Impact of sublethal pyrethroid exposure on resistant Anopheles gambiae mosquitoes’ fitness
Background : There is increasing evidence of insecticide resistance spreading among wild mosquito populations, which is widely believed to compromise vector control once it reaches a threshold that enables mosquitoes to survive exposure to long lasting treated bed-net (LLIN) or indoor residual spraying (IRS). However, very little is known about the long-term impact of insecticide resistance on malaria transmission, which makes the consequence of insecticide resistance spreading difficult to predict.
Methods: To gain more clarity, we have assessed five life-history traits of a resistant Anopheles gambiae laboratory strain that was repeatedly exposed to a LLIN and compared with individuals issued from the same strain but exposed to an untreated bed-net.
Results: The non-parametric Kruskal-Wallis test did not show any significant impact of gonotrophic cycle on the five traits. However, the Kolmogorov-Smirnov non-parametric test revealed a significant (i) drop in blood feeding mean rates (D = 0.800; P< 0.0001), (ii) increase in 24-hours post-exposure (D = 0.600; P< 0.001) and (iii) end of gonotrophic cycle mortality (D = 0.611; P <0.006), and (iv) drop in egg laying rate (D = 0.730, P< 0.0001) when mosquitoes were exposed. Surprisingly, there was rather an upward trend in the number of L3 larvae/female mosquito for the exposed group comparing to the unexposed one, although the difference was not significant (D = 0.417, P> 0.05).
Conclusion: Our study shows that in a context of widespread of resistance to insecticides, current pyrethroid-based vector control tools can still confer protection against malaria.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
This is a list of supplementary files associated with this preprint. Click to download.
Posted 15 May, 2020
Impact of sublethal pyrethroid exposure on resistant Anopheles gambiae mosquitoes’ fitness
Posted 15 May, 2020
Background : There is increasing evidence of insecticide resistance spreading among wild mosquito populations, which is widely believed to compromise vector control once it reaches a threshold that enables mosquitoes to survive exposure to long lasting treated bed-net (LLIN) or indoor residual spraying (IRS). However, very little is known about the long-term impact of insecticide resistance on malaria transmission, which makes the consequence of insecticide resistance spreading difficult to predict.
Methods: To gain more clarity, we have assessed five life-history traits of a resistant Anopheles gambiae laboratory strain that was repeatedly exposed to a LLIN and compared with individuals issued from the same strain but exposed to an untreated bed-net.
Results: The non-parametric Kruskal-Wallis test did not show any significant impact of gonotrophic cycle on the five traits. However, the Kolmogorov-Smirnov non-parametric test revealed a significant (i) drop in blood feeding mean rates (D = 0.800; P< 0.0001), (ii) increase in 24-hours post-exposure (D = 0.600; P< 0.001) and (iii) end of gonotrophic cycle mortality (D = 0.611; P <0.006), and (iv) drop in egg laying rate (D = 0.730, P< 0.0001) when mosquitoes were exposed. Surprisingly, there was rather an upward trend in the number of L3 larvae/female mosquito for the exposed group comparing to the unexposed one, although the difference was not significant (D = 0.417, P> 0.05).
Conclusion: Our study shows that in a context of widespread of resistance to insecticides, current pyrethroid-based vector control tools can still confer protection against malaria.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5