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Abstract: This study proposes a method to detect vehicles by enhancing the YOLOv5 network 1

structure and incorporating RetinexNet to address the problem of limited detection capabilities of 2

target identification algorithms in low illumination conditions, such as at night time. CBAM attention 3

module is implemented in the network’s Neck detection layer to extract the vehicle’s primary features, 4

reduce the extraction of unused features, and improve the vehicle’s detection performance. The 5

DIoU is introduced as the loss function of the model to solve the imprecise location of the prediction 6

box and speed up the convergence of the model. RetinexNet is applied to enhance the detection 7

capabilities of low-illumination images by enhancing and denoising them. The experimental results 8

indicate that the enhanced model detects vehicles with 90% accuracy in low-light conditions and has 9

a strong detection performance overall. 10

Keywords: YOLOv5; Attention mechanism; RetinexNet; Target detection; DIoU) 11

1. Introduction 12

Vehicle detection technology is an important research topic in modern intelligent 13

transportation systems for computer vision technology. With the development of com- 14

puter vision, digital image processing technology, and intelligent transportation technology, 15

automatic vehicle recognition technology is increasingly being valued. However, even 16

though existing systems have high requirements for images, problems such as complex 17

backgrounds, uneven lighting, low resolution, and dirty and old vehicles are always en- 18

countered, especially in low-light or bad weather conditions, which leads to difficult vehicle 19

model recognition and low image quality and license plate recognition rate. Therefore, 20

how to improve the recognition rate of vehicles under low-light conditions to cope with 21

complex and changing application environments is an important issue in the research of 22

vehicle detection and recognition systems. 23

In some areas, infrared cameras are used to detect vehicles. Although this method 24

can effectively obtain night-time environments, it is prone to interference from vehicle 25

lights, and infrared cameras are usually expensive. Therefore, for the purpose of successful 26

vehicle detection, some scholars have tried to use certain algorithms to analyze the images 27

obtained by ordinary CCD and CMOS cameras. RITA C [1] et al. used the position of the 28

headlights to determine the vehicle, but this method is easily affected by external light 29

sources such as ground reflections, with low accuracy. O’Malley R [2,3] et al. tried to 30

obtain vehicle position information by adjusting the high red threshold for the car lamp 31

adaptively based on the changes in its light. The above methods have, to a certain extent 32

and from different prospectives, improved the detection accuracy by pairing the headlights 33

and taillights [4,5], but the detection errors are still large, and the accuracy is still difficult 34

to be guaranteed. 35

To solve the shortcomings of traditional nighttime vehicle detection, the low-light 36

images collected can be enhanced first to highlight the feature information in the image 37

and improve the accuracy of subsequent target detection. At present, image enhancement 38
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algorithms are mainly divided into traditional methods and deep learning methods. Cur- 39

rently, there are many traditional enhancement methods. Liu [6] et al. used LogAbout 40

for lighting compensation, leading to higher correct detection rate. This idea can quickly 41

and effectively solve the problem of lighting compensation. Pang-Ting Huang [7] et al. 42

proposed a dynamic illumination object (DIO) detector to overcome the uncertainty in 43

lighting conditions. B. Froba [8] et al. introduced light-invariant local structural features 44

for target detection. R. E. Sequeira [9] greatly improved the accuracy through the scattering 45

noise process. Nevertheless, the needs of complex scenes or subsequent target detection 46

cannot be met in most cases. For example, the histogram equalization method (Figure 47

1(a)) can be used to change the gray-level histogram of the original image from a relatively 48

concentrated gray-level range to a uniform distribution across the entire gray-level range, 49

resulting in a decrease in the gray level of the transformed image and the loss of some 50

details, which is not conducive to subsequent target detection. The gray world algorithm 51

(Figure 1(b)) is prone to failure when the scene color is not rich, especially when large 52

single-colored objects appear. Finally, the automatic white balance method (Figure 1(c)) is 53

not suitable for shooting single-colored objects and is prone to color deviation. 54

(a) (b) (c)

With the emergence of deep learning, low-light image enhancement algorithms based 55

on convolutional neural networks have shown significant improvements over traditional 56

methods. I. S. Kim [10] proposed a method that combines an image quality enhancement 57

network with an object detection network to obtain high-quality images from ordinary 58

surveillance cameras used in different locations, thus improving safety in low-light areas at 59

night. Y. Qu [11] et al. proposed an image transformation optimization network based on a 60

cyclic generative adversarial network, which significantly improves detection accuracy and 61

increases the number of detected targets in low-light environments. W. Wang [12] et al. used 62

block matching and 3D filtering methods for image denoising and sharpening. H. Kuang 63

[13] et al. proposed a biologically-inspired image enhancement method and weighted 64

feature fusion technology, in which the classifier is trained with a support vector machine 65

and the image enhancement method has a good effect on vehicle detection. Although 66

these detection methods have improved detection accuracy in low-light environments from 67

different perspectives, it is still difficult to maintain good performance in complex low-light 68

environments. 69

RetinexNet [14] deep network provides a good method for low-light enhancement, 70

but there are still some deficiencies. The enhanced image is prone to color distortion and 71

image blur, which is not conducive to subsequent detection. Therefore, by converting the 72

RGB color space to the HSV color space before image enhancement, the color components 73

are separated from the brightness and saturation components to ensure that the color 74

components remain unchanged while adjusting the brightness and saturation components. 75

This avoids color distortion caused by adjusting the three color channels separately in 76

the RGB color space. In response to the blurring of the enhanced image caused by the 77

denoising operation of the Enhance-Net in RetinexNet, Laplace is introduced for sharpening 78

to enhance the edge information of the image and improve the recognition rate of vehicle 79

detection. After image enhancement, an improved YOLOv5 network is used for vehicle 80

detection. Specifically, inspired by the way the human brain processes visual information, 81

an attention mechanism is added to the original network model to improve the accuracy 82

of object detection. Hu J [15] et al. proposed introducing SENet to model the correlation 83
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between feature channels, so as to strengthen important features to improve accuracy. 84

However, this method only focuses on channel factors and does not fully utilize global 85

contextual information. On the other hand, CBAM [16] uses attention mechanisms in both 86

channel and spatial dimensions, achieving better results than SENet that only focuses 87

on channel attention mechanisms. For the loss function used in model training, directly 88

regressing the Euclidean distance between the center points of the two boxes accelerates 89

convergence and obtains relatively fast speeds. 90

In summary, this work has made the following significant contributions: 91

1) YOLOv5, a highly popular detection algorithm, is used for optimization through 92

unique feature techniques. 93

2) Furthermore, the detection of vehicles under low-light conditions is achieved, and 94

experimental studies on several solutions have been done to determine their effectiveness, 95

which is highly relevant to real-world scenarios. 96

2. YOLOv5 Model 97

YOLOv5-v5.0 is the YOLO family of algorithms, proposed by Redmon et al. Previous 98

versions include YOLOv1 [17], YOLOv2 [18], YOLOv3[19], and YOLOv4 [20]. It has four 99

models, YOLOv5s, YOLOv5m, YOLOv5l ,and YOLOv5x. In this article, the YOLOv5s 100

model will be used for experimental research, and the network structure is shown in Figure 101

1, which is relatively easy to train due to its minimum network depth and minimum feature 102

map width. YOLOv5s consists of the Input, Backbone, Neck and Prediction. The input 103

side of the network is enhanced with Mosaic to process the data, and YOLOv5s is able to 104

recalculate and adaptively scale the anchor box compared to the previous version of YOLO 105

where the anchor box value could only be manually modified. Backbone mainly consists of 106

the focus structure, the CSP1_x structure and the spatial pyramid pooling (SPP)[21].Focus 107

performs a replication operation followed by slicing to obtain a binary downsampling 108

feature map without losing feature information. cSP1_x has a residual structure[22] to 109

optimize the gradient information of the network and avoid the disappearance of gradients 110

due to network deepening. SPP converts input images of different sizes into fixed-size im- 111

ages. Neck uses the FPN3[23] and PANet[24] architecture for feature fusion, which enables

Figure 1. YOLOv5s network architecture diagram.
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effective multi-scale feature fusion. The CSP2_x structure is used, replacing the residual 112

structure with a CBL structure based on CSP1_x. The CBL consists of a convolutional layer, 113

BN normalization and a ReLU activation layer, thus enhancing the fusion of the extracted 114

features. Non-maximum suppression processing in Prediction uses CIoU_loss[25] as a loss 115

function for the B-box, eliminating redundant bounding boxes. 116

3. Attention Module 117

Adding the attention mechanism of CBAM to YOLOv5s’ network model to improve 118

the accuracy of target detection is mainly inspired by the way the human brain processes 119

visual information. 120

121

The Convolutional Attention Module (CBAM) is a simple, lightweight and effective 122

attention module for feed-forward convolutional neural networks that improve on the 123

problem that the attention generated by SENet[26] on the feature map channel can only 124

focus on the feedback capability of some layers on the channel layer by applying attention 125

in both the channel and spatial dimensions inferentially and multiplying the generated 126

attention map with the input feature image to be used for adaptive feature refinement, 127

significantly improving the network model’s ability to extract image features while only 128

increasing the computational effort by a negligible amount. The CBAM module can be 129

integrated into most of the mainstream networks at this stage and can be trained end-to- 130

end with the underlying convolutional neural network, therefore, this article chooses to 131

integrate this module into the YOLOv5 network to highlight the main features and reduce 132

the extraction of unnecessary features, so as to effectively improve the detection accuracy 133

of the network. The structure of the CBAM module is shown in Figure 2. 134

Channel 

attention 

model
Spatial 

attention

Input 

characterist

ics

Output 

characteristics

Figure 2. CBAM structure chart.

The specific process is to take a given feature map F ∈ R
C×H×Wand first compress 135

the feature map under maximum pooling and average pooling through a 1-dimensional 136

channel attention mechanism Mc ∈ R
C×1×1, thus generating two different spatial infor- 137

mation describing the feature map average pooling feature Favg ∈ R
C×1×1and maximum 138

pooling feature Fmax ∈ R
C×1×1 .It is then passed into a shared network consisting of a 139

hidden layer and a multilayer perceptron (MLP), with the hidden layer set to an activation 140

size of RC/r×1×1, where r is the reduction ratio to reduce the parameter overhead, to obtain 141

two feature vectors. Finally, they are accumulated and operated by the sigmoid activation 142

function to obtain the channel weights Mcwhich are then multiplied with each pixel of 143

the given feature map F to complete the adaptive feature refinement and obtain the new 144

feature mapF1. Figure 3 represents the structure of the channel attention module CAM, and 145

the expression of the channel attention mechanism is : 146

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(

W0

(

Fc
avg

))

+ W1(W0(Fc
max))

) (1)

where σ the S-shaped function,W0 ∈ R
C/r×C MLP is the multilayer perceptron, Avg- 147

Pool is the average pooling, and MaxPool is the maximum pooling. 148
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Figure 3. Channel Attention Module CAM structure.

The new feature map F1 ∈ R
C×H×W is then passed through the spatial attention 149

mechanism, which first performs global maximum pooling and global average pooling 150

operations along the channel axis, splices the two obtained feature maps into a complete 151

feature and then convolves it through a 7 × 7 convolution kernel to reduce its dimension to 152

1 channel, and finally normalizes it by the sigmoid activation function and multiplies it 153

with the input in the channel to generate The final spatial attention feature Ms ∈ R
1×H×W . 154

Figure 4 represents the structure of the spatial attention module SAM, with the expression 155

for the spatial attention mechanism as : 156

Ms(F) = σ
(

f 7×7([AvgPool(F)MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg ; Fs

max

])) (2)

where σ is the sigmoid activation function and f 7×7 is the convolution operation 157

through a convolution kernel of size 7 × 7. 158

H×W×C
[maximum pooling, average 

pooling]
1×H×W

conv

oluti

on

Spli

cing

Output 

characteristics
Input 

characteristics Channel 

Attention 

Characteristics

、

1×1×C

Figure 4. Structure of the spatial attention module SAM.

4. RetinexNet Model 159

Image processing algorithms for detection in low-illumination environments are 160

mainly divided into traditional methods and deep learning methods. Traditional methods 161

mainly make use of the more significant lighting features in the current environment, such 162

as image enhancement using infrared light and visible light image fusion[27],but their 163

details such as the color of the image cannot be well described; Retinex is an effective and 164

feasible illumination image enhancement, but the majority of Retinex-based methods suffer 165

from model capacity limitations due to artificial constraints and parameters when applied 166

to various environments. Since convolutional neural networks have been widely used in 167

image processing, noise and color distortion in images have been effectively improved, and 168

the RetinexNet deep network provides a good method for low-light enhancement. 169

170

RetinexNet is a data-driven Retinex decomposition method that consists of two net- 171

work structures Decom-Net and Enhance-Net. decomposition net Decom-Net decomposes 172

the acquired image into reflection-independent and structure-aware balanced illumination, 173

consisting of a low-light/normal-light image for the same reflectance and a smooth The 174

two constraints of the illumination map are learned. 175

The network structure is shown in Figure 5, which takes a low light image Slow and a 176

normal light image Snormal as input, and predicts the reflectance Rlow and illuminance Ilow 177

for Slow and Snormal respectively. 178
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Figure 5. RetinexNet Network Framework.

During training, a pair of low-light normal-light images is acquired, and the decom- 179

position of the low-light and its corresponding normal-light images is learned under the 180

condition that the low-light and normal-light images share the same weights. Both the 181

image components of the low-light image and the normal-illumination image can be used 182

to reconstruct the image S-component, and the decomposition network structure is shown 183

in Table 1.A 3 × 3 convolutional layer is first used to extract the features, then several 184

3 × 3 convolutional layers with ReLu as the activation function are used to map the RGB 185

image The reflectance and illumination are then mapped from the feature space by a 3 × 3 186

convolutional layer ,and constrained to [0,1] by a Sigmoid layer. 187

Table 1. S-component Decomposition Network Structure

Input Operate Convolution kernel Output channel Step Output
RGB rgb to hsv – – – H,S,V

S conv 3 64 1 feats0
feats0 conv & ReLU 3 64 1 feats1
feats1 conv & ReLU 3 64 1 feats2
feats2 conv & ReLU 3 64 1 feats3
feats3 conv & ReLU 3 64 1 feats4
feats4 conv & ReLU 3 64 1 feats5
feats5 conv & sigmoid 3 64 1 R,I

In turn,the loss L is given by : 188

L = Lrecon + λirLir + λisLis (3)

where Lrecon denotes reconstruction loss, Lir denotes constant loss, Lis denotes illumi- 189

nation smoothness loss, and Lir and Lis denote the coefficients that balance reconstruction 190

smoothness and illumination smoothness consistency.Reconstruction of loss Lrecon as : 191

Lrecon = ∑
i= low,normal

∑
j= low,normal

λij

∥

∥Ri ◦ Ij − Sj

∥

∥

1 (4)

The reflectivity consistency loss Lir is : 192

Lir = ∥Rlow − Rnormal ∥1 (5)

In order to improve the perception of image structure, Total Variation minimization 193

is often used as a gradient minimization method for the whole image to be used as a 194

smoothing prior to image recovery, but for regions with strong structure or large differences 195

in image brightness, the illumination map gradient has been uniformly decreasing, so the 196

direct use of this method is not reliable. So the original total variance minimization method 197

is weighted to give a final illumination smoothness lossLis is : 198

Lis = ∑
i=l

∥

∥∇Ii ◦ exp
(

−λg∇Ri

)∥

∥

(6)
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where ∇ denotes the horizontal and vertical gradients and λg denotes the equilibrium 199

structural strength factor. 200

Enhance-Net is used to adjust the illumination map to maintain regional consistency and to 201

crop the layout distribution through multi-scale cascades while introducing reflectance de- 202

noising to eliminate noise in dark areas or noise that may be amplified during enhancement. 203

The encoder-decoder structure introduces a multi-scale cascade to adjust the illumination 204

from a hierarchical perspective. The structure enables successive downsampling of the 205

input image to small scales, with the downsampling block consisting of a convolutional 206

layer with a step size of 2 and a ReLU activation layer, in order to obtain a large-scale 207

perspective view of the illumination distribution of the photograph and to improve the 208

adaptive nature of the network. Up-sampling is performed to reconstruct the local light 209

distribution using large-scale information. 210

By introducing multiscale connectivity and thus global illumination consistency, when 211

there are M upsampled blocks with resizable convolutional layers (consisting of a nearest 212

neighbor difference operation, a convolutional layer with a step size of 1 and a Relu 213

activation layer), each block will extract a C-channel feature map and then connect these 214

different scale features to the C × M channel features by resizing them to the final scale 215

using the nearest neighbor difference method The C × M channel feature map is then 216

connected to the C × M channel feature map by the nearest neighbor difference method. 217

This is then reduced to C channels by 1 × 1 a convolutional layer, and finally a 3 × 3 218

convolutional layer to complete the reconstruction of the light map. The loss function L of 219

this network is : 220

L = Lrecon + Lis (7)

where Lrecon denotes reconstruction loss, i.e. 221

Lrecon =
∥

∥

∥
Rlow ◦ Î − Snprmal

∥

∥

∥

1
(8)

The gradient map of Rlow is weighted as Î . 222

5. Loss function optimisation 223

The loss function is able to calculate the difference between the predicted and real 224

data of the model. The GIoU[28] function was used in the original YOLOv5 network to 225

calculate the objectness score, which solves the problem that when the real box in IoU does 226

not completely overlap with the position of the predicted box, it will lead to a loss value of 227

1 for both, thus The GIoU and its loss calculation formula is : 228

GIoU
(

B, Bgt

)

= IoU
(

B, Bgt

)

−
|C −

(

B ∪ Bgt

)

|

|C|
(9)

LGIoU

(

B, Bgt

)

= 1 − GIoU
(

B, Bgt

)

= 1 − IoU
(

B, Bgt

)

+
|C −

(

B ∪ Bgt

)

|

|C|

(10)

where B is the prediction frame, Bgt denotes the ground truth and IoU is calculated as : 229

IoU =
|B ∩ Bgt|

|B ∪ Bgt|
(11)

C in Eqs. (9) and (10) is the minimum external rectangular box, which is calculated as : 230

C =
(

xC
2 − xC

1

)

×
(

yC
2 − yC

1

)

(12)

Where x
p
1 , x

p
2 , y

p
1 , y

p
2 are : 231
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xC
1 = min

(

xB
1 , x

Bgt

1

)

,xC
2 = max

(

xB
2 , x

Bgt

2

)

yC
1 = min

(

yB
1 , y

Bgt

1

)

,yC
2 = max

(

yB
2 , y

Bgt

2

) (13)

When the real frame contains the prediction frame, while the size of the prediction 232

frame and the real frame is fixed, IoU cannot calculate the area ratio of the prediction frame 233

to the real frame well, the reason for this is that the prediction frame does not matter in 234

which position of the real frame, as shown in Figure 6. The values calculated by Eqs. (9) and 235

(11) are unchanged, and the relative positions of the two cannot be determined, resulting 236

in inaccurate target positioning and affecting the convergence effect and accuracy of the 237

model. 238

Figure 6. Schematic diagram of the location of the true and predicted boxes.

Based on the above problem, the DIoU[29] loss function algorithm is introduced, 239

which differs from GIoU in that it uses the magnitude of the ratio of the square of the 240

distance between the predicted frame and the centroid of the real frame to the square of 241

the diagonal length of the smallest external rectangular frame C of both as part of the loss 242

value calculation. DIoU with its loss calculation formula is : 243

DIoU
(

B, Bgt

)

= IoU
(

B, Bgt

)

−
ρ2
(

B, Bgt

)

C2
1

(14)

LDIoU

(

B, Bgt

)

= 1 − D IoU
(

B, Bgt

)

= 1 − IoU
(

B, Bgt

)

+
ρ2
(

B, Bgt

)

C2
1

(15)

where ρ is the Euclidean distance between the centre point of the prediction frame and 244

the centre point of the detection frame, and C1 is the slope distance of the smallest external 245

rectangular frame of the two frames. The calculation equations are respectively as follows : 246

ρ2
(

B, Bgt

)

=
(

x
p
1 − x

p
2

)2
+

(

y
p
1 − y

p
2

)2
(16)

C2
1 = (xc

2 − xc
1)

2 + (yc
2 − yc

1)
2 (17)

Where x
p
1 , x

p
2 , y

p
1 and y

p
2 are : 247

x
p
1 = xB

2 − xB
1 , y

p
1 = yB

2 − yB
1

x
p
2 = x

Bgt

2 − x
Bgt

1 , y
p
2 = y

Bgt

2 − y
Bgt

1

(18)

DIoU enables the centroid of the prediction frame to move closer and closer to the 248

centroid of the real frame, which in turn allows the model to converge faster. 249

6. Experimental results and analysis 250

6.1. Experimental environment and experimental data 251

All experiments in this paper were run under Windows 10 with Intel(R) Core(TM) 252

i7-9750H CPU @ 2.60GHz, NVIDIA GeForce GTX 1650 graphics card, 16GB RAM hardware 253

environment, using Pytorch1.10 deep learning framework, CUDA10.2 parallel computing 254
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architecture and cuDNN deep neural network acceleration library. The experimental 255

dataset contains 2052 images, and the samples are shown in Figure 7. The vehicles in the 256

images were labeled with labelimg, mainly cars, vans, and buses. 257

Figure 7. Schematic diagram of the sample data set.

The XML format file generated by labelimg was converted into a txt file for training, 258

and the ratio of training set to test set was divided into 8:2. Batch_size was set to 2, 259

the initial learning rate was 0.003, all models were trained with 100 epochs, and some 260

hyperparameters were set as shown in Table 2. 261

Table 2. Training hyperparameter settings

Parameter Numerical Value
Initial learning rate 0.0032

Termination rate 0.12
Warm-up learning rounds 2.0

Preheat learning initial bias learning rate 0.05
Epoch 100

6.2. Evaluation indicators 262

In order to test the performance of the improved model, Precision (P), Recall (R) and 263

mean average precision (mAP) are used as indicators for model performance evaluation in 264

this paper. The specific formulae are. 265

266

Precision =
TP

TP + FP
× 100% (19)

Recall =
TP

TP + FN
× 100% (20)

mAP =
∑

C
i=1 APi

C
(21)

In Eq. (19) (20) TP indicates true positive, i.e. correct identification of positive targets.
FP indicates false positive, i.e. identification of negative targets as positive. FN indicates
false negative, i.e. identification of positive targets as negative. In equation (21) C indicates
the number of categories and AP is the area enclosed by the P − R curve, i.e.

AP =
∫ 1

0
P(R)dR (22)
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6.3. Results of training 267

Both the improved model and the original YOLOv5 model were trained under the 268

same conditions, and the resulting mAP curves are shown in Figure 8, with the red curve 269

representing the improved model and the blue curve representing the original YOLOv5 270

model. As can be seen from the curves, both models converge rapidly in the first 20 271

rounds, and then level off after 50 rounds until the training is completed, with both models 272

well trained and no obvious overfitting or underfitting. By testing the models in the 273

improvement process, the results obtained are shown in Table 3. 274

Figure 8. mAP curves for the original YOLOv5 model and the improved model.

The data in the table shows that the improved network has a significant improvement 275

in target recognition accuracy relative to the original network, with an increase of about 276

6%, and although the improved network has a slightly reduced FPS, it basically meets the 277

demand for real-time performance. 278

279

Table 3. Training hyperparameter settings.

Model mAP FPS
YOLOv5s 0.8429 24

YOLOv5s+ RetinexNet 0.8948 19
YOLOv5s +RetinexNet+CBAM 0.9004 18

YOLOv5s +RetinexNet+CBAM+DIoU 0.9052 19

Figure 9 shows the comparison curves of the CBAM and SENet modules in the net- 280

work. The training results show that the mAP of the CBAM module is slightly better than 281

that of the SENet module, and the YOLOv5 network incorporating the CBAM module can 282

significantly improve the ability of the network model to extract image features. 283

284

Figure 9. CBAM vs SENet mode comparison graph.
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Figure 10 shows the effect of partial vehicle detection, with the original YOLOv5 285

detection results on the left and the improved model on the right. The original network 286

before improvement cannot effectively detect vehicles in dim photos, while the improved 287

model enhances and denoises the image by RetinexNet to improve the overall brightness 288

of the image, and then enhances the recognition accuracy of vehicle targets by adding the 289

YOLOv5 detection network with the CBAM .attention module, so that it can accurately 290

detect vehicles in the images. 291

Figure 10. Vehicle inspection result.

7. Conclusion 292

The detection model based on attention mechanism and RetinexNet is proposed to 293

address the problem of low accuracy of traditional detection algorithms in low illumination 294

environments. 295

1)The introduction of the CBAM attention module in the YOLOv5 detection network 296

can effectively solve the detection of vehicles in complex environments and optimize the 297

loss function algorithm to improve the detection accuracy of targets. 298

2)The introduction of Decom-Net and Enhance-Net in RetinexNet to decompose and 299

enhance low-light images improves the ability of the model to detect vehicles at night. 300

3)The improved algorithm mAP has high accuracy which reaches to 0.9052. The 301

proposed method improves the detection of vehicles in low illumination environments and 302

can meet the needs of a wide range of applications at this stage. 303
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