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Abstract  

The frictional energy dissipation mechanism of a supported two-layer graphene film 

under the excitation of the model washboard frequency is investigated by molecular 

dynamics simulations. The results show that two local maxima in the energy dissipation 

rate occur at special frequencies as the excitation frequency increases from 0.1 to 0.6 

THz. By extracting the vibrational density of states of the graphene, it is found that 

large numbers of phonons with frequencies equal to the excitation frequency are 

produced. A two-degree of freedom mass-spring model is proposed to explain the 

molecular dynamics results. Our study indicates that the phonons would resonate with 

the frictional excitation once the washboard frequency is close to the natural frequency 

of the frictional system, leading to remarkable local maxima in energy dissipation rate. 
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1. Introduction 

Friction is a common phenomenon that occurs in aspects of our lives. Nevertheless, it 

is difficult to give a universal understanding of the energy dissipation mechanism due 

to its complexity. For example, the friction generally shows a gradually decreasing 

trend with the increase of sliding velocity on the macro-scale [1], while on the atomic 

scale the friction usually presents a trend of gradual increase with the increase in the 

sliding velocity [2-3]. The variation of friction is closely related to the energy 

dissipation mechanism in the friction process [4]. For a long time, the researchers 

generally use the potential barrier height [5-6] and shear strength [7-8] of friction 

interface to compare and quantify the magnitude of friction force when two interfaces 

slide relative to each other. The maximum friction generally implies a unique energy 

dissipation channel [9]. However, the fundamental physics involved in the friction 

process, such as the phonon [10-13] and/or electron [14-15] related dissipation, remains 

unclear.  

 

The friction process can excite large numbers of non-equilibrium phonons (elastic 

waves) [16], which dissipates the mechanical kinetical energy through the phonon 

scattering [11, 17-18] with other phonons, boundaries and/or impurities. As for the two-

wall carbon nanotube oscillators, Tangney et al [19] showed that the friction between 

the inter-tube and the out-tube would have a maximum value when the group velocity 

of excited phonons was equal to the sliding velocity. Panizon et al [20] deduced a 

formula to calculate the friction force based on linear response theory. Their results 

show that the resonance would occurs and can cause a local maximum in the friction 

force when the group velocity of the excited phonons is equal to the phase velocity. Our 

recent theoretical and experimental studies [21] also show that when the atomic force 

microscope (AFM) tip slides on the crystal surface, the phonon mode of the substrate 

excited by the slider also resonates with the entire friction system, resulting in multiple 

local maxima of friction force with the increase of sliding velocity. The similar 
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resonance principle is also adopted by quartz crystal microbalance (QCM) to measure 

the energy dissipation rate of adsorbed films [22] and two-dimensional materials [23]. 

Therefore, we speculated that the excited phonons will be strengthened and the energy 

dissipation will increase if the excited phonons in the friction process are consistent 

with the natural frequency of the whole friction system. Conversely, when the excited 

phonon frequency is far away from the natural frequency of the friction system, the 

energy dissipation may decrease or be suppressed. 

 

In order to verify the above conjecture, this work investigated the frictional energy 

dissipation mechanism caused by inter-layer shear motion of graphene films by 

molecular dynamics (MD) method. An external periodic excitation is applied to make 

one layer of graphene vibrate tangentially on the other layer of graphene. The similar 

method is also used by Sokoloff to explore the possible nearly frictionless sliding for 

mesoscopic solids [24]. The frequency of the periodic excitation can be analogy for the 

washboard frequency v/a in the dry friction with sliding velocity v and substrate period 

a. The resultant energy dissipation due to periodic excitation is also extremely 

important for the performance of graphene-based MEMS devices [25-26]. Our study 

shows that two local maxima in the energy dissipation rate of the system does appear 

at special excitation frequencies. We further explain the simulation results in details by 

extracting the vibrational density of states and the natural frequency of the system with 

various system parameters. 

 

2 Model and method 

Figure 1(a) shows the atomic model for all our MD simulations, including a period-

excited upper graphene and a supported lower graphene. The in-plane size is about 90

ⅹ104 Å2 and there are 6912 atoms in the simulation system. To illustrate the details of 

the model more clearly, a schematic diagram of the atomic model is also shown in 

Figure 1 (b). The upper graphene is connected to a support by three independent springs 

along x, y, and z direction with stiffness kx, ky and kz, respectively. The kx and ky are the 
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shearing stiffness of the spring. By applying periodic excitation to the support end along 

the in-plane direction, like the washboard excitation in dry friction, the upper graphene 

would vibrate relative to the lower graphene and result in energy dissipation. To 

simplify the simulations, we also used a set of springs along x, y and z directions with 

stiffness of ksubx, ksuby, and ksubz to attach to the lower graphene, while the other ends of 

these springs are fixed. Both ksubx and ksuby are set as the effective interfacial shearing 

stiffness k0 between two graphene layers at the state of equilibrium. The k0 depends on 

the used interlayer interactions and can be calculated by differencing the interfacial 

shearing force with respect to the lateral displacement [21].  

 

Figure 1. The atomic model (a) and the corresponding schematic diagram (b) to investigate 

the energy dissipation of two-layer graphene system under periodic excitations. The stiffness 

ksubx, ksuby, and ksubz of the supported springs are set as the effective interfacial stiffness of two-

layer graphene, to simulate the lower graphene being supported on the bulk graphite. The 

stiffness kx, ky, and kz of the dragged springs can be adjusted freely based on the effective 

interfacial stiffness of two-layer graphene in the molecular dynamics simulations.  

 

In order to distinguish the excited phonons in the friction process from the intrinsic 

phonons within the graphene at the finite temperature, the simulation temperature is set 

at 0.001 K. The optimized Tersoff potential [27] is used to describe the carbon-carbon 

interactions within each graphene layers, while the Lennard-Jones (LJ) potential [28] 

for the interlayer carbon-carbon interactions between the two graphene layers. The 

shearing stiffness between the two-layer graphene is calculated to be k0=7.47 eV/Å 
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from the used LJ potential. We first equilibrium the simulation system at 0.001 K for 

500 ps, and then a periodic excitation with the frequency f0 and the amplitude Am are 

applied to the support to imitate the dry friction on atomic smooth surface [21, 24]. The 

Langevin thermostats on both the upper and lower graphene are used to control the 

temperature of the simulation system. There are no fixed atoms in the simulation system. 

The periodic boundary conditions are applied along the in-plane directions. The 

equations of motions are solved with the velocity-Verlet algorithm with a timestep of 

0.5 fs.  

 

3. Results and discussion 

Firstly, we set kx = ky to k0, and the amplitude and excitation frequency to Am= 0.1 Å 

and f0=0.1 THz, respectively. Figure 2 shows the relation between the accumulated 

energy in the thermostat and the effective simulation time. The results show that the 

accumulative energy is proportional to the simulation time, indicating the energy 

dissipation is stable during the periodic excitation. When we increased the excitation 

frequency, such as to 0.2 THz, the cumulative energy in the thermostat still shows a 

good linear relation with the simulation time. Thus, the energy dissipation rate in the 

dissipative system under periodic excitation is defined as the proportional coefficient 

between the accumulated energy and the effective simulation time. 
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Figure 2. The dissipated energy in the thermostat as a function of the effective simulation time 

with the excitation frequency of f0=0.1 THz. The energy dissipation rate is defined as the ratio 

of the dissipation energy to the effective simulation time. 
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Next, the excitation frequency is gradually increased from 0.1 to 0.6 THz in the MD 

simulation, and the corresponding energy dissipation rate is calculated as mentioned 

above. Figure 3(c) shows that there are two local maxima for the energy dissipation rate 

when the excitation frequency equals 0.21 or 0.36 THz. In order to confirm our 

observations, we reduced the shearing stiffness of the spring between the support and 

the upper graphene layer by 2 times and 4 times, respectively. In these cases, the 

interfacial shearing stiffness between the two graphene layers is greater than that of the 

spring between support and the upper graphene layer. Figure 3(a) and (b) show that two 

maxima in the energy dissipation rate still appears with the increase of excitation 

frequency from 0.1 to 0.6 THz. We also increase the shearing stiffness of the spring by 

a factor of 2, corresponding to the situation on which the interfacial shearing stiffness 

is less than that of the spring. Figure 3 (d) shows that the energy dissipation rate of the 

system only has a maximum value with the increasing excitation frequency. However, 

the energy dissipation rate with the excitation frequency in Fig. 3(d) can obviously be 

fitted using two Lorentz functions with center frequency of 0.25 and 0.40 THz, 

indicating these two special excitation frequencies can result in significant energy 

dissipation in the friction system. In addition, it is observed from Figure 3(a) to 3(d) 

that the excitation frequencies corresponding to the maximum value of energy 

dissipation rate gradually shift to high frequency region with the increasing shearing 

stiffness of the springs between the support and the upper graphene layer. For example, 

when the shearing stiffness increases from 0.25k0 to 2.0k0, the excitation frequency 

corresponding to the first peak of energy dissipation rate increases from 0.16 to 0.25 

THz, and the excitation frequency corresponding to the second peak of the energy 

dissipation rate also increases from 0.34 to 0.40 THz. 
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Figure 3. The energy dissipation rate as a function of the exciting frequency in the MD 

simulations with various shearing stiffness kx of dragged spring: (a) kx =0.25 k0, (b) kx =0.5 k0, 

(c) kx =1k0, (d) kx=2k0, where k0 is the shearing stiffness between two graphene layers under 

the state of equilibrium. The two vertical dashed lines are used to guide the shift of excitation 

frequency corresponding to the local maxima in the energy dissipation rate.  

 

In order to understand the relationship between the energy dissipation rate and the 

excitation frequency, we performed the Fourier transform to the velocity 

autocorrelation function of the atoms in the lower graphene layer. Thus, the vibrational 

density of states (vDOS) [29] in the lower graphene can be obtained under periodic 

excitation. Figure 4 shows that when the excitation frequency is 0.1 THz, the phonons 

with frequencies around 0.1 THz are obviously present in the vDOS of the substate, 

while other phonon frequencies are strongly suppressed due to the low simulation 

temperature. When changing the excitation frequency, the excited phonons with the 

same frequency appear in the vDOS of the lower graphene layer. This indicates that 
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large numbers of phonons with the same frequency as the excitation frequency are 

generated in the lower graphene under external periodic excitation. It is expected that 

the local maximum of the energy dissipation rate maybe results from the phonon 

resonance when the excited phonons in the substrate have the same frequency with the 

natural frequency of the friction system. 
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Figure 4. The vibrational density of states of the lower graphene layer with the excitation 

frequency of f0=0.1 THz. The high-frequency phonons are suppressed and not shown here due 

to the low simulation temperature.  

 

In order to confirm the above statement, a two-degree of freedom mass-spring model 

is established as shown in the inset of Fig. 5. By comparing with the MD model, we set 

both mass m1 and m2 in the model as m1=m2=m=Nⅹmc, where N is the atom number 

within the upper graphene layer and mc is the mass of each carbon atom. There is no 

normal load applied in the MD simulation and the energy dissipation mainly depends 

on the shearing stiffness between the support and the upper graphene layer. Thus, the 

spring stiffness kin that connects the two mass is set as the effective interfacial shearing 

stiffness k0 between the two graphene layers in the state of equilibrium, i.e. kin=k0. The 

spring stiffness ksub that connects the lower mass and the fixed substrate is also set as 

k0, i.e. ksub=k0, and the spring stiffness k that connects the upper mass and the vibrating 

support can be adjusted with the MD model. When a small periodic excitation 
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 0 cos( )y A t=                                              (1) 

is applied on the vibration end, the resultant equations of motion for the two-degree of 

freedom model can be written as  

1 1 1 1 1 2

2 2 2 2 1 2 0

( ) ( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( )) ( ( ) ( ))

sub in

in

my t my t y t k y t y t k

my t my t y t y t k y t y t k




+ = −  − − 
 + = − −  − − 

,           (2) 

where A is a small amplitude, ω=2πf0 is the excitation angular frequency, y1 and y2 are 

the corresponding displacement of the lower and the upper degree of freedom, γ1 and 

γ2 are their corresponding damping. By solving the above equation, it is found that the 

below condition should be satisfied when the amplitude of both degrees of freedom 

reach the maximum, 

2 2 2( )( )
in sub in in

k k m k k m k + − + − = .                             (3) 

The detailed process to obtain the above equation can be found in the supporting 

information. As stated above, the interfacial shearing stiffness between the two 

graphene layers is equal to the shearing stiffness of the spring that connects the lower 

graphene layer and the fixed end in the MD simulations. This means that both kin and 

ksub should be constants and equal to k0 in the two-degree of freedom mass-spring model, 

i.e. kin=ksub=k0 to make the model be consistent with the MD simulations. So, we set 

0/ / = / 1/
sub in

k k k k k k = =  , then the predicted excitation angular frequency that 

responds to the maximum energy dissipation rate in the friction system should be the 

two solutions to the Eq. (3), i.e. ω– and ω+,, which can be easily obtained. The two 

special frequencies ω– and ω+ are the natural angular frequency of the two degrees of 

freedom, which are shown in Figure 5 as a function of the shearing stiffness of the 

spring k=αk0. It is shown that the two natural frequencies gradually increase when 

increasing the shearing stiffness of the dragged spring.   
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Figure 5. The natural frequencies of the two-degree of freedom mass-spring system as a 

function of the spring stiffness k=αk0. The circles on the lines represent four sets of simulation 

conditions in the MD. The inset is the two-degree of freedom mass-spring model to explain the 

MD simulations.  

 

The special frequencies predicted by the two-degree of freedom mass-spring model are 

further compared with the results of MD simulation. Table 1 shows that, when the 

controlled shearing stiffness in MD simulations gradually changes from 0.25k0 to 2k0, 

the excitation frequency corresponding to the maximum energy dissipation rate of the 

system in Figure 3 is basically consistent with the natural frequency of the system 

predicted by the two-degree of freedom mass-spring model, which explains our MD 

simulation results. 

Table 1. Comparison of the excitation frequencies that correspond to the local maxima in the 

energy dissipation rate of the two-layer graphene system between the MD simulations and 

mass-spring model.  

k  （k0） 
MD results  (THz) Predicted values from model (THz) 

ω-/(2π) ω+/(2π) ω-/(2π) ω+/(2π) 

0.25 0.16 0.34 0.1567 0.3446 

0.5 0.18 0.35 0.1781 0.3502 

1 0.22 0.36 0.2100 0.3637 

2 0.25 0.4 0.2469 0.3994 
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4.Conclusions 

In summary, we investigated the frictional energy dissipation in two-layer graphene 

system under periodic excitation using molecular dynamics simulations. The results 

show that the energy dissipation rate present two local maxima when the excitation 

frequency increases gradually from 0.1 to 0.6 THz. By extracting the vibrational density 

of states, it is found that the periodic excitation can induce large numbers of phonons 

in the substrate, which has the same frequency with the excitation frequency. When the 

frequency of these phonons is equal to the natural frequency of the frictional system, 

the maximum in the energy dissipation rate appears. The proposed two-degree of 

freedom mass-spring model is also confirmed the MD results. This indicates that the 

energy dissipation rate in the frictional system can be modulated by controlling the 

washboard frequency and the resonant frequency of the system. This may explain the 

local maximum of the friction force with the sliding velocity [21]. It can also explain 

the commensurate interface has a larger friction force than the incommensurate 

interface because the excited phonon frequencies on both sides are always the same for 

the former while not for the later [30]. Our study establishes the relationship between 

the excitation frequency and energy dissipation rate in a model two-layer graphene 

system. The uncovered phonon resonance mechanism can be used to regulate the 

friction force and energy dissipation in many systems, including the nano-sensors, 

actuators etc. 
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Supporting information 

A. Solving the two-degree of freedom mass-spring model 
In order to solve Eq. (2), the special solution y1* and y2* to Eq. (2) can be assumed as  

*

1 1 1

*

2 2 2

= cos( ) sin( )

= cos( ) sin( )

y A t B t

y A t B t

 
 

  + 


 + 
,                                      (S1) 

where A1, B1, A2, and B2 are the amplitude of the degrees of the freedom in the mass-
spring model and to be determined by the external excitation. Thus, the energy 
dissipation rate P can be calculated as  

2 / 2 /

* * * *

1 2 1 1 1 2 2 2

0 0

2 2 2 2 2 2

1 1 1 2 2 2

( )
2

( ) ( )

2

P P P my y dt my y dt

m A B m A B

     


   

= + = +

+ + +
=

 
                         (S2) 

It is found from Eq. (S2) that the energy dissipation rate only depends on the amplitude 
of the two degrees of freedom. Inserting Eq. (S1) into Eq. (2), then we can obtain 

2

1 1 1 1 1 2

2

1 1 1 1 1 2

2

2 2 2 1 2 2

2

2 2 2 1 2 2

{ } cos( )

{ } sin( ) 0

{ } cos( )

{ } sin( ) 0

sub in in

sub in in

in in

in in

A m B m A k A k A k t

B m A m B k B k B k t

A m B m A k A k A k Ak t

B m A m B k B k B k t

  

  

  

  

 − + + + −  +


− + + + −  =

− + − + + −  +

 − − − + +  =

 .                （S3） 

In order to make the above equation always be true, the below matrix should be satisfied 
as 

2
11

2
11

2
22

2
22

00

00
=

0

00

in sub in

in sub in

in in

in in

Ak k m m k

Bm k k m k

A A kk k k m m

Bk m k k m

 
 

 
 

 + − −    
     − + − −     
     − + −
     

− − + −     

 ,  (S4) 

and A1, B1, A2, and B2 can be solved as 

2 2 4 2 2 2

0 0 1 2
1

2 2

0 2 1
1

2 4 2 2 2

0 0 1
2

2 2 3 2 4

0 2 1 2 1
2

( )

( )

( )

( )

in in in

in

in

in

A a b A
A

M

A a b
B

M

A a a b A b
A

M

A a
B

M

       

   

    

      

 − −  −
=


 + 

=


  − +  =


 + + =


 ,                                (S5) 

where  
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2 2 2 2

2 2 2 2

0

4 2 2 2 2 2 2 2 4 2 2 4 2

2 1 1 2 1 2

( )=( ) /

( )=( ) /

M ( ) 2

in sub in sub

in in

in in

a k k m m

b k k m m

a b a b

   
   

           

 = + − + −
 = + − + −
 =  − +  +  + +

,               (S6) 

From Eq. (S6), the maximum amplitude and thus the maximum energy dissipation rate 
can be obtained only if the below equation is satisfied as 

4

in
a b  =  .                                                          (S7) 

Eq. (S7) is completely equivalent to Eq. (3). 
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Figure 1. The atomic model (a) and the corresponding schematic diagram (b) to 

investigate the energy dissipation of two-layer graphene system under periodic 

excitations. The stiffness ksubx, ksuby, and ksubz of the supported springs are set as the 

effective interfacial stiffness of two-layer graphene, to simulate the lower graphene 

being supported on the bulk graphite. The stiffness kx, ky, and kz of the dragged springs 

can be adjusted freely based on the effective interfacial stiffness of two-layer graphene 

in the molecular dynamics simulations.  
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Figure 2. The dissipated energy in the thermostat as a function of the effective 

simulation time with the excitation frequency of f0=0.1 THz. The energy dissipation 

rate is defined as the ratio of the dissipation energy to the effective simulation time. 
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Figure 3. The energy dissipation rate as a function of the exciting frequency in the MD 

simulations with various shearing stiffness kx of dragged spring: (a) kx =0.25 k0, (b) kx 

=0.5 k0, (c) kx =1k0, (d) kx=2k0, where k0 is the shearing stiffness between two graphene 

layers under the state of equilibrium. The two vertical dashed lines are used to guide 

the shift of excitation frequency corresponding to the local maxima in the energy 

dissipation rate.  
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Figure 4. The vibrational density of states of the lower graphene layer with the 

excitation frequency of f0=0.1 THz. The high-frequency phonons are suppressed and 

not shown here due to the low simulation temperature.  
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Figure 5. The natural frequencies of the two-degree of freedom mass-spring system as 

a function of the spring stiffness k=αk0. The circles on the lines represent four sets of 

simulation conditions in the MD. The inset is the two-degree of freedom mass-spring 

model to explain the MD simulations.  
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Table 1. Comparison of the excitation frequencies that correspond to the local maxima 

in the energy dissipation rate of the two-layer graphene system between the MD 

simulations and mass-spring model.  

k  （k0） 
MD results  (THz) Predicted values from model (THz) 

ω-/(2π) ω+/(2π) ω-/(2π) ω+/(2π) 

0.25 0.16 0.34 0.1567 0.3446 

0.5 0.18 0.35 0.1781 0.3502 

1 0.22 0.36 0.2100 0.3637 

2 0.25 0.4 0.2469 0.3994 

 

 

 

 

 

 

 

 

 


