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Abstract 

The activities of artisans conducted regularly in automobile workshops had been observed to 

generate pollutants that are not limited to particulate matter (PM), Polycyclic Aromatic 

Hydrocarbons (PAHs). Thus, this research provided data on the quantification of PAHs coupled 

with the building of a predictive statistical model for the prediction of benzo[a]pyrene (BaP) in 

Benin City. The City was divided into four zones, namely North West (NW), North East (NE), 

South East (SE) and South West (SW) and a total of 180 representative samples were collected 

from artisans’ workshops in both wet and dry seasons using Apex2IS Casella standard pump fitted 

with conical inhalable sampling (CIS) head at a flow rate of 3.5L/min for 8 hours. Meteorological 

parameters were collected simultaneously with the PM2.5. PAHs were extracted and quantified 

using GC-FID. The annual average concentration of the total PAHs bounded to PM2.5 for NW, NE, 

SE and SW zones were 519.51 (638.78), 109.16 (169.16), 158.89 (178.40) and 77.65 (89.60) 

ng/m3for both wet and dry season respectively. A generalized linear model (GLiM) was used to 

develop a predicted model for the prediction of (BaP) air concentrations in the NW zone.  
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The results of the selected model among the five trained models obtained with data from 

NW sampling sites are R2 = 0.792 and Adjusted R2 = 0.746 for model 1 with an overall p-value of 

0.01. The proposed model established an approximation to estimate Benzo[a]pyrene (BaP) 

concentrations in the urban automobile workshops’ atmospheres with a reasonable accuracy of 60-

72%. 

Keywords: Modeling, PM2.5, Auto-mechanic workshop, ambient air, GLiM 

 

1.0 Introduction 

Automobiles constitute one of the primary modes of transportation for conveying people 

and goods in any country in the world. The usefulness of this mode of transportation is not without 

some inherent cost. The major cost is the pollution of different magnitude [13]. Researchers across 

the world had observed that 48 - 80% of total atmospheric pollution comes from major automobile 

activities. These pollutants are sulphur dioxide, nitrogen oxide, ozone, carbon monoxide, 

hydrocarbons and particulate matter [21], [24]. 

International fora such as Earth Summit focused more attention on the reduction of 

automobile pollution by recommending the use of ethanol and hydrogen as alternative fuels for 

powering automobiles [44]. The removal of lead from gasoline and the use of electric trains for 

inter-city transportation had also been proposed [34]. Most of these suggestions have been 

implemented in some developed countries while the reverse is the case in developing countries. 

Automobile activities involved working with and spilling fresh and used oils, greases, petrol, diesel, 

battery electrolyte, paints, welding electrodes, iron filing machines, and other materials which 

generate organic (PAHs), inorganic (heavy metals) and particulate matter (PM). 

Epidemiological studies of PM particularly PM2.5 and ultra-fine particles have been documented 

[36], [38], [20]. 

PM2.5 generally remains suspended in the atmosphere for a few days and has movement in 

the range of a few to hundreds of kilometers. PM2.5 coupled with the ultra-fine particulate (UFP) 

may also remain in the atmosphere for a few days to weeks and are most susceptible to fluctuations 



 

 

in meteorological conditions [10], [40], [49]. The PM is generated primarily from vehicular 

exhaust, wear and tear of roads, brakes, and tyres, coupled with industrial combustion processes. 

Their secondary sources include those from agriculture (fertilizers, pesticides, etc.), construction 

and mining [19, 20], [3], [31] 

However, these particulates are usually bounded to polycyclic aromatic hydrocarbons 

(PAHs) compounds which are a class of complex organic chemicals. The best known PAH is 

benzo(a)pyrene (BaP), which contains 5 rings. Because of their low vapour pressure, some PAHs 

are present at ambient temperature in air, both as gas and associated particulates. The lighter PAHs 

are found almost exclusively in the gas phase whereas the heavier PAHs, such as (BaP), are almost 

totally adsorbed onto particulate. These compounds are widely distributed in the atmosphere and 

are among the first atmospheric pollutants to have been identified as suspected carcinogens, 

particularly (BaP) [35]. USEPA listed 16 PAHs [naphthalene, acenaphthylene, acenaphthene, 

fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, 

benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene] as most priority PAHs to be analyzed in various 

environmental matrices because of their consistent nature [18]. Of all the priority PAHs, 

benzo(a)pyrene is termed as the marker or gold standard of the PAHs mixture due to its stability 

and relatively constant contribution to the carcinogenic activity of particulate-bound PAH as 

reported by many researchers [23], [41], [48]. 

The sources of PAHs in the environments, particularly in urban areas, originate mainly from 

anthropogenic processes, particularly from incomplete combustion of organic fuels at high 

temperatures. Natural processes, such as volcanic eruptions and forest fires, can also contribute to 

the ambient existence of PAHs [37]. 

In Nigeria, almost the entire country has a PM2.5 concentration above the WHO guideline of 

25μg/m3 (24-hour mean) and 10μg/m3 (annual mean) [28]. This presents an environmental health 

burden arising from the potential risk of continuous exposure to a dangerous level of PM2.5  



 

 

Currently, in Nigeria, there is little or no data on automobile activities emitted fine 

particulate matter and its associated pollutants. However few researchers have conducted studies 

on the baseline, spatial and temporary variation of respirable PM2.5 and its associated metal level 

in different cities in Nigeria. Their results showed a comparatively high level of PM2.5 that were 

above the WHO guideline [29], [14], [5], [26], [32], [28], [46].  

Also, within the last decade, predictive models have been built for the prediction of total 

suspended particulate (TSP), but currently, there is no data for fine particulate bound polycyclic 

aromatic hydrocarbon within the ambient air of automobile workshops in any urban or rural 

ambient air environment in Nigeria. Thus, the aim of this research is, therefore, to quantify the 

amount of PAHs and build a predictive model for fine particulate bound Benzo[a]pyrene 

quantification in the ambient air of automobile workshops using PM2.5 and Metrological parameters 

as the explanatory variables in Benin City. 

2.0 Material and Methods 

2.0.1 Study area 

Benin City, the capital of Edo State, lies between latitude 6º23’55” N to 6º27’39” N and longitude 

5º36’18” E to 5º44’30” E [2]. It has a tropical climate, characterized by two distinct seasons, the 

wet and dry seasons. In this study, the auto-mechanic workshops in Benin City were divided into 

four zones (NW, NE, SE, and SW) and delineated as shown in Fig.1.  

 



 

 

 

Fig. 1. Map showing the sampling sites of Auto-mechanic workshops in Benin City. 

 



 

 

2.0.2 Sampling Strategy for PM2.5 

A total of 552 auto-workshops were enumerated for this study. Two-thirds (i.e. 368) of the 552 

auto-workshops which comprise at least four different artisans such as panel beaters, battery 

chargers, spray painters, and auto mechanics were selected as sampling sites. However, arising 

from the similarities in their operations and the clustered nature, the sampling sites were scaled 

down to 24 in the northwest (NW) and 12 sampling sites each in the Northeast (NE), Southeast 

(SE) and Southwest (SW) zone as presented in Fig. 1.  

Samples were collected three times from each site for one year and a total of 180 air particulates 

samples were collected. Temperature, relative humidity, pressure, wind speed, wind direction, solar 

radiation and ultra-violet radiation were also measured and recorded during samplings using 

standard methods.  

The PM2.5 samples were collected into 37 mm diameter quartz filters at a height of 1.5 to 2.0 meters 

above the ground using Apex2IS Casella standard pump, coupled with conical inhalable sampling 

(CIS) head at a flow rate of 3.5 liters per minute (LPM) for 8 hrs. 

A pre and post-field calibration of the pump was carried out for each field sampling to meet the 

recommended flow rates of ±10% for each sampling period [4]. Before sampling time, the 37 mm 

diameter quartz filters were treated at 450-500°C for 4 hrs in a muffle furnace while the 

polyurethane form (PUF) was purged with dichloromethane (DCM) in a soxhlet apparatus at 45oC 

to eliminate traces of any organic compound that may be on the filter paper. They were thereafter 

stored in a DCM pre-treated dark plastic bag to prevent photo-oxidation and sealed. The stored 

(PUF) and quartz filter were equilibrated in a desiccator for 48 hours to eliminate the effect of 

humidity and also to obtain accurate PM2.5 measurements before and after sampling. The pre-

weighed filters and the PUF were re-weighed using a four-digit balance with a sensitivity of ±0.1mg 

and immediately inserted separately into a 100mL brown sampling bottle containing 25mL 

acetone/dichloromethane (1:1), stored under 4oC  for extraction and analysis [45], [7]. 

 



 

 

2.0.3 Collection of Meteorological Parameters 

Meteorological data such as ambient temperature, rainfall, relative humidity (RH), wind 

speed (WS), wind direction (WD), solar radiation and ultra-violet radiation were recorded through 

an automatic weather monitoring system (Professional weather station) mounted at 2.5 to 3.0 

meters above the ground level at each sampling location closely beside the PM2.5 sampler. It was 

programmed to collect data at an interval of 5 minutes and stored in memory, the recorded 

measurements were downloaded to a computer using the weatherSmart app [23] 

2.0.4 Analytical procedure 

2.0.4.1 Sample Extraction, Instrumentation and Analysis 

The PM2.5 sampled in the quartz filters were ultra-sonicated for 15 mins and allowed to cool 

for 5 mins [47]. This process was repeated three times. The resultant organic extract was filtered 

and cleaned through a 0.45 µm filter paper into a column chromatography employing a silica gel 

column of 7.5 cm in length and 1.5 cm in diameter. To remove any interference of aliphatic 

hydrocarbons, the column was first eluted with 50 mL of hexane followed by a second elution 

using DCM. The extract was then concentrated to 5 mL using a rotary evaporator at a temperature 

of ≤ 40°C and allowed to cool to room temperature. It was further reduced to 1 to 1.5mL under a 

gentle stream of nitrogen gas (N2) and transfer into a 1 mL brown sampling vial, wrapped in 

aluminum foil and stored at a temperature below 4ºC for analysis using HP Agilent technology 

6890 Gas Chromatography (GC) system equipped with a flame ionization detector. The samples 

and calibration standards (0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 µg/ml) of 1μL were injected in split/splitless 

mode (1.5 minutes split time). Polycyclic aromatic hydrocarbon (PAH) analytes separation was 

carried out on a 30 m low polarity GC column (0.25 mm inner diameter, 0.25 μm film thickness) 

with the carrier gas; helium (He). The temperature was set at 70°C. This was then ramped to 330°C 

at a rate of 10°C/min and held for 30 minutes to obtain the relative response value or relative 

response factor. The concentrations of the analyte were determined from the calibration graph [23], 

[1] 



 

 

2.0.5 Modeling 

A Log of the generalized linear model was used for the prediction of (BaP) as shown in Equations 

(1) and (2). Eqn. (1) represents the experimental variables while Eqn. (2) represents the predicted 

variable. Where α = intercept (a constant value that never changes within a model), 

   XXXXX kjkjiiii lnlnlnlnlnln 2132211
                              (1) 

XXXXX kjkjiiii lnlnlnlnlnln 2132211
 


                                (2) 

β1, β2, β3…βk  = the weight or slope or a regression coefficient (which determines how much weight 

the independent variable X1, X2, X3…Xk  is contributing to the model), 

X1X2  = interaction effect of the predictors, 

i = 1, 2… n represent sample size, 

k and j = the 
i
th contribution of the regression coefficient (β) and the predictors (X) utilized in the 

experiment. 

ln = Natural logarithm 

The predicted (BaP) based on the estimation of the results is presented in Eqns. 3, 4, 5, 6 and 7 

respectively. 
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        (7)                             

T = Temperature, WS = Wind Speed, UVR = Ultra Violet Radiation 

The Noise (prediction error) ‘ɛ’ which is expected to be very minimal or close to zero for a robust 

model was evaluated by the following error metrics in Equations 8 to 11 [8, 9]. 
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Where 
i

y = Experimental values and 
iy


= Predicted values 

 

2.0.6 Screening for outliers 

The Z-scores method was used for screening outliers [39]. 




 i
scoresZ                                                                                                 (12) 

Where  and   are the standard deviation and mean of the distribution X, while Xi is the value of 

the feature X for the 
i
th sample and the data were transformed using natural Log (i.e. Ln), to fit 

into Eqn. 2. 

2.0.7 Data splitting for training, validation, selection and testing 

The five-fold cross-validation approach was used to split the data into training and testing sets as 

shown in Fig 2. 

Rows 
Folds 

    

1 2 3 4 5 
    

1st           → Model Performance 1 

 
20% 80% 

   
 

2nd           → Model Performance 2 

 
    

   
 

3rd           → Model Performance 3 

 
 

 
  

    
 

4th           → Model Performance 4 

  
 

 
  

   
 

5th           → Model Performance 5 

 

Yellow = testing fold (20%), Blue = training fold (80%) 

 

Fig. 2. Illustration of the five-fold cross-validation for model training, testing and selection 



 

 

The data were split into ‘k’ parts (in this study, k = 5). One part of the five ‘5’ divisions (i.e. 1/5 or 

20%) was used for testing or validation and the remaining K-1 (i.e. 4/5 or 80%) were merged and 

used for training the model.  

2.0.8 Parameter selection approach for training model 

The stepwise selection method was used for variable selection by adding or deleting predictors 

from the existing model based on the F-test statistic and the level of significance (p>0.05) using 

the main effect dialog [9]. The predictors showing a significant correlation with the BaP (p>0.05) 

were retained such that the difference between the R-square and the adjusted R-squared during 

model training was very minimal. The interaction effect of the predictors was also tested 

systematically such that their level of significance was less than 0.05 (i.e. p-values ≤ 0.05) as shown 

in Table 5. 

2.0.9 Quality assurance of the model  

The quality assurance of the developed/trained model were evaluated based on the satisfaction of 

the following standard conditional parameters; R2
cal > 0.6, Adjusted R2 

cal > 0.6, Q2
cv(training set) > 0.6, 

P (95%) < 0.05, Q2
ext/R

2
test/R

2
pred > 0.5, RMSEtest≈ RMSEtraining, MAEtest ≈ MAEtraining,  

(R2
training set - Q

2
cv(training set)) ≤ 0.3, slope: 0.85≤K≤1.15, Residual error plot (homoscedastic) and 

probability plot (plots following a diagonal line) [8, 9].  

R2
cal is the coefficient of determination of all independent variables during training, 

Adjusted R2
cal is the determination coefficient of the relevant independent variables during training, 

Q2
cv (training set) is the leave many out (LOO) cross-validated for the training set.   

2.0.10 Model performance 

Model performance was evaluated based on the comparative studies between the training set and 

the validation/testing set using different error metrics such as MSE, RMSE, MBE and MAE [9]. 

The predictive power (i.e. performance) of the trained model was also tested using new data set 

(external cross-validation-Q2
ext) and their slopes (K) evaluated [11], [43], [17], [30]. 
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Q2
ext/R

2
test/R

2
pred is the external validation or predictability of the model and ‘k’ is the slope of the 

linear model determined by the experimental variables (predictors) and predicted variable in the 

external validation-Q2
ext. 



 

 

3.0 Results and Discussion 

The mean concentration of PM2.5 bound PAHs and their standard deviation (SD) for NW, NE SE and SW zones are shown in Table 1. 

Table 1: Total concentration of the USEPA sixteen PAHs obtained from the NW, NE, SE and SW zone of Benin City. 

PAHs 

component 

No. 

of 

rings 

NW-ZONE NE-ZONE SE-ZONE SW-ZONE 

Dry season 

mean ± SD 

Wet season 

mean ± SD 

Dry season 

mean ± SD 

Wet season 

mean ± SD 

Dry season 

mean ± SD 

Wet season 

mean ± SD 

Dry season 

mean ± SD 

Wet season 

mean ± SD 

Nap 2 BDL 0.93 ± 0.53 BDL 0.23 ± 0.13 BDL 0.48 ± 0.50 BDL 0.12 ± 0.04 

Acy 3 0.95 ± 0.38 1.05 ± 0.62 0.65  ± 0.26 0.13 ± 0.07 BDL 0.13 ± 0.06 BDL 0.24 ± 0.09 

Ace 3 BDL BDL BDL 0.08 ± 0.05 BDL BDL BDL BDL 

Flu 3 BDL BDL BDL 0.09  ± 0.03 BDL BDL BDL BDL 

Ant 3 4.87 ± 2.94 3.90  ± 2.04 0.42  ± 0.24 0.12 ± 0.04 0.72 ± 0.38 0.06 ± 0.02 0.13 ± 0.05 0.08 ± 0.03 

Phen 3 3.28 ± 1.83 3.04  ± 1.68 0.78 ± 0.49 BDL 2.06 ± 1.25 0.48 ± 0.26 0.39 ± 0.15 0.36 ± 0.14 

Flt 4 1.55 ± 0.91 1.36  ± 0.71 0.94  ± 0.79 BDL 1.10 ± 0.56 0.77 ± 0.45 1.23 ± 0.95 0.74 ± 0.69 

Pyr 4 3.46 ± 2.12 1.17 ± 0.84 1.68  ± 1.38 0.81  ± 0.63 1.85 ± 1.25 1.38 ± 0.99 0.94 ± 0.74 0.72 ± 0.54 

B(a)A 4 5.69  ± 1.87 2.96 ± 1.71 2.64  ± 2.07 1.64  ± 1.07 2.01 ± 1.21 2.01 ± 1.43 2.16 ± 1.70 0.85 ± 0.68 

Chry 4 9.38 ± 7.62 7.20 ± 5.66 2.61  ± 1.98 3.32  ± 3.03 2.55 ± 1.89 2.13 ± 1.58 1.55 ± 1.10 1.82 ± 1.92 

B(k)F 5 14.84 ± 6.69 6.49 ± 4.36 4.73  ± 2.01 3.56 ± 2.23 4.48 ± 3.65 2.43 ± 1.56 2.88 ± 2.03 2.06 ± 1.01 

B(b)F 5 52.62 ± 40.87 32.34 ± 28.79 8.4  ± 4.17 11.89 ± 13.45 5.79 ± 3.56 6.24 ± 4.49 3.45 ± 2.14 2.71 ± 1.59 

B(a)P 5 73.72 ± 56.80 66.61 ± 40.21 27.56  ± 32.15 12.90  ± 16.36 16.13 ± 10.81 11.75 ± 9.35 12.45 ± 10.47 3.55 ± 1.41 

InP 6 96.95 ± 71.25 70.68 ± 39.51 25.03 ±19.32 15.02  ± 7.44 24.98 ± 14.80 23.73 ± 10.35 10.31 ± 5.89 11.18 ± 5.80 

D(a,h)A 5 63.96 ± 25.40 134.22 ± 70.74 22.96  ± 15.13 16.24 ± 9.46 35.88 ± 14.80 34.43 ± 16.24 13.13 ± 8.94 7.30 ± 5.68 

B(g,h,i)P 6 307.51 ± 157.66 187.56 ± 97.79 70.76 ± 30.49 43.1 ± 20.38 80.85± 37.78 72.87 ± 42.05 40.98 ± 20.50 45.92 ± 25.41 

Total  ng/m3  638.78±349.93 519.51±280.43 169.16 ± 67.08 109.13 ± 47.86 178.40 ± 78.68 158.89 ± 80.89 89.60 ± 39.13 77.65 ± 38.94 

BDL = Below Detection Limit



 

 

The annual average concentration of the total PAHs in PM2.5 for NW, NE, SE and SW zones 

ranged from 280.43 to 988.71, 47.86 to 236.24, 78.68 to 257.08 and 38.94 to 128.73 ng/m3 

respectively. The average concentration of individual PAHs in PM2.5 for the NW zone varied from 

0.95 ± 0.38 (Acy) to 307.51 ± 157.66 (B(g,h,i)P) ng/m3 in the dry season and from 0.93 ± 0.53 

(Nap) to 187.56 ± 97.79 (B(g,h,i)P) ng/m3 in the wet seasons. In the NE, the variation in the dry 

season were 0.65 ± 0.26 (Acy) to 70.76 ± 30.49 (B(g,h,i)P) ng/m3 and in the wet season 0.08 ± 

0.05 (Ace) to 43.1 ± 20.38 (B(g,h,i)P) ng/m3 were recorded. The recorded average concentration 

of the individual PAHs in the SE zone were from 0.72 ± 0.38 (Ant) to 80.85 ± 37.78 (B(g,h,i)P) 

ng/m3 during the dry season and 0.13 ± 0.05 (Ant) to 40.98± 20.50 (B(g,h,i)P) ng/m3 in the wet 

season while for SW zones the values varies from 0.08 ± 0.50 (NaP) to 72.87± 42.05 (B(g,h,i)P) 

and 0.12 ± 0.04 (Nap) to 45.92 ± 25.41 (B(g,h,i)P) ng/m3 for the dry and wet season respectively.  

The mean values of BaP for the NW and NE zones in the dry and wet seasons were 73.72 ± 56.80 

(66.61 ± 40.21) and 27.56 ± 32.15 (27.56 ± 32.15). While for SE and SW zones it was 16.13 ± 

10.81 (11.75 ± 9.35) and 12.45 ± 10.47 (3.55 ± 1.41) ng/m3 respectively. 

 All the obtained mean values exceeded 1 ng/m3 recommended by the NAAQS and WHO [33]. It 

was also observed that the concentrations of the high molecular weight (HMW, 4-6 ring) PAHs 

were significantly higher than the low molecular weight (LMW: 2-3 ring) PAHs across the 

sampling zones. The percentage contribution of the LMW PAHs across the four zones in the dry 

and wet seasons were 1.42 (1.72), 1.09 (0.60), 1.56 (0.72) and 0.58 (1.03) % for the NW, NE, SE 

and SW respectively. While that of the HMW was also revealed to be 98.58 (98.28), 98.91 (99.40), 

98.44 (99.28) and 99.42 (98.97) % respectively. This result agrees with the studies carried out by 

Tan and others [48], which state that the HMW PAHs associates mainly with the fine part of 

particulate matter (PM) while LMW exists mainly in the coarse part of PM. 



 

 

3.0.1 Outliers 

The Z-score values for the dependent and independent variables as shown in Table 2 were used 

for screening outliers.  

Table 2. The minimum and maximum Z-scores values for the variables used for modeling. 

 

Data variables n 
Z-scores 

Minimum Maximum 

Temperature 72 -2.1633 1.9056 

Relative Humidity 72 -1.708 2.608 

Pressure 72 -1.5211 1.7207 

Wind Speed 72 -1.834 1.8299 

Wind direction 72 -2.3142 2.0535 

Ultra-Violent radiation 72 -2.2294 2.0712 

Solar Radiation 72 -2.0782 2.2184 

PM2.5 72 -1.108 2.443 

Benzo(a)pyrene 72 -1.3643 1.1167 

 

There are several existing approaches for detecting outliers in a univariate set of data [25]. It was 

based on the property of the Gaussian distribution curve that 99.5% of the data should lie between 

3 and -3. The positive z-score showed that the raw scores are higher than the mean average of 

zero while the negative z-score reveals that the raw scores are lower than the average mean. 

However, the z-score values for all the data variables were within the recommended tolerance 

limit of +3 to -3 as shown in Table 2.  

The results of the original and natural logarithmic transformed data for model training are 

presented in Table 3. In real life, it is often very difficult for most data to follow a normal 

distribution curve. They are either skewed to the right or the left and as such make the result of 

the statistical analysis invalid, for not meeting certain statistical conditions such as equal 

distribution about the mean as often prescribed for linear modeling [16]. 

Thus the logarithmic transformation in this study was used to minimize the skewness of the 

original data sets in Table 3. To interpret the targeted output variable (predicted) at the end, we 

re-transformed it to the original data by exponentiating (exp) the output (X: BaP) with a base of e 

(i.e. Euler’s constant: 2.718) [15]. 



 

 

Table 3. Mean and standard deviation of Parameters used for modeling 

 

 Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 Xi8 Xi9 

S/N T RH P WS WD UVR SR PM2.5 B(a)P 

1 30.33 ± 0.32 76.13 ± 1.38 749.87 ± 0.91 6.12 ± 0.48 197.29 ± 20.03 554.12 ± 149.13 929.54 ± 71.57 597.22 ± 41.95 108.26 ± 2.77 

2 31.03 ± 0.22 72.92 ± 0.88 749.23 ± 0.34 5.65 ± 0.16 181.71 ± 5.84 593.20 ± 11.78 974.88 ± 60.43 536.11 ± 12.55 110.85 ± 1.48 

3 31.75 ± 0.76 70.42 ± 3.83 748.45 ± 0.34 5.63 ± 0.49 181.67 ± 9.55 709.31 ± 106.65 1073.63 ± 62.74 466.27 ± 18.15 109.52 ± 3.44 

4 32.37 ± 0.64 68.55 ± 0.63 748.19 ± 0.13 5.21 ± 0.23 200.67 ± 20.12 775.18 ± 73.71 1174.67 ± 21.67 353.74 ± 22.56 106.86 ± 8.27 

5 30.53 ± 0.73 74.71 ± 1.38 749.72 ± 0.66 5.85 ± 0.32 178.33 ± 34.76 534.60 ± 109.78 804.99 ± 175.87 321.42 ± 30.92 69.54 ± 23.92 

6 29.67 ± 0.28 74.55 ± 2.50 750.63 ± 0.78 6.16 ± 1.04 178.84 ± 54.71 541.47 ± 41.98 874.64 ± 319.06 285.71 ± 15.79 22.06 ± 13.09 

7 29.83 ± 0.61 72.54 ± 2.64 752.01 ± 2.50 6.11 ± 1.19 178.13 ± 61.55 496.60 ± 135.61 906.58 ± 301.27 262.46 ± 42.65 22.93 ± 19.61 

8 29.21 ± 0.09 70.58 ± 1.87 753.92 ± 1.81 5.13 ± 0.54 155.28 ± 29.44 574.59 ± 41.18 794.92 ± 40.63 193.68 ± 66.80 17.37 ± 9.57 

9 27.81 ± 0.51 79.1 ± 4.32 755.08 ± 0.54 4.20 ± 1.08 129.62 ± 48.86 422.76 ± 90.52 774.60 ± 241.24 113.34 ± 16.39 11.90 ± 5.93 

10 28.85 ± 1.09 72.85 ± 6.42 754.60 ± 0.35 4.55 ± 1.31 185.25 ± 48.16 552.33 ± 221.62 882.96 ± 166.94 123.12 ± 69.61 14.15 ± 9.62 

11 29.68 ± 0.78 70.89 ± 6.43 753.32 ± 1.44 3.20 ± 0.81 177.44 ± 67.24 513.62 ± 55.63 805.73 ± 228.52 93.50 ± 20.85 31.68 ± 12.44 

12 29.13 ± 2.28 75.62 ± 10.69 751.18 ± 2.80 4.12 ± 0.03 168.25 ± 29.31 597.21 ± 145.85 935.18 ± 279.47 50.74 ± 9.79 7.63 ± 1.83 

13 27.66 ± 1.89 78.54 ± 7.80 752.84 ± 0.58 2.77 ± 0.11 189.74 ± 49.09 431.82 ± 122.02 812.26 ± 255.23 40.66 ± 9.90 116.47 ± 12.04 

14 29.15 ± 1.74 71.75 ± 7.23 752.45 ± 0.40 3.61 ± 0.73 207.09 ± 17.61 604.71 ± 116.21 1213.68 ± 230.14 50.64 ± 19.54 104.61 ± 3.74 

15 32.64  ± 0.17 62.74  ± 0.81  752.6  ± 0.67 2.57  ± 0.47 162.52  ± 35.38 612.29  ± 168.27 836.37  ± 204.41 78.65  ± 22.66 95.88  ± 25.33 

16 31.62  ± 0.47 67.87  ± 1.68 751.75  ± 0.97 3.98  ± 2.05 172.78 ± 77.88 639.66  ± 83.48  1085.79  ± 215.32 244.33  ± 66.24 72.48  ± 19.60 

17 30.68  ± 0.44 74.52  ± 1.43 749.55  ± 0.66 5.89  ± 0.39 189.50  ± 5.70 573.66  ± 113.23 952.21  ± 54.28 566.66  ± 43.68 109.56  ± 2.09 

18 31.88 ± 0.51 69.48 ± 2.71 748.32 ± 0.24 5.42 ± 0.23 191.17 ± 16.86 742.25 ± 44.61 1124.15 ± 44.98 409.72 ± 50.09 108.19 ± 5.85 

19 29.93 ± 0.30 74.63 ± 1.13 750.18 ± 0.86 6.01 ± 0.58 178.59 ± 9.49 538.04 ± 35.49 839.82 ± 243.84 303.57 ± 24.61 45.80 ± 33.53 

20 29.49 ± 0.51 71.56 ± 2.55 752.97 ± 2.22 5.62 ± 0.98 166.70 ± 40.54 535.60 ± 66.89 850.75 ± 90.52 228.07 ± 34.05 20.15 ± 7.74 

21 28.33 ± 0.79 75.98 ± 5.23 754.84 ± 0.26 4.37 ± 1.16 157.44 ± 7.22 487.55 ± 132.29 828.78 ± 164.98 118.23 ± 35.25 13.03 ± 4.18 

22 29.41 ± 0.45 73.26 ± 0.42 752.25 ± 0.28 3.66 ± 0.52 172.85 ± 5.67 555.42 ± 82.10 870.46 ± 185.75 72.12 ± 22.31 29.66 ± 7.35 

23 28.57 ± 0.36 74.98 ± 1.39 752.64 ± 0.39 3.19 ± 0.56 198.41 ± 27.23 518.27 ± 57.32 1012.97 ± 146.37 45.65 ± 13.27 110.54 ± 10.51 

24 32.13 ± 0.59 65.31 ± 2.91 752.18 ± 0.58 3.28 ± 1.12 167.65 ± 15.25 625.98 ± 115.91 961.08 ± 240.07 161.49 ± 24.05 84.18 ± 21.86 



 

 

Table 3. Mean and standard deviation of Parameters used for modeling (continued) 

 

 Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 Xi8 Xi9 

S/N lnT lnRH lnP lnWS lnWD lnUVR lnSR lnPM2.5 lnBaP 

1 3.41 ± 0.01 4.33 ± 0.02 6.62 ± 0.00 1.81 ± 0.08 5.28 ± 0.10 6.29 ± 0.28 6.83 ± 0.08 8.69 ± 0.07 4.69 ± 0.03 

2 3.44 ± 0.01 4.29 ± 0.01 6.62 ± 0.00 1.73 ± 0.03 5.20 ± 0.03 6.37 ± 0.20 6.88 ± 0.07 8.59 ± 0.03 4.71 ± 0.01 

3 3.46 ± 0.02 4.25 ± 0.05 6.62 ± 0.00 1.73 ± 0.09 5.20 ± 0.05 6.55 ± 0.16 6.98 ± 0.06 8.45 ± 0.04 4.69 ± 0.03 

4 3.46 ± 0.01 4.23 ± 0.01 6.62 ± 0.00 1.65 ± 0.05 5.30 ± 0.10 6.65 ± 0.10 7.07 ± 0.02 8.12 ± 0.07 4.67 ± 0.08 

5 3.41 ± 0.01 4.31 ± 0.02 6.62 ± 0.00 1.76 ± 0.06 5.17 ± 0.19 6.26 ± 0.22 6.67 ± 0.22 8.07 ± 0.09 4.20 ± 0.36 

6 3.39 ± 0.01 4.31 ± 0.04 6.62 ± 0.00 1.81 ± 0.17 5.15 ± 0.34 6.29 ± 0.08 6.73 ± 0.34 7.96 ± 0.06 2.95 ± 0.68 

7 3.39 ± 0.02 4.28 ± 0.04 6.62 ± 0.01 1.80 ± 0.20 5.14 ± 0.40 6.18 ± 0.26 6.77 ± 0.32 7.86 ± 0.16 2.91 ± 0.80 

8 3.38 ± 0.01 4.26 ± 0.02 6.63 ± 0.01 1.63 ± 0.11 5.03 ± 0.20 6.35 ± 0.07 6.68 ± 0.06 7.53 ± 0.37 2.71 ± 0.69 

9 3.33 ± 0.02 4.37 ± 0.06 6.63 ± 0.00 1.41 ± 0.25 4.81 ± 0.38 6.04 ± 0.21 6.62 ± 0.30 7.03 ± 0.14 2.39 ± 0.52 

10 3.36 ± 0.03 4.28  ± 0.09 6.63  ± 0.00 1.49  ± 0.28 5.20  ± 0.28 6.27  ± 0.37 6.77  ± 0.18 7.02  ± 0.53 2.51  ± 0.62 

11 3.39 ± 0.03 4.26 ± 0.09 6.62 ± 0.01 1.14 ± 0.27 5.12 ± 0.44 6.24 ± 0.11 6.67 ± 0.27 6.82 ± 0.24 3.41 ± 0.40 

12 3.37 ± 0.08 4.32 ± 0.15 6.62 ± 0.01 1.42 ± 0.01 5.12 ± 0.17 6.37 ± 0.23 6.81 ± 0.29 6.22 ± 0.19 2.67 ± 1.36 

13 3.32 ± 0.06 4.36 ± 0.10 6.62 ± 0.00 1.02 ± 0.04 5.22 ± 0.27 6.04 ± 0.27 6.67 ± 0.30 5.99 ± 0.25 4.75 ± 0.10 

14 3.38 ± 0.06 4.27 ± 0.10 6.62 ± 0.00 1.27 ± 0.19 5.33 ± 0.09 6.39 ± 0.21 7.09 ± 0.21 6.17 ± 0.43 4.65 ± 0.04 

15 3.49 ± 0.01 4.14 ± 0.01 6.62 ± 0.00 0.93 ± 0.19 5.07 ± 0.23 6.39 ± 0.26 6.71 ± 0.23 6.64 ± 0.27 4.54 ± 0.28 

16 3.46 ± 0.02 4.22 ± 0.02 6.62 ± 0.00 1.30 ± 0.48 5.09 ± 0.44 6.45 ± 0.13 6.71 ± 0.62 8.02 ± 0.62 4.25 ± 0.29 

17 3.42 ± 0.02 4.31 ± 0.02 6.62 ± 0.00 1.77 ± 0.07 5.24 ± 0.03 6.33 ± 0.20 6.86 ± 0.06 8.64 ± 0.07 4.70 ± 0.02 

18 3.46 ± 0.02 4.24 ± 0.04 6.62 ± 0.00 1.69 ± 0.04 5.25 ± 0.08 6.60 ± 0.07 7.03 ± 0.04 8.31 ± 0.12 4.68 ± 0.05 

19 3.40 ± 0.01 4.31 ± 0.01 6.62 ± 0.00 1.79 ± 0.09 5.31 ± 0.08 6.267 ± 0.07 6.74 ± 0.16 7.96 ± 0.17 3.49 ± 0.80 

20 3.36 ± 0.03 4.30 ± 0.09 6.63 ± 0.00 1.51 ± 0.20 4.97 ± 0.04 6.14 ± 0.23 6.61 ± 0.14 7.46 ± 0.38 2.46 ± 0.29 

21 3.37 ± 0.02 4.29 ± 0.03 6.63 ± 0.01 1.39 ± 0.32 5.02 ± 0.08 6.28 ± 0.14 6.80 ± 0.04 6.92 ± 0.33 2.81 ± 0.36 

22 3.37 ± 0.03 4.30 ± 0.03 6.62 ± 0.00 1.25 ± 0.21 5.14 ± 0.04 6.24 ± 0.19 6.72 ± 0.21 6.26 ± 0.39 3.57 ± 1.07 

23 3.40 ± 0.08 4.25 ± 0.10 6.62 ± 0.00 1.09 ± 0.24 5.25 ± 0.19 6.27 ± 0.06 6.83 ± 0.23 6.26 ± 0.34 4.67 ± 0.02 

24 3.46 ± 0.01 4.21 ± 0.02 6.62 ± 0.00 1.31 ± 0.20 5.11 ± 0.03 6.48 ± 0.11 6.68 ± 0.36 7.94 ± 0.66 4.24 ± 0.04 

 

ln = Natural logarithm, T = Temperature, RH = Relative humidity, P = Pressure, WS = Wind speed 

WD = wind direction, UVR = Ultra-violet radiation, SR = Solar radiation, PM2.5 = Fine Particular matter, B(a)P = Benzo (a) pyrene.



 

 

3.0.2 Model selection 

3.0.2.1Internal validation   

Table 4 revealed the error evaluation of the five different models and their results. Model 1 satisfied 

all the necessary conditions among the five trained models. It had the highest Pearson correlation 

coefficient, R-squared and adjusted R-squared values of not less than 0.74 (74%).  When compared to 

models 2, 3, 4, and 5 their adjusted R-squared values were 0.57, 0.67, 0.60 and 0.55 respectively.  

The statistically significant variables (p-value ≤ 0.01) in all the models represented in Table 5 were 

temperature, wind speed and PM2.5 the only exception observed in model 5 was PM2.5 have a 

significance level of p ≤ 0.05. The interaction effect between these variables was also shown to be 

statistically significant at a p-value ≤ 0.05. Considering the total mean variable contribution of all the 

variables, model 1 was statistically significant at p-value = 0.017, coupled with the mean variable 

observed power computed at p ≤ 0.05 to be 0.824 (82%). This, therefore, suggested that the actual 

predicting power of all the predictors for model 1 was about 82% compared to the 100% (1.000) (Table 

4). While the actual observed power of the variables and their level of significance for model 2, 3, 4 

and 5 were 67% (p-value = 0.120); 74% (p-value = 0.092); 78% (p-value = 0.109) and 49% (p-value 

= 0.199) respectively. Table 4, also showed the results of some universally accepted error metrics 

usually used for forecasting (predicting) models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



 

 

 
Table 4. The training and evaluation of five different model results. 

 

Model evaluation MBE MAE RMSE MSE R R2 Adjusted R2 Predictive R2 or 

Q2
cv 

Trained model 1 (80% of data) 0.0000 0.4005 0.4838 0.2340 0.890 0.792 0.746 0.791 

Error estimate for 20% new data -0.4425 0.5525 0.6063 0.3676 0.691 0.477 - 0.601 

Average error estimate for 20% 

resampled data 
-0.0050 0.3863 0.4476 0.2229 0.603 0.376 - 0.722 

Trained model 2 (80% of data) 0.0005 0.4770 0.6065 0.3678 0.804 0.648 0.570 0.647 

Error estimate for 20% new data 0.3438 0.3438 0.4090 0.1673 0.416 0.173 - 0.860 

Average error estimate for 20% 

resampled data 
0.0153 0.4572 0.5795 0.3413 0.550 0.337 - 0.635 

Trained model 3 (80% of data) 0.0002 0.4253 0.5489 0.3013 0.857 0.734 0.676 0.733 

Error estimate for 20% new data 0.0487 0.5988 0.7419 0.5505 0.769 0.592 - 0.117 

Average error estimate for 20% 

resampled data 
0.0209 0.3922 0.4897 0.2625 0.456 0.229 - 0.698 

Trained model 4 (80% of data) -0.0005 0.3970 0.5480 0.3003 0.820 0.673 0.602 0.672 

Error estimate for 20% new data -0.5250 0.6400 0.7514 0.5646 0.385 0.148 - 0.695 

Average error estimate for 20% 

resampled data 
-0.1018 0.4133 0.5292 0.3168 0.436 0.243 - 0.312 

Trained model 5 (80% of data) -0.0002 0.4088 0.5649 0.3191 0.794 0.631 0.550 0.630 

Error estimate for 20% new data -0.5175 0.6025 0.7258 0.5267 0.429 0.184 - 0.761 

Average error estimate for 20% 

resampled data 
0.0388 0.3731 0.4945 0.2780 0.471 0.264 - 0.291 

 

In this study, the error metrics used to quantitatively compare the performance of competing models 

were mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE) and mean 

square error (MSE). Considering the error metrics as given in equations (8, 9, 10 and 11), model 1 had 

the lowest error term when compared to other models (Table 4). The error metrics of the models whose 

correlation coefficients were greater than 0.5 (i.e., R2) in terms of their performance were tested with 

resampled data set and then compared. Model 1 had the lowest error in terms of the MBE, MAE, 

RMSE and MSE values when compared to Models 2 and 3. For Models 4 and 5, the predictors (i.e. 

the explanatory variables) failed to explain the predicted variable (BaP) when tested with 20% 

resampled and new data because of their weak correlation coefficient of 0.436 and 0.471 respectively. 

The predictive R-squared (i.e. cross validation: Q2
cv) value for Model 1 (0.791) was also noticed to be 

outstanding and far above the 0.5 recommended for any quantitative structure-activity relation model 

[9], [30]. In the same vein, the difference between the R2 and Q2
cv for a fitted model must be very 



 

 

minimal (i.e. < 0.3). Thus for model 1, the difference between the R-squared (0.792) statistic and Q2
cv 

(0.792) statistic was 0.001, which was far less than the 0.1 recommended for an over-fitted model [43]. 

The difference was also less than 0.3,  recommended for a quantitative structure-activity relation 

(QSAR) model [43]. The Q2
cv value for 20% resampled data for model 1 was calculated to be 0.722.  

Another internal cross-validation done in this study was the residual plot shown in Fig.3, which showed 

that the error distribution around the centre-line for model 1 was fairly random (i.e. homoscedastic). 

While models 2, 3, 4 and 5, displayed an unequal error distribution (i.e. heteroscedastic) with clear 

patterns, which violates the assumption of a linear model. 

 

Fig.3. The scattered plot of the residuals for the five models. 



 

 

 

3.0.2.2 External validation  

The error estimate calculated by using different mathematical metrics and the correlation coefficient(s) 

for models 1, 2, 3, 4 and 5 respectively are shown in Table 3. The external cross validation (Q2
ext) as 

reported by many researchers, Q2
ext for a good model when tested with new data must not be less than 

0.5 (i.e. 50% predictability power) [27], [22], [6]. Also, the difference between the cross-validation 

value of the fitted model and new data must be minimal. Therefore from the results of the trained 

models, model 1 had a Q2
ext value of 0.601 when tested with 20% of the data (new). This revealed that 

the model was able to predict 60% of new data as against the 79% calculated from the fitted model. 

Thus, suggesting that the model had a good performance. Considering model 2, the Q2
ext value of 0.860 

(86%) for the 20% resampled data was found to be higher than 65% calculated for the fitted model, 

which suggests an over estimated value arising from an over fitted model. Models 2, 3, 4 and 5 were 

not consistent in predicting 20% of the resampled and new data. Evaluating the error metrics (MBE, 

MAE, RMSE and MSE) of individual models with respect to their performance when tested with an 

independent data (i.e. new data set), models 1 and 3 were quite outstanding as they showed a minimum 

comparable error values when compared to their fitted model. However model 1 was chosen as the 

best for this study because of its higher adjusted R- squared (0.746) and predictive R-squared (Q2
cv) 

value of 0.791. The adjusted R-squared value (0.746) for model 1 revealed that the explanatory 

variables (i.e. the predictor) used in this study was able to explain 74.6% of the response variable (i.e. 

the predicted). The predicted R-squared statistic (i.e. internal cross validation: Qcv
2) value of 0.791 in 

this study showed that model 1 has the ability to predict new set of data with an accuracy of not more 

than 79.1%.  



 

 

Table 5 Model hypotheses tests.  

 

Source 

Model 1* Model 2 Model 3 Model 4 Model 5 

Sig. 
Observed 

Powerb 
Sig. 

Observed 

Powerb 
Sig. 

Observed 

Powerb 
Sig. 

Observed 

Powerb 
Sig. 

Observed 

Powerb 

Corrected Model 0.0000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 

Intercept 0.0001 0.995 0.000 0.990 0.000 1.000 0.000 0.992 0.005 0.829 

lnT 0.0002 0.986 0.000 0.982 0.000 0.999 0.000 0.985 0.009 0.776 

lnWS 0.0000 1.000 0.006 0.821 0.000 0.993 0.000 0.997 0.000 0.984 

lnPM2.5 0.0003 0.978 0.000 0.971 0.000 0.998 0.000 0.984 0.022 0.649 

lnUVR 0.0931 0.390 0.707 0.066 0.577 0.085 0.740 0.062 0.725 0.064 

lnT x lnPM2.5 0.0004 0.967 0.000 0.965 0.000 0.997 0.000 0.978 0.027 0.616 

lnP xlnWS xlnPM2.5 0.0078 0.786 0.044 0.530 0.020 0.662 0.006 0.820 0.231 0.220 

lnT xlnWS x lnPM2.5 0.0199 0.662 0.080 0.419 0.049 0.508 0.017 0.688 0.380 0.139 

Total mean variable contribution 0.0174 0.824 0.120 0.679 0.0923 0.749 0.109 0.788 0.199 0.492 

 

Dependent Variable: lnB(a)P 

a Computed using alpha = .01         

  

b Computed using alpha = .05         
  

Model 1: R Squared = .791 (Adjusted R Squared = .746)*       
  

Model 2: R Squared = .647 (Adjusted R Squared = .570)       
  

Model 3: R Squared = .734 (Adjusted R Squared = .675) 
      

  

Model 4: R Squared = .673 (Adjusted R Squared = .602) 
     

  

Model 5: R Squared = .630 (Adjusted R Squared = .549) 

 

      

  



 

 

3.0.3 Model application to NE, SE and SW data 

Once the selected model was internally and externally validated, it was necessary to apply the 

log-linear model (LLM) to the remaining data collected in the same period of study from other 

zones to further validate the model performance. Out of the 108 samples from the NE, SE and 

SW data, 22 points were screened out because of outliers using the Z-score value of ±3. Most 

of the rejected points calculated for B(a)P concentration were far less than that predicted by 

the model. This may be a result of wet deposition of the PM2.5 bound PAHs in the wet season 

or errors arising during sample(s) extraction. Thus the final set was 86 samples. 

The plots of predicted B(a)P values against the experimental B(a)P values for training and test 

set are presented in Fig. 4.   

 

Fig. 4. The plot of Predicted B(a)P Values against the Experimental B(a)P values for Training 

and Test Sets 

 

A linear relationship was observed in the plot between the experimental and predicted values 

of the training set (R2 = 0.792). The fact that all these results were in agreement with a model 

validation benchmark presented in Table 6, is a confirmation of the reliability, robustness, and 

stability of the developed model according to Tropsha and his research group as table  [42], 

[11].  

 

 



 

 

Table 6. Benchmark for Model Validation 

 

Validation tools Interpretation 
Acceptable 

model Value 

selected 

model value 
Remarks 

 Co-efficient of determination ≥0.6 0.792 Pass 

R2adj Adjusted R-squared >0.6 0.745  

P (95%) 
Confidence interval at 95% 

confidence level 
<0.05 0.017 Pass 

Q2
cv 

Cross-Validation Co-

efficient 

(training set) 

>0.5 0.791 Pass 

No of the 

samples 

(training set) 

Minimum number of 

samples for training a GLM 

model 

≥40 
72(NW 

data) 
Pass 

R2-Q2
cv 

Difference between R2 and 

Q2
cv (internal validation) 

≤0.3 0.001 Pass 

RMSEcv 

Root mean square error of 

cross-validation (training 

set) 

NR 0.484 - 

MAEcv 
Mean absolute error cross 

validation (training set) 
NR 0.400 - 

MBEcv 

Mean bias error cross-

validation 

(training set) 

NR 0.000 - 

No of External 

test-set 

Minimum number of 

external test sets 
≥5 

108(NE. SE 

& SW data) 
Pass 

R2Test-set 

(Q2
ext) 

Co-efficient of determination 

of external test set (external 

validation) 

≥0.5 0.722 Pass 

RMSEp 

Root mean square error of 

prediction (external 

validation) 

NR 0.657 - 

MAEp 

Mean absolute error of 

prediction (external 

validation) 

NR 0.655 - 

MBEp 
Mean bias error of prediction 

(external validation) 
NR -0.152 - 

NR: Not recommended 

 

Olasupo and his research also reported that the slope (K) of the regression line between the 

experimental values and the predicted values in an external validation should be in the range 

of 0.85 to 1.15 (i.e. 0.85 ≤ k ≤ 1.15>) [30]. Thus in this study, the slope (0.8628) between the 

predicted and the experimental values of the test-set: NE, SE and SW (external validation) were 

in agreement with that reported by Edacha and his group for a robust model [12].



 

 

 The line graph shown in Fig. 5, revealed the relationship between experimental and predicted   

B(a)P for both training and test set. It was evident from the training set (NW-data) that the 

experimental values (independent variable) in the fitted model were explained by predicted values 

(dependent variable) to a reasonable extent because of the interaction and closeness between them. 

In the test set the similarity in trend between the experimental and predicted data (i.e. data 

generated by the selected model) further validates the model performance.  

 

Fig. 5. Line Graph of the Experimental and Predicted Bap for both Training and Test Set. 

 

Thus the model can be said to be robust and can predict B(a)P with reasonable accuracy of 60-

72% (Tables 4 and 5) in a new location where similar anthropogenic activities thrived. 

4.0 Conclusion 

This research aimed at building the first predictive model for the prediction of B(a)P in Nigeria 

Cities using Benin City as a case study. The internal and external validation of the model coupled 

with the residual analysis confirmed that the log-linear model (i.e. a special type of the generalized 

linear model-GLiM) is a promising method for the use of meteorological and particulates (PM2.5) 

data to predict an organic compound such as B(a)P. The prediction ability of the chosen model 

was confirmed by the R-squared (R2 = 0.6553) obtained when it was applied to the NE, SE, and 

SW zone data. Thus accounting for 65% predictability of the applied model expected. It can 

therefore be concluded that the application of the log-linear predictive model offers great potential 

when exploring the atmospheric concentration of PAHs in the environment where similar 

activities are taking place. 
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