized to separate the source signals [18].

Nonetheless, the observed signals are mixtures of Gaussian signals in many

cases. Therefore, the separation of source signals need to be accomplished by con-

sidering other assumptions related to source signals and accordingly algorithm. Take

ECG signal as an example, the work on nonlinear dynamics has indicated that the

ECG signal is chaotic and has extensive nonlinear dynamic characteristics [9]. Based

on this, it is a vitally important idea to relax the assumption of non-Gaussianity via

considering the dynamic similarity between source signals to achieve the separation

of source signals, which has certain research significance.

The quantification of dynamic similarity of signals is perceived as a challenging

work in the BSS problem. Recently, Niknazar et al. [19] proposed the fuzzy statistical

behavior of local extreme (FSBLE) method based on cosine similarity to measure the

dynamic similarity in signals, which solved the problem of isolating the linear chaotic

Gaussian source signals and applied it to epileptic seizure prediction. Whereas, the



Springer Nature 2021 LATEX template

3

cosine similarity is unable to make a distinction among the similarity vectors, and

suffers from the problem of partial information loss, which lead to the unsatisfactory

separation effect of the algorithm [20]. For the purpose of surmounting this problem,

this paper investigates the modified FSBLE based on generalized Jaccard similarity

and introduced it into the BSS problem with Gaussian source signals to improve the

separation performance of BSS approach. Particularly, due to the cost function in the

proposed BSS algorithm is not differentiable, the imperialist competition algorithm

with fast convergence and less computation time is selected to search for the optimal

separation matrix.

The rest of this paper is described below. In Section 2, the FSBLE based on gen-

eralized Jaccard similarity is put forward. In Section 3, the modified BSS approach

with Gaussian source signals is introduced. In Section 4, simulation experiments are

conducted. In closing, the conclusion is given in Section 5.

2 FSBLE with generalized Jaccard similarity

In this Section, the cosine similarity and its existing problems in measuring

the dynamic similarity of signals are introduced in subsection 2.1, the rationality

and advantages of using the generalized Jaccard index to measure the similarity of

signals are analyzed in subsection 2.2, and the FSBLE based on generalized Jaccard

similarity is raised in subsection 2.3.

2.1 Cosine similarity

The previous studies have shown that the information of signal can be rep-

resented by a eigenvector [21]. From this, using the information of eigenvector to

measure the dynamic similarity of signals is the key step of BSS method based on the

dynamic characteristics of signals. Furthermore, selecting an appropriate distance to

measure the similarity is momentous, because equipped with a relatively good dis-

tance indicator can reduce the time and processing cost. In terms of different distance

measurement indexes, it is more reasonable to employ bounded distance as the mea-

sure of similarity of signals. Hitherto, the existing BSS approach utilizes the cosine

distance to quantify the similarity of signals. The cosine similarity is given via the dot

product and length of vectors, that is, given two attribute vectors V1 and V2, which
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is able to be represented by

ρ1(V1,V2) =
< V1,V2 >

V1 ·V2
, (1)

where V1 and V2 represent both eigenvectors about the information of signals, <

·, ·> is the dot product operator between two vectors, and || · || denotes the Euclidean

norms operator of V1 and V2.

In the light of the Eq. (1), the value of cosine similarity is always between 0 and

1 and will not be affected by the dimension of vector. Furthermore, it avoids the dis-

advantage of poor robustness about absolute distance. Whereas, cosine index exists

the problem of information loss in measuring similarity [20], which results from that

the cosine similarity is poor to distinguish the similarity vectors when employing

it to measure the dynamic similarity of signals. Consequently, the signal separation

performance is not ideal. For the sake of overcoming this problem, this paper pro-

poses to utilize generalized Jaccard similarity, which will be introduced in the next

subsection.

2.2 Generalized Jaccard similarity

Jaccard index, as a measure indicator, is utilized to quantify similarities and

differences of limited sample sets. Let A and B be two sets, the Jaccard index is shown

as the following ratio

J(A,B) =
| A

⋂

B |

| A
⋃

B |
, (2)

where
⋂

and
⋃

denote the intersection and union of sets A and B, respectively, | · |

represents the potential of the set, that is, the number of elements in the set. It has

been extended to the fuzzy Jaccard index, that is, Xa and Xb are two vectors with n

components, in which each component is fuzzied, the value of which ranges from 0

to 1, and then the fuzzy Jaccard index of Xa and Xb can be given by

J(Xa,Xb) =
Xa ·Xb

Xa ·Xa +Xb ·Xb −Xa ·Xb

. (3)

According to this extended Jaccard index, a new measure of similarity in signals,

which is called as generalized Jaccard similarity, is represented as follows

ρ2(V1,V2) =
< V1,V2 >

< V1,V1 >+< V2,V2 >−< V1,V2 >
, (4)

where all of the symbols have the same meaning as their counterparts in Eq. (1).
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The proposed generalized Jaccard similarity ρ2(V1,V2) satisfies the following

properties:

Proposition 1. (Normative) V1 = V2 if and only if ρ2(V1,V2) = 1.

Proposition 2. (Reflexivity) ρ2(V1,V2) = ρ2(V2,V1).

Proposition 3. (Scale invariance) ρ2(V1,V2) = ρ2(Ṽ1, Ṽ2), where Ṽ1 = θV1,

Ṽ2 = θV2, θ 6= 0.

According to Eq. (4), the previous part of the denominator of generalized Jac-

card similarity can be regarded as the arithmetic average of two vectors squared,

and the latter part can be regarded as subtracting the same part of two vectors on

the basis of the arithmetic average of vectors. Relying on the fact that arithmetic

average can retain the original state of each component than geometric average bet-

ter, which further highlights the difference of signals, increases the identification of

signal similarity, makes the signal less confusing, and solves the problem of partial

information loss of original signals that cosine similarity will encounter. In addition,

the rationality of the generalized Jaccard similarity employed to quantify the dynam-

ical similarity of signals is illustrated via propositions 1, 2, 3. On this account, the

generalized Jaccard similarity can quantify the similarity between two eigenvectors

containing the information of signal better. In what follows, we get down to describe

the modified FSBLE based on generalized Jaccard similarity in detail.

2.3 Modified FSBLE

The FSBLE is a dynamical similarity measure which employs time and ampli-

tude information of local extrema to describe the dynamic characteristics of signals

[22, 23]. This technique is mainly segmented into three steps to carry out: find opti-

mal amplitude and time difference interval via the local extreme of signal, use the

subordinate function to implement fuzzy processing on signal data, and measure sim-

ilarity based on the generalized Jaccard similarity with extracted signal information.

2.3.1 Find optimum amplitude and time distance segmentation

The local extremum of signal has the information of amplitude and global

frequency, which retains the important characteristics of signal. Thereby, the local

extremum of signal plays a vitally important role. In order to better extract the

information of signals, the time difference of consecutive local ectremums are also

adopted. After obtaining the amplitude and time difference of consecutive local
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Fig. 1: The specific process diagram of 2.3.1

extremums, it is considered to divide into several intervals. To make the amount of

local extremums on each interval identical, the histograms of amplitude and time dif-

ference are considered to be isolated into O+ 1 and P+ 1 fragments respectively,

all of which possess the equal region. The values of O and P are employed to fuzzy

the value of amplitude and time differences, which are selected in compliance with

experience. The specific process is illustrated by Lorenz in Fig. 1.

2.3.2 Signal data fuzzy processing

On account of the acquired knowledge, statistical behavior of local extrema

(SBLE) [23], symbolic aggregate approximation (SAX) [24], and their extension

methods split the amplitude and time difference into intervals by means of the deter-

mined value of local extremum. Whereas, one problem with the above-mentioned

methods is that it is highly sensitive to noise. Consequently, FSBLE is proposed,

which isolates the amplitude and time difference into intervals via the fuzzy boundary

of local extremum, surmounts the aforementioned problem, and thus improves the
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stability of the method. The O+ 1 and P+ 1 intervals of amplitude and time differ-

ence segregated in the previous stage are exploited to stipulate subordinate functions

(SF) of fuzzifier and the type of subordinate function can be choosed by taking the

histogram of values of amplitude and time difference of consecutive local extremums

into consideration. It means that in order to maximize the extracted information, for

the i-th local extremum, the matrix Bi is constructed by incorporating the subordi-

nate function value of amplitude and time difference into every Li using the following

equation,

Bi =









LiA(1),T (1) · · · LiA(1),T (P+1)

...
. . .

...

LiA(O+1),T (1) · · · LiA(O+1),T (P+1)









, (5)

where LiA(o),T (p) = FA(o)(A(Li)) ∗FT (p)(T (Li)), in which A(Li) is the amplitude of

i-th local extrema and T (Li) is its time difference with the (i+ 1)-th local extrema,

FA(o)(·) is the o-th subordinate function where o = {1,2,3, · · · ,O+1}, analogously,

FT (p)(·) is the p-th subordinate function where p = {1,2,3, · · · ,P+ 1}, as an aside,

F refers to fuzzy subordinate function, in which triangular subordinate functions

are widely adopted [25]. And what is more, each signal is converted into a matrix

sequence B to facilitate further processing. The specific process refers to literature

[22].

2.3.3 Measure similarity

As indicated above, each local extremum corresponds to a matrix, based on

which the signal is converted to a sequence consisted of n− 1 matrixes, in which n

is the amount of local extremum. And then the statistical distribution of the defined

pattern is exploited to extract the dynamic characteristics of signals. For each pattern,

the following equation is employed to quantify belonging number of r sequential

local extrema to possible amplitude and time difference intervals,

V(A(1),T (1))1,··· ,(A(r),T (r))r
=

1

n− r
[
n−r

∑
i=1

Bi(A(1),T (1))∗ · · · ∗Bi+r(A(r),T (r))]
1

n−r . (6)

Specifically, once the value of r is selected, the amount of possible patterns of

signals sequences corresponding to r is:

♯(r) = ((O+1) · (P+1))r. (7)
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For each signal V
signal
R , it is constructed by changing r from 1 to R, where R

denotes the maximum number of continuous local extremum defined.

V
signal
R = {V(1,1), · · · ,V(O+1,P+1),V(1,1),(1,1),

V(1,1),(1,2), · · · ,V(O+1,P+1),(O+1,P+1),···},
(8)

where V
signal
R possesses the dynamic features of local extremum of signal and is able

to be utilized to quantify similarity.

It is well known that the utilization of bounded distance metrics can make

the similarity values more comparable in different studies. At the same time, in

compliance with the previous analyses of generalized Jaccard similarity and cosine

similarity, employing generalized Jaccard index to quantify the similarity between

V
signal
R is superior to that exploits cosine distance. Consequently, the generalized Jac-

card index bounded by 0 and 1 is chosen as the measurement indicator to quantify

dynamical similarity of signals, as shown below:

ρ2(V
1
R,V

2
R) =

< V1
R,V

2
R >

< V1
R,V

1
R >+< V2

R,V
2
R >−< V1

R,V
2
R >

, (9)

where the vectors V1
R and V2

R have been processed fuzzily via the preceding

information.

3 Improved BSS approach

BSS is one of the most commonly methods in digital signal processing, which

aims to separate the source signals under the situation of unknown transmission chan-

nel and source signals. The simplest model is a linear combination of the source

signals and the hybrid matrix in the deterministic case (where the number of source

signals and observed signals is equal). The specific mathematical expression is shown

below:

X = QS, (10)

where Q is a full rank mixed matrix, S is the source signals, and X is the mixed

signals. For BSS, the ultimate goal is to recover the source signals via finding the

separation matrix W. Hence, it must be implemented by using

Ŝ = WX, (11)

where Ŝ is the estimate of source signals S.
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Whereas, when the source signals is chaotic or nonlinear and there is no

information about non-Gaussianity, the commonly used BSS approaches based on

non-Gaussian assumption will be invalid. Consequently, taking some other hypothe-

ses from observed signals into consideration is necessary to acquire the separated

matrix W. According to this, the source signals are deemed to be chaotic and have

stable dynamics, where ECG signal is one of the representatives. The following

restrictions and requirements are able to be considered to obtain the appropriate

matrix W for this problem.

(1) The dynamic similarity between each source signal and itself is the highest,

which is called the signal dynamic stationarity, that is, the dynamic characteristics of

source signal change with time is relatively static.

(2) The dynamic similarity between each source signal and other signals is

the lowest, which is called the signal dynamic independence, that is, the maximum

separability of source signal is satisfied.

For the sake of solving the problem of BSS based on the above-mentioned

hypotheses, the method adopted is to find the separative matrix W which satisfies

two assumptions above. Nonetheless, the premise of searching the separated matrix

W is to quantify the dynamic similarity of signals, which means that it is crucially

important to find an index to measure the similarity between signals. As described

in subsection 2.3, the FSBLE based on generalized Jaccard similarity is taken as the

measure of signal dynamic similarity in this study.

On the basis of aforementioned works, the problem can be transformed into

an optimization problem based on the known dynamic information between signals,

which mainly includes the following two factors:

1. Dynamic stationary factor: Hypothesis (1) is satisfied to maximize StaFac

function.

2. Dynamic independent factor: Hypothesis (2) is satisfied to minimize IndFac

function.

The ambition of the dynamic stationarity factor and the dynamic independent

factor is the maximization of dynamic stability of each estimated source signal

separately and dynamic independence between estimated source signals, in which

the maximization of independence is able to be understood as the minimization

of dynamic similarity between estimated source signals. Thereinto, to quantify the

dynamic stationarity and independence of the source signals, each estimated source

signal is segmented into d fragments, in which d ≥ 2 is required to ensure that the
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following equation holds, StaFac and IndFac are calculated by

StaFac =
1

Ns

Ns

∑
i=1

{
1

d ∗ (d −1)

d

∑
k=1

d

∑
l=1,l 6=k

ρ2(Ŝ
k
i , Ŝ

l
i)}, (12)

IndFac =
1

Ns ∗ (Ns −1)

Ns

∑
i=1

Ns

∑
j=1, j 6=i

{
1

d ∗ (d −1)

d

∑
k=1

d

∑
l=1,l 6=k

ρ2(Ŝ
k
i , Ŝ

l
j)}, (13)

where Ŝk
i is the k-th fragment of the i-th estimated source signal and Ns is the num-

ber of source signals. The function StaFac calculates the average similarity of total

corresponding segments in each estimated source signal and the function IndFac

gives the dynamic similarity of whole corresponding segments between two different

estimated source signals. Different cost functions can be defined via specific assump-

tions. In this problem, cost function must meet the maximization of StaFac and

the minimization of IndFac simultaneously. According to the existing knowledge,

the exponential cost function is beneficial to the cost calculation of additive model.

Therefore, the exponential combination of dynamic stationary factor and dynamic

independent factor is selected as the cost function, as follows:

CostFcn = e−StaFac ∗ eIndFac. (14)

By minimizing CostFcn, the dynamic stability and independence of source

signals are satisfied, and thus the relatively optimal source signals are estimated.

Generally speaking, as the corresponding prior knowledge about the parameter infor-

mation of source signals and the characteristics of transmission channel is unknown,

which leads to an uncertainty expansion factor on the inside. Accordingly, the sepa-

rated source signals have major differences in amplitude, phase, and order, whereas,

the waveforms of separated source signals are still consistent with the correspond-

ing source signals. Meanwhile, CostFcn is not differentiable due to FSBLE based

on generalized Jaccard similarity. Hence, the current problem (minimize CostFcn)

is incapable of being solved with derivative-based iterative methods, which is the

conventional solution of many other BSS methods (such as FastICA, In f ormax,

etcetera). Consequently, the imperialist competition algorithm in the metaheuristic

search algorithms is utilized to minimize the CostFcn via searching the value of

matrix W [26, 27].

Algorithm 1 describes the main process of proposed BSS approach based on

generalized Jaccard similarity in detail. Similar to the BSS approach based on cosine
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Algorithm 1 Improved BSS approach based on generalized Jaccard similarity

Require: Ns observed signals, parameters (O,P,R) of FSBLE based generalized

Jaccard similarity, d.

Ensure: Estimated matrix W, Ns source signals.

1: Produce a group of matrix W randomly.

2: Use W to acquire the estimated source signals from the observed signals.

3: Measure the similarity between signals via using FSBLE based on generalized

Jaccard similarity:

ρ2(V
1
R,V

2
R) =

< V1
R,V

2
R >

< V1
R,V

1
R >+< V2

R,V
2
R >−< V1

R,V
2
R >

.

4: Calculate StaFac, IndFac, CostFcn.

5: Minimize the value of CostFcn to find the best matrix W via the imperialist

competition algorithm.

6: If the terminational condition is not met: produce a new group of matrix W and

go to 3, else return the best matrix W and output source signals.

7: End.

similarity, the improved approach firstly applies generalized Jaccard index to BSS

to obtain source signals and surmounts the problem of partial information loss in

cosine similarity. Additionally, as depicted in the introduction, the performance of

the improved BSS approach will outperform that based on cosine similarity, which

will be shown in the next section.

4 Numerical experiment results and analyses

In this section, the experimental model is introduced in subsection 4.1, the abil-

ity of the improved BSS approach to estimate Gaussian source signals and ECG

signals in practical experiments is proved in subsection 4.2 and subsection 4.3, and

then the cross-talking error and RMSE are adopted to compare the BSS approach

based on generalized Jaccard similarity with that based on cosine similarity in sub-

section 4.4. The experimental results will illustrate that the improved BSS approach

is superior to the original one. The total experiments are performed in MATLAB

2017b on a 64-bit PC with an Intel(R) Core(TM) i7-6700HQ CPU (2.60GHz) and 16

GB of RAM.



Springer Nature 2021 LATEX template

12

4.1 The experimental model

In the following simulation experiments, we consider three classical models as

objects in the field of chaotic systems: Lorenz [28], Rossler [29] and Mackey Glass

[30], which are given by

dX1

dt
= σ(Y1 −X1)

dY1

dt
= ρX1 −Y1 −X1Z1

dZ1

dt
= X1Y1 −βZ1

, (15)

dX2

dt
=−ωY2 −Z2

dY2

dt
= ωX2 +αY2

dZ2

dt
= η +Z2(X2 − γ)

, (16)

X3(i+1) = X3(i)+
aX3(i− r)

1+X3(i− r)c
−bX3(i), (17)

where σ , ρ and β denote Prandtl number, Rayleigh number and directional ratio

respectively, ω signifies natural frequency, as the most typical example of time-delay

chaotic system, in which r expresses time-delay number. In the following experi-

ments, these parameters are set to σ = −16, ρ = 45.92, β = 4, ω = 1, α = 0.2,

η = 0.4, γ = 5.7, a = 0.2, b = 0.1 and c = 10. Once the parameters are selected, the

influence of different initial points on the dynamic similarity of signals can be almost

ignored in chaotic system which results from that the modified FSBLE is used to

measure the dynamic similarity between signals [22]. Then, the Runge-Kutta method

is adopted to select the signals X1, X2, X3 of these systems as basic source signals S.

The specific simulation experiment will be studied in the next subsection.

4.2 Evaluation on Gaussian source signals

As mentioned above, the signal S consisting of Lorenz, Mackey Glass and

Rossler in the chaotic set is regarded as the basic source signals. Each basic source

signal is non-Gaussian. For purpose of highlighting the capacity of the improved

approach to separate Gaussian signals, the histogram matching technique is exploited

to convert non-Gaussian source signals into Gaussian source signals. The converted

Gaussian signals are utilized as the source signals and multiplied by the randomly
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generated matrix Q to obtain the mixed Gaussian signals.

Q =









0.8147 0.9134 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.9575









, (18)
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Fig. 2: The source signals and corresponding histograms

As stated in the introduction, ICA approach will not be able to use the lin-

ear mixture of these Gaussian sources to acquire the source signals. Therefore, the

improved BSS approach based on generalized Jaccard similarity is considered to

carry out the separation of the observed signals in this part. Running the algorithm

requires some initial parameters, such as the values of d, O, P and R, in which d

represents that each estimated source signals are isolated into d fragments, O and P

express that the corresponding histograms of amplitude and time difference are seg-

mented into O and P sections respectively, and R denotes the number of sequential
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Fig. 3: The separation result diagrams of Gaussian signal

local extrema. The values of these parameters will affect the results and computation

time of the algorithm [22], they are empirically set as: d = 2, O = 3, P = 3, R = 3 in

the simulated experiment. Since CostFcn is not differentiable, the imperialist com-

petition algorithm with fast convergence is exploited to seek the optimal solution

via updating matrix W, in which the actual amount of population, the amount of

imperialists and the maximum amount of iterations are npop = 150, nimp = 30, and

maxdecades = 150, respectively, and other parameters of which are set to β̃ = 2,

γ̃ = π/4 and ζ = 0.1 per the recommendations of this paper [31].

Note that three chaotic Gaussian signals are selected in the experiment to gen-

erate observed signals so as to certify the ability of the improved BSS approach

to separate Gaussian source signals. Fig. 2 depicts the obtained result of Gaus-

sian source signals, in which Fig. 2(a) expresses three non-Gaussian source signals,

Fig. 2(b) expresses the corresponding histograms, Fig. 2(c) shows three Gaussian

source signals after transformation, analogously, Fig. 2(d) shows the transformed

histograms.

Fig. 3(a) depicts three observed Gaussian signals, which are generated via multi-

plying by a randomly generated matrix Q on the basis of Gaussian source signals. The

elements of the matrix Q are uniformly distributed between 0 to 1 and the observed

Gaussian signals is regarded as the simulated signals which will be executed by the

improved BSS approach.

Fig. 3(b) shows the final separation result of the improved BSS approach, in

which the imperialist competition algorithm is employed for searching the optimal

solution of the CostFcn, and that is a common intelligent optimization algorithm.
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It can be seen by comparing Fig. 3(b) and Fig. 2(c) that the separated signals are

mainly consistent with the source signals except some differences in sequence and

amplitude. Consequently, it can be considered that the approach has successfully

separated the source signals, which confirms the effectiveness of the improved BSS

approach.

4.3 Evaluation on ECG signal

The separation of ECG signals is considered as a real-world application of

the proposed method. This study select ECG signals in three different states as the

source signals, and multiply it with the randomly matrix U to obtain the mixed ECG

signal, where these signals of AEECG, PEECG and SAECG obtained from Apnea-

ECG Database, Post-Ictal Heart Rate Oscillations in Partial Epilepsy and UCD Sleep

Apnea Database, respectively.

U =









0.2343 0.6153 0.2845

0.4647 0.1226 0.7357

0.6194 0.1238 0.4113









. (19)

Three ECG signals are selected in the experiment to certify the ability of the

improved BSS approach to separate ECG signals. Fig. 4(a) depicts the original ECG

signals, Fig. 4(b) depicts the mixed ECG signals, and which will be executed by the

improved BSS approach.
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(a) The original ECG signals.
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(b) The mixed ECG signals.

Fig. 4: The diagrams of ECG signals
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Fig. 5 shows the final separation result of the improved BSS approach. It can be

seen that Fig. 5 has roughly the same waveforms as Fig. 4(a), which indicates that

the approach has successfully separated the ECG signals. Based on this, this method

can be also applied to the separation of biological signals.
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Fig. 5: The separated ECG signals.

4.4 Performance comparison

To evaluate the performance of the improved BSS approach based on general-

ized Jaccarcd similarity with that based on cosine similarity [19], cross-talking error

[32] and RMSE are adopted as the measurement indexes, which have the following

expressions respectively:

Ect =
1

n
{

n

∑
p=1

(
n

∑
q=1

| cpq |

max
l

| cpl |
−1)+

n

∑
q=1

(
n

∑
p=1

| cpq |

max
l

| clq |
−1)}, (20)

RMSE =

√

∑
n
i=1(Xsep,i −Xori,i)2

n
, (21)

where C = WQ=(Cpq) represents the transfer matrix of the mixing-separation com-

posite system, Xsep,i and Xori,i denote the i-th separated signal and the corresponding

original signal respectively. If the source signals are separated well, the value of
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Fig. 6: Cross-talking error of the BSS approach

RMSE will be small and C will become a permutation matrix (although the elements

may have different symbols). Only one element in each row or column of the permu-

tation matrix is equal to 1, and all other elements are equal to 0. Obviously, the larger

the value of cross-talking error and RMSE, the worse the separation performance of

the approach.

Table 1: The comparison of RMSE between two BSS algorithm.

signals RMSE of improved BSS RMSE of BSS based on cosine similarity

Lorenz 0.7291 1.3393

Rossler 1.0135 1.3968

Mackey Glass 1.2730 1.2339

The curve of cross-talking error is depicted in Fig. 6. Wherein blue curve is

the cross-talking error of the improved BSS approach based on generalized Jaccard

similarity, red curve is that based on cosine similarity. The result of RMSE about

two BSS algorithms is shown in Table 1. As can be seen from the simulated results

in Fig. 6 and Table 1, the improved BSS approach based on generalized Jaccard

similarity generally outperforms that based on cosine similarity under the criterions
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of the cross-talking error and RMSE, which confirms the superiority of the improved

BSS approach.

5 Conclusion

In this paper, an improved BSS approach based on generalized Jaccard similar-

ity is studied. Firstly, the generalized Jaccard index is proposed to solve the problem

of information loss in cosine similarity, and the modified FSBLE employed to extract

the dynamic characteristics of signals is utilized to quantify the dynamic similarity

of signals. Secondly, the improved algorithm based on the dynamic characteristics of

signals is applied to the blind separation of Gaussian signals, and the imperialist com-

petition algorithm is selected to find the separation matrix on the condition that the

cost function is not differentiable. Finally, a series of simulation experiments on the

nonlinear chaotic model verified that the proposed algorithm can successfully sepa-

rate Gaussian source signals. At the same time, the cross-talking error and root mean

square error (RMSE) of the improved approach is relatively small, which indicates

that the separation accuracy of the algorithm is improved. In addition, it can also be

applied to a series of biological signals besides ECG signals.
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